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1. Introduction 

In the drug development process, candidate compounds are first screened for desirable 

biological properties such as effects on gene expression, signal transduction, or enzyme activity.  

The genetic and metabolic pathways used in the readouts are known as targets of the drug 

screening process.  Despite advances in molecular targeting, proteomics and metabolomics, 

drug screening with molecular or metabolic targets have not produced the results that meet the 

need of the pharmaceutical industry in the selection of small molecules leads/targets for clinical 

testing.  The relative lack of success in applying the -omics in drug screening is partly due to the 

inability of the –omics to account for metabolic regulation, a property of the cellular metabolic 

network.  More recently, tracer-based metabolomics has been developed as an experimental 

approach for the study of cellular metabolic networks.  Interconversion of metabolites are 

measured in terms of  “extreme pathways” of the metabolic network which can be used for 

drug screening purposes.  In this paper, these approaches for drug screening targeting genetic 

pathways (transcriptomics), biochemical pathways (metabolomics and fluxomics) and ‘extreme 

pathways” (tracer-based metabolomics) are compared.  The advantages and limitations of these 

approaches for metabolic research and drug screening are discussed.   

2. Genetic/signaling pathways as targets for drug screening  

In the days of the genomic era, scientists are eager to apply the knowledge of genomics and 
the advances in genetic/molecular engineering in clinical and translational research.  The 
general concept is that a genetic signal acts as an on-off switch in controlling metabolic 
processes. However, in order to successfully apply genetic pathways (gene switches) for 
drug screening, one has to establish genotype-phenotype correlation.  The generally 
accepted dogma of genotype-phenotype correlation is that metabolism is the final 
expression of the genetic information, and peptide molecules act as signaling switches for 
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the regulation of metabolism. This popular molecular genetic approach to drug screening is 
based on the assumption that the effect of drugs on metabolism and metabolic regulation is 
determined by gene transcription and translation alone.   

The rationale for choosing gene switches as targets for drug screening can be illustrated by the 
example of the action of the tumor suppressor gene (P53) in cancer metabolism.  Cancer cells 
have metabolic characteristics that are distinct from normal cells in that there is an overall 
increased macromolecular syntheses to sustain cell growth and proliferation.  These metabolic 
characteristics are generally grouped under the Warburg effect which consists of increased 
anaerobic glycolysis, decreased glucose oxidation and increased glutamine utilization (1).  A 
representation of the model of gene switches is depicted in Figure 1.  The signals that 
orchestrate these metabolic changes originate from the balance between oncogenes (growth 
promoting factors) that turn on signaling pathways regulating the utilization of substrates for 
growth and tumor suppressor genes such as P53 that modulate energy utilization. The loss of a 
cancer suppressor gene or the over-expression of an oncogene may be sufficient to generate 
genetic signals to switch on or off (or modulate) metabolic pathways resulting in the cancer 
cell metabolic phenotype.  The interaction between molecular pathways and metabolic 
pathways in cancer has recently been reviewed (1).  At the molecular level, P53 regulates 
transcription of genes that modulate PI3K, Akt and mTOR pathways (growth promoting 
pathways) to reduce cancer growth.  Excessive growth induces expression of P53 in cells 
keeping cell growth and cell death in balance.  Independently, P53 inhibits glucose uptake, 
ribose synthesis and glycolysis thus modulating cellular metabolism.  When the action of P53 
is lost due to mutation, cells take up more glucose for ribose synthesis and glycolysis, the key 
elements of the Warburg effect.  The fact that the actions of P53 can be used to explain the 
cancer metabolic phenotype suggests that any signaling pathway that interacts with P53 is a 
potential target for anticancer drug screening. 

The use of genetic pathways for the understanding of metabolism and drug screening has its 
limitations.  The interactions among signaling pathways are often based on demonstrations 

using artificial overexpression or underexpression of these pathways. The real actions of these 
signaling pathways in normal physiology are not exactly known. The quantitative relationship 

connecting gene expression to metabolism has not been worked out.  Therefore, the genetic 
switch hypothesis is only one possible explanation for the expression of the cancer metabolic 

phenotype.  Conceptual limitations of genetic switches in the understanding of metabolisms or 
the metabolic effect of drugs have been noted by D. E. Koshland Jr (2) almost half a century ago.  

