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1. Introduction 

Inflammation is a normal and extraordinarily important component of responses to 

infection and injury. The cardinal features of swelling, redness, stiffness and increasing 

temperature are strong indicators of the significant changes in tissue metabolism and the 

ingress of immune cells into the tissues. The increase in blood flow which underlies 

many of these changes may result in changes to the supply of nutrients and in particular 

the level of oxygen in the tissues. Inward migration of immune cells, which is also 

enabled by the increased blood flow, will put further stress on the metabolic 

environment of the tissues. The activity of macrophages and neutrophils in clearing 

infection and repairing tissue damage also have significant metabolic consequences 

particularly because of the production of cytokines and cytotoxic molecules such as 

reactive oxygen species and reactive nitrogen species, which are required to kill invading 

organisms. Production of these molecules will consume considerable quantities of 

oxygen, ATP and NADPH. These antimicrobial agents put considerable stress on host 

cells in the surrounding and distal tissues and can lead to significant loss of protective 

metabolites such as glutathione.  

Most infections and traumatic injuries are cleared or repaired relatively rapidly and 

metabolic homoeostasis is soon restored. However, there is a broad range of inflammatory 

diseases which involve chronic activation of the immune system and, as a result, chronic 

persistent inflammation. We have been studying the metabolic consequences of chronic 

inflammatory diseases with the aim of identifying metabolic fingerprints which may 

provide clues about why the localised tissue disease persists. For example, why in 

rheumatoid arthritis does persistent inflammation lead to widespread cartilage and joint 

destruction? However, the metabolic consequences of chronic inflammation are much 

more widespread than the localised disease and can lead on to important comorbidities 

such as accelerated atherosclerosis and cardiovascular disease. Metabolomic analysis may 

be able to distinguish between localised and systemic metabolic consequences of 

inflammation and provide novel targets for therapeutic intervention in these important 

human diseases. 
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2. Introduction to inflammatory disease 

An indication of the strong link between inflammation and metabolic processes is seen in 
cachexia, the loss of cellular mass associated with disease.  The discovery of the involvement 

of tumour necrosis factor- alpha (TNF in this process earned it the name ‘cachexin’.  While 

TNF is now known more generally as a mediator of inflammatory responses, the ability of 
inflammatory cytokines to have such profound effects on cellular and metabolic processes is 
informative.  Systemic inflammation such as that seen in RA causes changes in metabolism 
and rheumatoid cachexia is a result of chronic inflammation.  This is characterised by the 
loss of muscle mass and preservation of fat mass (Evans et al., 2008).  Classically cachexia is 
characterised by a low BMI.  Muscle wasting is a common feature of RA but low BMI is 
uncommon as the fat mass is preserved or even increased (Summers et al., 2008).  Hence, RA 
patients may present with either the classic low BMI cachexia (1-13% of RA population) 
(Munro & Capell, 1997) or more frequently, the rheumatoid cachexia (10-20% of RA with 
controlled disease and 38% of patients with active RA) (Engvall et al., 2008, Metsios et al., 
2009).   

The muscle loss that occurs in rheumatoid cachexia is thought to be due to proinflammatory 

cytokines such as TNF, IL1 and IL6.  TNF promotes proteolysis through the ubiquitin-
proteasome pathway.  There is also some evidence that cytokines may prevent an increase 
in muscle protein synthesis in response to feeding (anabolic resistance) (Summers et al., 
2010).  In rheumatoid cachexia the degree of muscle wasting is associated with the disease 
activity of RA (Summers et al., 2010).   

2.1 The inflammatory process 

An acute inflammatory reaction is characterised by the classic cardinal signs of 
inflammation: heat, redness, swelling and pain.  In experimental settings the temporal 
relationships oedema, accumulation of leukocytes and accumulation of monocytes and 
macrophages are well established.  These events in self-limited inflammatory reactions are 
coupled with the release of local factors which prevent further release of leukocytes, which 
allows resolution (Serhan, 2009). The transition from acute inflammation to chronic 
inflammation is widely viewed as a result of an excess of pro-inflammatory mediators.   

2.2 Inflammatory mediators 

Cytokines are important regulators of inflammation.  Some cytokines such as TNF and 

interleukin (IL) 1 promote inflammatory responses by inducing cartilage degradation and 

promoting a cell-mediated immune response. Other cytokines such as IL-4, IL-10 and IL-13 

function mainly as anti-inflammatory molecules (Isomaki & Punnonen, 1997).  Key 

biological targets that have been identified as being involved in a destructive inflammatory 

reaction are COX-2, pro-inflammatory interleukins, TNF, migration inhibition factor, 

interferon gamma and matrix metalloproteinases (Ivanenkov et al., 2008).   