He pointed out that overproduction or underproduction of enzymes by molecular 
manipulation may sometimes have dramatic effects on an organism and other times with only 

minor effects.  The overall effect of genetic manipulation on cellular metabolism cannot always 
be predicted.  The lack of observable effect when an enzyme concentration is changed is 

analogous to the “silent” phenotypes (3) of the carrier states of many recessive diseases when 
enzyme or protein concentrations of the affected genes can be substantially reduced.   

Discrepancies in genotype phenotype correlation between signaling pathways and 
metabolism when it occurs may be explained by our incomplete knowledge of the feedback 
regulation of the signaling pathways as well as metabolic regulations of cellular metabolism.  
However, the lack of genotype-phenotype correlation in many cases can be attributed to 
conceptual difficulties of using genetic switches to the understand metabolism.  First, 
metabolic regulation is rarely an “all-or-none” type of control.  According to metabolic 
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control analysis, the regulation of metabolic pathway is distributed over many enzymes of 
the biochemical reaction.  Transcriptional or post-translational modification of an enzyme 
potentially changes its Km and/or Vmax of the reaction.  However, the change in Km or 
Vmax of one enzyme may be compensated by either a change in precursor substrate 
concentration or by a shift in the locus of control of the reaction to other enzymes such that 
net flux remains unchanged.  Secondly, the model of metabolic switches does not take into 
account how the change in one metabolic pathway may impact on many other pathways 
that are connected by shared substrates or co-factors and vice versa.  The lack of quantitative 
relationship between genotype and phenotype is the Achille’s heel of the gene switching 
hypothesis† and the use of genetic pathways for drug screening. 
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Fig. 1. A system of glucose metabolic pathways in a traditional format.  The biochemical 
pathways potentially affected by P53 as a gene-switch are indicated. 

                                                 
†Gene expression can be quantitatively determined using RTPCR method.  Results are reported in folds 
of change.  Even though there may be a correlation between the fold of change and the observed 
metabolic effect, the correlation is not a quantitative one.  
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3. Biochemical pathways as targets for drug screening   

In the past decades, metabolite profiling (metabolomics) and fluxomics have been 
developed to fill in the knowledge gaps of gene regulations of metabolism.  Thus genomics, 
transcriptomics, metabolomics and fluxomics are the popular –omics of systems biology‡.  
The advances in mass spectrometry and nuclear magnetic resonance spectroscopy have 
enabled the new industry of metabolomics.  These technologies provide quantitative and 
qualitative analyses of organic compounds in biological fluids and specimens.  Quantitation 
of metabolites at different time points is the basis of fluxomics.  Research in metabolite 
profiling and fluxomics is based on our understanding of metabolic control analysis (MCA).  
MCA provides quantitative measures of degree of influence of a change in enzyme kinetics 
or a change in substrate concentration can affect the consumption or production of a 
metabolite in terms of metabolic control coefficients (5, 6). Thus, measurements of substrate 
concentrations by metabolite profiling and flux analyses allow detail information regarding 
metabolic changes when the system is perturbed by drug treatment.  In metabolomics and 
fluxomics, traditional biochemical pathways can be considered as targets for drug candidate 
screening.  Such screening has the limitation in that the effect on the metabolic system as a 
whole is not evaluated in the screening process.  Technically, current metabolomics 
technologies do not permit characterization of substrate concentrations at the subcellular 
level and reactions that are compartmentalized cannot be properly evaluated.  The sampling 
processes usually do not separate the contribution from background environment such as 
the culture medium or neighboring cells to the metabolic processes of the cell.  For these 
reasons, metabolomics has not been successfully used as targets for drug screening.  

Measurements of flux (fluxomics) depend on the use of isotopes (7). Since 13C labeled 

isotopes can be distributed widely among many metabolites, and not all of these 

metabolites can be measured in the same analytical method, there are always fewer data 

than needed to give precise quantification of flux.  Nevertheless, this approach has its 

appeal in that once a mathematical model is constructed, literature values can be fitted 

into the model to give insight into possible changes in the system, and whether the model 

is robust or not can be tested (8).  Such an approach was used by Selivanov et al. to model 

of the pathways of pentose phosphate cycle. The interconnection of these pathways is 

shown in Figure 2 (9).  After incubating cells with [1, 2 13C2]-glucose, ribose was found to 

be labeled in many carbon positions.  Using mass isotopomer distribution in ribose and 

known sugar phosphate concentrations and Km values of enzymes from the literature, 

these authors were able to simulate the fluxes of the pentose phosphate pathways.  They 

were able to identify three reactions among other transketolase mediated reactions that 

were significantly inhibited when cells were treated with oxythiamine, a tranketolase 

inhibitor. These are xylulose-5p to glyceraldehyde-3-P, sedoheptulose-7-p to ribulose-5-P 

and xyluose-5-P to sedoheptulose-7-P (reactions 14, 15 and 13 in figure 2).  The differences 

in response among tranketolase enzymes inhibited by oxythiamine are the consequence of 

stoichiometric constraints.   