Several inflammatory mediators have been identified which are common to several 

inflammatory diseases.  It has been shown that C-reactive protein (CRP) is secreted by several 

cell types and is capable of directly activating immune cells. This supports a role for  CRP as an 

active inflammatory mediator which has systemic and local effects (Montecucco & Mach, 2009).   

www.intechopen.com



 
Metabolomics in the Analysis of Inflammatory Diseases 

 

271 

White adipose tissue has been shown to secrete several inflammatory mediators called 
adipokines or adipocytokines. These induce their activities by binding to selective 
transmembrane receptors.  Leptin is the most studied adipocytokine and is thought to have 
an important role in the inflammatory process (Montecucco & Mach, 2009).   

Macrophage
T cell
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IL-8

IL-6

+

IL-4

IL-10

IL-13

-

IL-17

IL-6

IFN-γ

+
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TNFα

+

IL-10

IL-1Ra
-

FGF

TGF-β
+

Fibroblast

Epithelial

IL-1

IL-8
+

 

Fig. 1. Key inflammatory cytokines and the inflammatory network. Responses are a balance 

of pro-inflammatory tumour necrosis factor alpha (TNF) and interleukin (IL) 1, IL-6, IL-17 
and anti-inflammatory IL-1R, IL-4, IL-10 and IL-13. Expression of cytokines is dependent on 
activation and local signalling driving progression and eventual resolution. 

2.3 Metabolic inflammation 

Many factors contribute to the complex course of inflammatory reactions.  Microbiological, 

immunological and toxic agents can initiate the inflammatory response by activating a variety 

of humoral and cellular mediators.  In the early phase of inflammation, excessive amounts of 

interleukins and lipid-mediators are released and play an important role in the pathogenesis of 

organ dysfunction.  Arachidonic acid (AA) is released from membrane phospholipids during 

inflammatory activation and is metabolised to prostaglandins and leukotrienes.  Various 

strategies have been evaluated to regulate the excessive production of lipid mediators on 

different levels of biochemical pathways, such as inhibition of phospholipase A2, the trigger 

enzyme for release of AA, blockade of cyclooxygenase and lipoxygenase pathways and the 

development of receptor antagonists against platelet activating factor and leukotrienes.  Some 

of these agents exert protective effects in different inflammatory disorders such as septic organ 

failure, rheumatoid arthritis or asthma, whereas others fail to do so.  Encouraging results have 

been obtained by dietary supplementation with long chain omega-3 fatty acids like 

eicosapentaenoic acid (EPA).  In states of inflammation, EPA is released to compete with AA 

for enzymatic metabolism inducing the production of less inflammatory and chemotactic 

derivatives (Heller et al., 1998). 
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Fig. 2. Some common metabolic responses to inflammation and hypoxia. Arachidonic acid 
(AA) from cellular membranes is metabolised to inflammatory prostaglandins and 
leukotrienes. Omega-3 fatty acids (EPA) compete for the same pathway producing less 
inflammatory derivatives. Hypoxic conditions in the inflammatory site stabilises HIF 
transcription factor driving production of IL-1, IL-6, TNF┙ and IFN┛. TNF┙ in turn drives 
cellular proteolysis and tissue remodelling. 

When investigating inflammation it is important to take into account the many facets of the 
inflammatory environment that have the potential to play a role in pathology. Hypoxia is 
known to be prevalent in the inflammatory environments such as those associated with 
wounds, malignant tumours, bacterial infections and autoimmunity (Eltzschig & Carmeliet, 
2011, Murdoch et al., 2005). Increasing hypoxia in the inflammatory site is associated with 
poorer disease outcome such as increased macroscopic synovitis in rheumatoid arthritis (Ng 
et al., 2010).  

Normal physiological oxygen levels are thought to range between 5-12% oxygen (compared 
to 21% atmospheric oxygen). However, hypoxic tissue oxygen levels in pathological 
environments can range from as little as 0.5% oxygen to around 2.5% oxygen. Local hypoxia 
develops as the result of either blood vessel occlusion by inflamed tissues, or when existing 
supply is insufficient for increased cellular density caused by infiltrating or proliferating 
inflammatory cells.  Additionally, circulating phagocytes can block blood vessels reducing 
blood flow into the inflammatory site (Sitkovsky & Lukashev, 2005). Normal tissue 
structures can lend themselves to hypoxia where they are poorly perfused, such as the 
synovium or eye. Tissue alteration associated with inflammation can contribute to hypoxia 
by altering pressure within the blood vessels causing vessel occlusion and increasing 
distances between blood vessels (Jawed et al., 1997, Mapp et al., 1995).  
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There is increasing evidence that the inflammatory environment is hypoxic. The tumour 
environment is known to be hypoxic and extensive angiogenesis reveals the requirement of 
the tissue for a better oxygen supply. In rheumatoid arthritis, oxygen levels of synovial fluid 
have been directly measured revealing lower oxygen tensions compared with osteoarthritic 
patients and patients with traumatic joint injuries (Lund-Olesen, 1970). In systemic sclerosis, 
direct measurements with sensitive probes revealed lower dermal oxygen levels in fibrotic 
areas compared to non-fibrotic areas in both patients and healthy controls (Beyer et al., 
2009).  Metabolomic analysis of eye fluids from uveitis patients has shown increased levels 
of oxaloacetate and urea, likely derived from anaerobic respiration by locally activated 
macrophages (Young et al., 2009, Young & Wallace, 2009).  

An elegant cellular oxygen detection system is used by cells to respond to changes in 
environmental oxygen. Reductions in environmental oxygen lead to the stabilisation of the 
transcription factor hypoxia-inducible factor (HIF), which is otherwise targeted for depletion 
in oxygen-rich environments. HIF expression is therefore suggestive of hypoxic exposure, and 
has been detected in autoimmune diseases such as rheumatoid arthritis and multiple sclerosis 
(Gaber et al., 2009, Hollander et al., 2001, Lassmann, 2003).  HIF is known to be important in 
inflammatory development, for example loss of HIF-1a in macrophages is associated with 
impaired aggregation, motility, invasiveness and killing of bacteria (Cramer et al., 2003).  

Hypoxia and HIF stabilisation has a large effect on cellular metabolism. HIF causes a 
preference for glycolytic metabolism over oxidative phosphorylation by inducing the 
expression of glycolytic enzymes. This allows ATP generation to continue in the absence of 
sufficient oxygen albeit at a much reduced efficiency per molecule of glucose. It also induces 
the upregulation of lactate dehydrogenase A, therefore promoting the conversion of 
pyruvate (produced during glycolysis) to lactate (Wheaton & Chandel, 2011).  Lactate has 
been detected in many chronic inflammatory conditions such as in inflamed joints (Chang & 
Wei, 2011, Treuhaft & McCarty, 1971), multiple sclerosis , pulmonary inflammation (Serkova 
et al., 2008) and is thought to play a role in wound healing (Trabold et al., 2003). Conversely, 
the acidosis associated with increasing lactate concentrations is thought to play a pathogenic 
role in cell transformation and autoantigen development in some inflammatory 
environments (Chang & Wei, 2011). Recently, lactate measurements have been suggested to 
be useful in the diagnosis of bacterial infections in diabetic foot ulcers compared to non-
infected ulcers. Both infected and non-infected ulcers revealed high lactate concentrations, 
but infected ulcers had significantly higher levels probably due to additional immune and 
bacterial cell involvement (Loffler et al., 2011). The detection of lactate in metabolomic 
studies of disease suggests that there may be an inflammatory component, understanding of 
which may help to direct future treatment.  

Immune cells are thought to be highly influenced by hypoxia and HIF stabilisation 
especially due to the environments they normally act within. In a study performed recently 
by Gaber et al., peripheral blood CD4+ T cells placed under hypoxia were found to have a 
large induction of genes involved in metabolism and homeostasis (Gaber et al., 2009). Innate 
immune cells such as neutrophils and macrophages are thought to be adapted to function 
best at lower oxygen tensions as they preferentially use glycolysis to provide ATP even at 
higher oxygen levels (Cramer et al., 2003). Macrophages are known to accumulate in the 
hypoxic sites of chronic inflammation (Vergadi et al., 2011), and hypoxia is associated with 
activation of tissue-resident macrophages.  Exposure of macrophages to hypoxic conditions 
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is associated with upregulation of a whole gamut of proinflammatory cytokines such as IL-1 

(Scannell, 1996), IL-6 (Albina et al., 1995), IFN-┛ (Murata et al., 2002) and TNF- (White et 
al., 2004). It is thought that both low oxygen levels and their downstream effects, such as 
lactate production, may give rise to this macrophage phenotype. That such phenotypic 
changes are observed in response to the hypoxic conditions of the inflammatory site is 
strongly suggestive of a role for metabolism in regulation of immune cells. While normal 
wound resolution is a tightly regulated process, the presence of long-term inflammatory 
diseases such as rheumatoid arthritis is indicative of the potential for this regulation to go 
awry. Therefore hypoxia and the resulting change in metabolism may have a profound 
effect on immune cell behaviour and thus influence disease onset and progression.   

Adenosine is another molecule produced in response to hypoxia partly by the hypoxic 
inhibition of adenosine kinase (Sitkovsky & Lukashev, 2005).  It is difficult to detect due to 
its local action, but expression of CD39 and CD73, two molecules involved in the 
extracellular generation of adenosine, provide a marker of its presence in the inflammatory 
environment. Adenosine can have profound effects on immune cells and is generally 
perceived to be anti-inflammatory. It is a ligand for specific receptors found on many 
immune and stromal cells. These receptors are upregulated by hypoxia suggesting hypoxia 
perpetuates both the production and action of this molecule (Hasko et al., 2008, Sitkovsky & 
Lukashev, 2005). These receptors have varying downstream effects, with the expression of 
the A2A associated with the anti-inflammatory disease but the A2B receptor expression 
being implicated in pro-inflammatory conditions such as colitis. Adenosine is known to 
cause bronchoconstriction when inhaled by asthma and COPD sufferers, but not in healthy 
controls (Hasko et al., 2008). Higher levels of adenosine A2 receptor are seen in asthma 
sufferers and these receptors are associated with a pathological role for the molecule in 
disease (Brown et al., 2008, Hasko et al., 2008).  