                                                 
‡Systems biology as commonly defined is the enumeration of a collection of biologically related objects 
(genomics, proteomics and metabolomics) or characteristics (transcriptomics and fluxomics) within the 
boundary of a cell.  However, in actuality the context of a cellular boundary i.e. how these objects or 
characteristics separate the cell from its environment is often absent in the definition of these systems (4). 
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Fig. 2. A model of pentose phosphate cycle used for carbon tracing and flux analysis.  Using 
experimentally determined isotopomer distribution in ribose and lactate, the fluxes of the 
numbered reactions can be calculated (from reference 9 with permission). 

The fluxomic approach targeting traditional biochemical reactions provides more specific 
information regarding the metabolic system than metabolite profiling (metabolomics).  The 
use of fluxomics allows the simultaneous assessment of the effect of a drug on multiple 
metabolic pathways and permits a better understanding of metabolism than the gene-
targeting approach.  However, in order to take into account futile cycling or stoichiometric 
constraints, stable isotope tracing (carbon tracing) is required as illustrated in the above 
example.  Even though it is possible to construct a complex model for mammalian metabolic 
networks to take into account of futile cycles and stoichiometric constraints, such a model 
requires a very large data set and extensive programming.  In the best case scenario, there is 
never sufficient data for solving all the parameters of the system and the results are model 
dependent and are difficult to verify for practical reasons (2).  Nonetheless, the fluxomics 
approach definitely provides better correlation with phenotype than the gene switch 
targeting approach. 

4. “Extreme pathways” and metabolic network   

The “extreme pathways” of a metabolic network can also be used as targets for drug 
screening.  “Extreme pathways” are elements of the well known constraint-based modeling 
(8) which has been applied to the study of cellular homeostasis.  (The definition of “extreme 
pathway” is given in the next section.) Living organisms (cells) are metabolic systems 
(networks) continuously exchanging energy substrates with their environments to maintain 
the biological systems in a homeostatic state.  The main metabolic function of a cell is to 
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utilize substrates from its environment to produce energy and building material for the 
synthesis of macromolecules.  Excess intermediates are returned to the surrounding 
environment to maintain a relatively constant internal environment. The boundaries of 
metabolic activities represented by “extreme pathways” within which the cell functions 
define the homeostatic state (10, 11). These boundaries are the result of constraints by the 
stoichiometry of competing reactions, synchronization of shared pathways and/or 
intermediates, and balance of energy production and utilization.   

The role of “extreme pathways” in the maintenance of homeostasis can be illustrated by the 

example of glucose metabolism via the TCA cycle.  Pyruvate from glycolysis is metabolized 

via pyruvate carboxylation leading to the conservation of 3-carbon species or pyruvate 

decarboxylation leading to production of 2-carbon species (via acetyl-CoA) and energy 

production (beta-oxidation and tricarboxylic acid (TCA) cycle) (16).  These two processes are 

concurrent in cells and the activity of one pathway constrains the activity of the other.  For a 

given homeostatic state, the observed utilization of pyruvate via these pathways is the 

optimal§ pyruvate utilization and can be represented by a vector in the pyruvate phenotypic 

phase plane.  The operation of the TCA cycle is an example of metabolic constraint due to 

synchronization of shared pathways or intermediates.  A full turn of the TCA cycle oxidizes a 

mole of acetate into two moles of carbon dioxide with production of reducing equivalents 

and/or high energy phosphates.  At the same time each of the TCA cycle intermediate may 

have its respective substrate cycle such as the malate cycle and the citrate lyase cycle.  These 

individual substrate cycles perform separate metabolic functions in conveying reducing 

equivalents (malate shuttle) and acetyl-CoA (citrate lyase cycle) from the mitochondria to the 

cytosol.  The operations of these cycles are usually synchronized for efficiency.  When there is 

a lack of synchrony of these cycle, abnormal substrate and energy balance can result and a loss 

of homeostasis in the cell occurs. The imbalance of energy metabolism in the mitochondria due 

to imbalance of substrate cycles is a frequent cause for reactive oxygen species generation and 

apoptosis.  Changes in these boundaries consisting of “extreme pathways” are sensitive to 

metabolic or therapeutic perturbations and are excellent markers of therapeutic effects. 