2.4 Use of metabolomics in inflammatory diseases 

Systemic inflammation causes changes in metabolism and many studies have investigated 

individual metabolites in human disease and animal models of inflammation.  From these 

results it is apparent that the levels of many metabolites are altered by the inflammatory 

process and this has provided insights into the mechanisms of disease and uncovered 

several potential biomarkers for disease assessment.   

Given these profound systemic and localised changes in metabolism provoked by 

inflammation and inflammatory cytokines, it is not surprising that metabolomics has been 

used to investigate several inflammatory diseases.  Metabolomics is able to assess the changes 

in several hundred metabolites simultaneously to build disease metabolites profiles. NMR 

spectroscopy and mass spectrometry have both been used to derive these multiplexed 

metabolite profiles.   

These metabolic “fingerprints” have proven useful in discriminating between different 

patient groups or identifying responses to therapy, even if the individual metabolites have 

not been identified. However, identification of sets of specific metabolites can be derived 

from these fingerprints and this has led to the identification of novel biomarkers and novel 

pathways in a number of inflammatory diseases.  The use of metabolomic analysis of 

inflammatory diseases will now be discussed in further detail. 
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3. The inflammatory diseases 

3.1 Aetiology 

Chronic inflammatory diseases exist in many forms, and have the ability to affect many 
systems of the body. These range from localised areas of inflammation such as the gut in 
Crohn’s disease, to more widespread systemic inflammation as in rheumatoid arthritis (RA). 
Although the mediators and events leading to chronic inflammation are well characterized, 
the precise conditions under which acute inflammation becomes chronic are poorly 
understood. Recent developments have highlighted the importance of genetic factors, 
environmental influences and the interactions between them in the development of chronic 
inflammatory disease (Renz et al., 2011). 

Research into the genetics of inflammatory disease has been accelerated by genome wide 

association studies (GWAS), which has allowed identification of genetic mutations 

associated with an increased risk of developing specific conditions. For example, many 

immunologically relevant genes have been associated with an increased risk of developing 

RA. These include human leukocyte antigen (HLA) alleles involved in antigen recognition, 

and the peptidyl-arginine deiminase type IV (PADI4) gene controlling production of cyclic 

citrullinated proteins (CCP’s) commonly seen in RA (Nishimoto et al., 2010). However, in a 

complex disease like RA, genetics are not the whole story, as illustrated by the fact that twin 

studies only report a concordance rate of around 60% (MacGregor et al., 2000). Thus the 

importance of external environmental factors in the development of inflammatory diseases 

should be considered. 

Chronic inflammatory diseases have become more prevalent in recent years, and as major 

genetic changes are unlikely to have occurred over such a short time period, this is likely to 

be a result of alterations in environmental exposures and lifestyle factors. To date, several 

factors have been identified as significant contributors including ageing, infection, poor 

nutrition and smoking.  

Smoking raises an individual’s risk of developing inflammatory disease considerably. It has 

numerous effects on the body including activation of the acute inflammatory response and 

introduction of large amounts of reactive oxygen species (ROS) (Borgerding & Klus, 2005). It 

is unclear as to which particular constituent of smoke induces the inflammatory response; 

however studies have revealed that smoke contains large amounts of lipopolysaccharide 

(LPS) (Hasday et al., 1999), which could potentially trigger unwanted immune responses 

seen in chronic inflammatory disease. An increase in ROS is also evident, as indicated by 

decreased circulating antioxidants found in smokers (Alberg, 2002). This creates a pro-

oxidant environment and increases the likelihood of oxidative damage to important cellular 

components. 

It is not surprising given the complex and varied nature of chronic inflammatory diseases 
that the observed phenotype is a result of gene-gene and gene-environment interactions. For 
example, it has been shown in mice with a mutation in the Crohn's disease (CD) 
susceptibility gene Atg16L1 who become infected with murine norovirus develop a Crohn’s-
like disease (Stappenbeck et al., 2010). There was no evidence of pathology in the wild type 
mouse, suggesting the presence of two risk factors is required to induce disease. Another 
example of gene-environment interactions in disease development was found when looking 
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at the interaction between RA susceptibility genes HLA-DRB1 and PTPN22 and their 
interaction with smoking (Kallberg et al., 2007). It was observed that the odds ratio (OR) of 
developing RA with two genetic risk factors was 13.2, which rose to 23.4 if two genetic 
factors were present and there was a history of smoking. These studies provides sound 
evidence that gene-gene and gene-environment interactions occur, and risk of inflammatory 
disease greatly increases with the presence of more than one additional risk factor. 

3.2 The gut 

Crohn’s disease is a chronic debilitating inflammatory disease of the bowel.  The exact 
aetiology is unknown but is thought to be related to the dysregulation of the immune 
response towards gut microflora (Strober et al., 2007).  Urinary metabolite profiling was 
carried out on a mouse model of Crohn’s disease.  These samples were analysed using gas 
chromatography-mass spectrometry and five key metabolic differences were identified 
between the Crohn’s disease model and controls.  This suggested that there are alterations of 
tryptophan metabolism, fucosylation and fatty acid metabolism in Crohn’s disease mice and 
the authors concluded that fucose and xanthurenic acid could be useful markers of gut 
inflammation (Lin et al., 2009).   

Using a mouse model of inflammatory bowel disease (IBD) to investigate urinary 
metabolites using NMR, it was found that there was an increase in trimethylamine (TMA) 
and fucose compared to controls.  The increase in TMA was parallel to the progression of 
IBD (Murdoch et al., 2008).  A mouse model of Ulcerative Colitis (UC) was used to looked at 
serum and urinary metabolites (Schicho et al., 2010).  These authors found that both serum 
and urine were equally powerful for detecting colitis but the metabolites responsible for the 
differences were different for serum and urine.  

Metabolomics of faecal extracts have also been used to study inflammatory bowel disease 
(Bezabeh et al., 2009).  It is sometimes difficult to distinguish Crohn’s disease (CD) from UC 
and some cases are labelled as indeterminate.  Over time these cases are usually identified 
by a combination of endoscopic, radiological and histological techniques.  Earlier 
identification could aid treatment and prognostication.  Metabolomic analysis of faecal 
extracts of patients with both inflammatory diseases showed reduced levels of butyrate, 
acetate, methylamine and TMA compared to control (Marchesi et al., 2007).  Comparing the 
UC and CD samples glycerol, alanine, isoleucine, leucine, lysine and valine were present in 
higher quantities in CD compared to UC.  Acetate was lower in CD compared to UC 
(Marchesi et al., 2007).  Metabolic differences were more marked in CD indicating that 
inflammation is more extensive in CD compared to UC.   

Urinary metabolites have also been used to distinguish CD and UC in humans (Williams et 
al., 2009).  They found that specific urinary metabolites related to gut metabolism differed 
between CD, UC and controls.  Hippurate was lowest in CD and differed significantly 
between CD, UC and controls.  Formate levels were higher in CD than in UC or controls and 
4-cresol sulphate was lower in CD than in UC or controls (Williams et al., 2009).  Hippurate 
has been shown to be modulated according to gut microbes and this difference is likely to 
reflect changes in intestinal microbes.   

In summary several studies have looked at IBD.  The studies have shown that both in mice 
and in humans TMA is an important marker of IBD (Marchesi et al., 2007, Murdoch et al., 
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2008, Schicho et al., 2010).  This has been shown using both urine samples or faecal extracts.  
Hence, TMA may be a useful biomarker for IBD.   

3.3 The eye 

As a closed and immuno-privileged site, the eye provides an ideal system for metabolic 
analysis.  Metabolic products of inflammatory infiltrate accumulate in the vitreous fluid of 
the eye and may be extracted during other corrective surgery.  

Metabolomics has been used to look at vitreous humour in order to differentiate ocular 
inflammatory diseases (Young et al., 2009).  Vitreous fluid samples were taken from patients 
undergoing retinal surgery and analysed using NMR.  Patients had various retinal disorders 
including chronic non-infectious uveitis (CU), lens-induced uveitis (LIU), proliferative diabetic 
retinopathy, proliferative vitreoretinopathy (PVR), rhegmatogenous retinal detachment, 
candida endopthalmitis and varicella zoster virus acute retinal necrosis.  The different disease 
groups showed clear separation using principle component analysis (PCA) and partial least 
squared discriminate analysis (PLSDA).  The majority of the patients had LIU and CU.  When 
looking at LIU and CU specifically there was clear separation and individual metabolites from 
the spectra showed significant differences with urea, oxaloacetate and glucose all being raised 
in LIU compared to CU.  As urea and oxaloacetate are both involved in the urea cycle it 
suggests that there is more active inflammation in the LIU patients (Young et al., 2009).   

NMR has also been used to look at ocular metabolism in pig eyes (Greiner et al., 1985).  They 
used phosphorous NMR and found phosphorous containing metabolites in aqueous and 
vitreous fluids (Greiner et al., 1985).  In addition to quantifying metabolites, phosphorous 
NMR can be used to monitor the rate of metabolic change in a specific biochemical reaction 
and the rate of change in the concentration of a particular metabolite (Greiner et al., 1985).  
Phosphorous NMR provides a non-invasive method to analyse ocular tissues metabolically 
and detect subtle biochemical changes that precede manifestations of disease.  Such 
detection may allow for early and more effective therapeutic intervention. 

3.4 Neurological disease 

Multiple sclerosis (MS) is a chronic inflammatory disease affecting the nervous system.  Its 

aetiology is still not completely understood (Ibrahim & Gold, 2005).  It is characterised by 

demyelination, axonal loss and breakdown of the blood-brain barrier (Trapp et al., 1999).  It 

is a heterogeneous, relapsing and remitting disease.  Different treatments have been shown 

to work at different stages of disease (Rieckmann & Smith, 2001) so it is important to 

identify biomarkers that enable identification of different phases.   

Interleukin-1┚ (IL-1┚) and TNF-┙, have been found to be associated with a broad spectrum 

of neurological diseases including MS.  Griffin et al looked at rat urines to determine 

whether NMR spectroscopy could detect the presence of IL-1┚ and TNF-┙ induced lesions 

and distinguish between the pathology caused (Griffin et al., 2004).  They used an 

adenoviral vector to induce chronic endogenous expression of either IL-1┚ or TNF-┙.  They 

found significant differences between the groups, with the IL-1┚ treated group showing 

increases in leucine, isoleucine, valine, n-butyrate and glucose whilst the TNF-┙ treated 

group showed increases of citrate, 2-oxoglutarate and succinate (Griffin et al., 2004).   
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NMR spectroscopy has also been used to assess cerebrospinal fluid (CSF) in patients with 
MS.  It has been shown that there are increased CSF levels of lactate, creatinine and 
fructose in MS compared to control patients (Nicoli et al., 1996).  Two additional 
unidentified signals were found to be elevated in MS.  The compound responsible for 
both these signals has now been identified as B-hydroxyisobutyrate (Lutz et al., 2007).  
This is a typical partial degradation product of branched-chain amino acids.  Increased B-
hydroxyisobutyrate in urine is thought to be due to respiratory-chain deficiency leading 
to impaired oxidation of NADH (Chitayat et al., 1992).  However the level of B-
hydroxyisobutyrate in these experiments was much higher than the level found in CSF 
from MS patients, and so the precise role of B-hydroxyisobutyrate in MS needs further 
investigation.  

In a study of metabolite fingerprints in the CSF from patients with a range of neurological 

conditions we have been able to differentiate between some of these conditions by 

comparing the metabolites found (Sinclair et al., 2010). In particular we were able to identify 

some novel features of idiopathic intracranial hypertension (IIH) a neurological condition, 

the pathogenesis of which is poorly understood (Sinclair et al., 2008). Although IIH was not 

thought to be an inflammatory disease, the elevated levels of lactate we observed in IIH 

points towards an inflammatory component since lactate has been identified in 

inflammatory CNS disease previously (Simone et al., 1996).  Rabbits with elevated 

intraocular pressure also show increased levels of lactate which may reflect anaerobic 

metabolism resulting from decreased blood supply and this may also be an explanation for 

the lactate in the IIH patients’ CSF due to compressed vasculature from the elevated 

intracranial pressure. Oxaloacetate levels were also increased in IIH and this, together with 

reduced citrate, suggests alterations in the citric acid cycle. Overall the observations suggest 

a predominantly anaerobic environment deficient in carbohydrate substrate in patients with 

IIH, a conclusion supported by the presence of elevated ketone bodies 3-hydroxybutyrate 

(Sinclair et al., 2010) often observed in hypoxic tissues.  

3.5 Lung disease 

Pulmonary inflammation contributes to the pathogenesis of a number of lung diseases.  

There is a growing need for validated experimental models that can help our understanding 

of disease pathogenesis and therapeutic intervention.  Traditionally animal models have 

been used but they have their own problems in representing human disease.  Genetic 

manipulation can greatly enhance animal models.  NMR has had some application in the 

quantification of experimental lung injury.   

Serkova et al used Magnetic Resonance Imaging (MRI) and NMR to try and detect and 

quantify injury in mice following intratracheal administration of inflammatory cytokines 

(Serkova et al., 2008).  Pulmonary inflammation was induced by intratracheal administration 

of IL-1┚ and TNF-┙.  Lung tissue was used for the NMR metabolomics.  They showed that 

with pulmonary inflammation there was a 50% depletion of ATP and a corresponding 

elevation of the lactate to glucose ratio suggesting a shift to anaerobic metabolism during 

inflammation.  These returned to control levels at 24 hours (Serkova et al., 2008).  These data 

show that intratracheal administration of IL-1┚ and TNF-┙ leads to profound but reversible 

pulmonary inflammation which is detectable by NMR.   
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3.6 Osteoarthritis 

Osteoarthritis (OA) is a complex disease and has a multifactorial pathogenesis.  It has many 
known risk factors such as age, sex, obesity, activity level, prior joint damage and genetic 
susceptibility.  It is not classically thought of as an inflammatory disease but it may have an 
inflammatory element.  There are currently no disease-modifying drugs for OA and very 
few are in development.   

Synovial fluid (SF) has been used to look at OA via NMR.  SF is felt to be a good medium to 
study as the SF is the first place where the degradation products, enzymes and signal 
transduction molecules involved in OA are released from the cartilage matrix.  The SF 
should therefore have a higher concentration of metabolites compared to blood, lymph or 
urine.   

Damayanovich et al used SF from a canine model of OA to look at metabolic profiles 
using NMR (Damyanovich et al., 1999).  Metabolites from experimentally induced canine 
knee OA SF were compared to metabolites from SF of normal canine knees.  They found 
large increases in lactate and sharp decreases of glucose in OA SF compared to normal 
SF suggesting that the intra-articular environment of an OA joint is more hypoxic and 
acidic than a healthy joint.  They also found increased levels of pyruvate, lipoprotein 
associated fatty acids, glycerol and ketones in OA SF suggesting that lipolysis may be an 
important source of energy in OA.  There were also elevated levels of N-
acetylglycoproteins, acetate and acetamide in OA SF especially with progressive OA 
(Damyanovich et al., 1999).   

In order to understand further  the mechanisms behind OA progression, Damayanovich et al 

looked at the effect of joint afferent nerve injury (Damyanovich et al., 1999).  They again 

used a bilateral canine model of OA.  Paired SF samples were taken from dogs that had 

undergone bilateral anterior cruciate ligament transaction, unilateral knee denervation and 

contralateral sham nerve exposure.  NMR was used to look at the SF.  Increases in glycerol, 

hydroxybutyrate, glutamine, creatinine, acetate and N-acetyl-glycoprotein were seen in the 

SF from denervated compared to control knees.  This suggests that the metabolite 

differences seen in the denervated knees are due to the aggravation of OA caused by joint 

denervation (Damyanovich et al., 1999).  Hydroxybutyrate is also found in SF of RA patients 

(Naughton et al., 1993) suggesting that it is more of a marker of joint destruction rather than 

being specific for any joint disease.   

Another group used guinea pigs to study OA metabolism (Lamers et al., 2003).  They used 

Hartley outbred strain guinea pigs as they develop spontaneous progressive knee OA 

with features similar to human disease.  The earliest histological features appear at 3 

months but progress to extensive cartilage degeneration after 12 months.  Urine samples 

were collected from these OA guinea pigs and from healthy animals at 10 and 12 months 

of age.  They identified a metabolic fingerprint that reflected OA changes in the pigs.  

Lactic acid, malic acid, hypoxanthine and alanine contributed strongly to the fingerprint 

suggesting their involvement in OA (Lamers et al., 2003).  The metabolic profile largely 

resembled that found in the guinea pig model.  The presence of hypoxanthine suggests 

that OA may be an inflammatory disease due to the increased oxygen demand and altered 

purine metabolism.   
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Mass spectroscopy has also been used to look for novel biomarkers for knee OA (Zhai et al., 
2010).  They looked at serum samples of unrelated white women with and without knee OA.  
Knee OA was defined as radiographic, medically diagnosed or total knee replacement due 
to primary OA.  They found that the ratio of valine to histidine and the ratio of leucine to 
histidine to be significantly associated with knee OA in humans (Zhai et al., 2010).  These 
ratios have potential clinical use as an OA biomarker.  OA branched chain amino acids 
(BCAA) are raised which may drive the release of acetoacetate and 3-hydroxybutyrate.  
These can result from the partial oxidation of leucine.  BCAA are essential amino acids and 
therefore cannot be synthesised within the body.  An increased level of BCAA may suggest 
an increased rate of protein breakdown or be secondary to collagen degradation.  BCAA 
increase production of the cytokines IL1, IL2, TNF and interferon (Bassit et al., 2000) which 
could drive the collagen degradation.  

3.7 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a debilitating systemic inflammatory joint disease.  An 
abnormal metabolic profile in the inflamed joint in RA may be due to the impairment of the 
vascular supply and/or an increase in the metabolic rate of the inflamed joint.   

Hyaluronic acid is a major component of the proteoglycan aggregate of articular cartilage 
which is required for the functional integrity of extracellular matrix.  In RA, SF hyaluronate 
is depolymerised by the action of reactive oxygen radical species (Parkes et al., 1991).  
Hyaluronidase activity is absent in both normal and inflamed SF.  Generation of reactive 
oxygen species plays a principal part in synovial hypoxic reperfusion injury (Farrell et al., 
1992).  This occurs as increased intra-articular pressure during exercise exceeds synovial 
capillary perfusion pressure leading to impaired blood flow (Mapp et al., 1995).   

In 1993, The Inflammation Research Group, The London Hospital Medical College looked at 
the NMR profiles of RA SF and matched serum samples (Naughton et al., 1993).  The NMR 
profiles of SF were markedly different from their matched serum samples.  There were high 
levels of lactate in the SF compared to the serum and low levels of glucose in the SF 
compared to the serum.  These changes are consistent with the hypoxic status of the 
rheumatoid joint (Naughton et al., 1993).  All the SF samples (RA and control) had lower 
levels of chylomicron and very-low-density-lipoprotein associated triglycerides compared 
to their matched serum samples.  The SF samples also had high levels of ketone bodies 
compared to their matched serum samples.  These results suggest that the intra-articular 
environment has an increased utilisation of fats for energy even though it is hypoxic 
(Naughton et al., 1993, Naughton et al., 1993).  They were unable to compare the control SF 
to the rheumatoid SF due to the low levels of SF aspirated.   

Serum from mice has been used to identify a metabolite biomarker pattern associated with 
RA (Weljie et al., 2007).  Using NMR they found that uracil, xanthine and glycine could be 
used to distinguish arthritic from control animals (Weljie et al., 2007).  The presence of the 
metabolites suggests that nucleic acid metabolism may be highly affected in RA and there 
may be an association with oxidative stress.   

More recently, a group in Denmark have looked at the plasma of patients with RA (Lauridsen 
et al., 2010).  They found differences in the metabolites between patients with RA and healthy 
controls and differences between patients with active RA and controlled RA.  The metabolites 
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that they identified were cholesterol, lactate, acetylated glycoprotein and lipids.  The lactate 
levels represented oxidative damage and thus indirectly reflected active inflammation.   

3.8 Atherosclerosis 

Atherosclerosis is the thickening of arteries and is the underlying pathological process that 
affects the coronary, cerebral, aortic and peripheral arteries.  Atherosclerosis involves the 
accumulation of cholesterol particles, cellular by-products, deposition of the extracellular 
matrix and inflammatory cell infiltration within the vessel wall (Goonewardena et al., 2010).   
Chronic inflammation has been recognised as one of the key components of atherogenesis 
(Ross, 1999) but accelerated atherosclerosis is an important confounder of chronic 
inflammatory diseases such as rheumatoid arthritis (Bacon et al., 2005).  Animal models have 
been widely used to investigate the biochemical basis of atherosclerosis.  Using aortas from 
apolipoprotein-E knockout mice Mayr et al concluded that inefficient vascular glucose and 
energy metabolism coincided with increased oxidative stress in animals with hyperlipidaemia 
(Mayr et al., 2007).  NMR-based metabolomics of mouse urine has been used to look at 
atherosclerosis (Leo & Darrow, 2009).  Using apolipoprotein-E knockout mice they compared 
untreated mice with those treated with captopril.  They found elevated levels of xanthine and 
ascorbate in untreated mice which may be possible markers of plaque formation (Leo & 
Darrow, 2009). The interaction between diet and inflammation in promoting atherosclerosis 
has also been highlighted through metabolomic studies and Kleenmann (Kleemann et al., 
2007) suggested that a high cholesterol intake lead to a switch in liver metabolism towards a 
pro-atherosclerotic state. Another recent example of how metabolomics can provide novel 
insights into inflammatory disease pathology was the observation that the metabolism of 
dietary lecithin by gut flora leads to the increased absorption and accumulation of choline 
derivatives which in turn promote cardiovascular disease (Wang et al., 2011) . Only through 
the use of the systematic analysis of metabolites using metabolomics was it possible to uncover 
these complex metabolic relationships underpinning the disease process. 

4. Conclusion 

As summarised above there is now a growing body of literature describing metabolomic 

changes in inflammatory diseases, both in humans and animal models. Several distinct 

metabolic changes have been identified in inflammatory disorders, but there is a core theme 

of increasing energy requirements coupled with decreasing oxygen supply within the 

inflammatory environment.   

Studies in MS, RA, OA and inflammatory lung disease have all shown an increase in lactate, 

while studies of inflammatory eye and lung diseases have shown local reductions in 

glucose. Immunological responses to tissue hypoxia, such as the up-regulation of IL-1, IL-6, 

IFN-┛ and TNF-┙ seen in macrophages, show the link between local metabolic changes and 

inflammatory responses. Here transcription factor HIF-1┙ may play a central co-ordinating 

role in both normal and pathological inflammation by regulating the underlying cellular 

metabolism towards anaerobic respiratory pathways and lactate production. Subsequent 

effects of inflammatory cytokines on tissue remodelling and perfusion further provide a 

mechanism for feedback driving self-sustaining inflammatory microenvironments, and 

potentially where resolution is disrupted, a route to chronic inflammatory disease.  
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Therefore, as both a by-product and mediator of local tissue conditions, metabolites offer a 
unique opportunity to gain an insight of local and global inflammatory processes. 
Metabolomics likewise, provides promising opportunities for both diagnosis of 
inflammatory diseases, and study of the underlying processes that may offer clues as to how 
the inflammatory process develops. 
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