The differnces between a metabolic network and a traditional biochemical reaction model 

can best be shown by representing a metabolic network as an engineering system.  The 

working of such a system is illustrated in figure 3 in which pathways shown in Figure 2 are 

represented as belts and wheels connecting glycolytic/gluconeogenic substrates to those of 

the pentose cycle.  The enzymes that drive the belts are indicated and the role of energy 

production and utilization are included.  Figure 2 is model of pentose cycle intermediates 

linked by enzymatic reaction. The fluxes of these reactions can be modeled mathematically 

using a set of ordinary differential equations.  Figure 3 shows the production and 

consumption of different classes of compounds connected to the production and 

consumption of ATP and reducing equivalents. These models are conceptually different.  

The input-output model of cellular homeostasis of tracer-based metabolomics can account 

for stoichiometric constraints and synchronization of substrate cycles thus overcoming 

limitations of the previous approaches in metabolic studies.   

                                                 
§Optimality is sometimes thought of as a teleological concept.  The optimal metabolic function of a cell 
is not for its purpose to survive, but is defined by the internal organization of the metabolic network. 
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Fig. 3. An engineering model of the system of reactions depicted in Figure 1 and Figure 2.  
The relationship among the different substrate pools is represented by different circles.  
Stoichiometric relationships are provided by the mass balance equations. The productions of 
these metabolites from one another are indicated by respective drive belts. Energy substrate 
consumption and production is also included in the model. The metabolic network and its 
function is shown as a factory production model with sources and sinks of the raw materials 
and products. 

The basic concept and tracer methodology of tracer-based metabolomics have been 
reviewed (4, 10-12).  A key feature that distinguishes tracer-based metabolomics from 
metabolite profiling (metabolomics) and fluxomics is the inclusion of a system boundary 
that permits input-output analysis and a balance of flux** model in which substrate input is 
link to its output (products) by “extreme pathways” (12, 13, 14).  “Extreme pathways” are 
pathways that elements (carbon, oxygen and nitrogen) from compounds (precursors) 
introduced into the system travel over to the final products. The basic elements of “extreme 
pathways” form the axes of a high dimension phenotypic space, any two of these axes forms 
a phenotypic phase plane and the line of optimality which is a vector within the space (or a 
plane) representing the metabolic phenotype.  The relationship among any three “extreme 

                                                 
**A balance of flux analysis requires a steady state or quasi-steady state assumption.  For most cellular 
processes involving cell growth and division, these processes are slow relative to the experimental 
study period and quasi-steady state of metabolic reactions may be safely assumed.  However, in 
biological processes that are fast such as muscle contraction, or nerve conduction the balance of flux 
model cannot be applied and a dynamic model is required.   
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pathways” can be described by isoclines (15).  Therefore, tracer-based metabolomics offers a 
graphical representation of a quantitative metabolic phenotype not available by gene-
switching model or fluxomic model. 

Instead of measuring substrate fluxes over specific biochemical reactions, the 

experimental model focuses on fluxes over “extreme-pathways” which are pathways 

linking the precursor substrates to the specific products.  There may be many “extreme 

pathways” for the formation of a product depending on how many interconnecting 

reactions between precursor and end-product.  In the synthesis of glutamic acid from 

glucose, there are at least two “extreme pathways” namely the pyruvate carboxylase and 

pyruvate dehydrogenase reactions (4).  Pentose is synthesized from glucose at least 

through two “extreme pathways” either by oxidative (G6PDH) or non-oxidative (TK/TA) 

pathways (10).  

5. Measuring “extreme pathways” – Carbon tracing in tracer-based 
metabolomics   

A unique feature of tracer-based metabolomics as the name implies is the application of 

stable isotope labeled metabolites and mass spectrometry or magnetic resonance (NMR) 

spectroscopy.  The 13C or 2H label from the labeled substrate is distributed into metabolic 

intermediates in specific positions according to the “extreme pathways”.  Tables 1a and 1b 

show some of the examples of labeling in amino acids, glycogen, ribose and lactate from 

uniformly labeled glucose [U13C6]-glucose (carbon tracing from glucose) (16-24).  The tables 

show the potential mass isotopomers that can be generated, the positions that are labeled in 

the products, and the corresponding glucose carbon that the 13C originates.  For example, 

three mass isotopomers (M3, M2 and M1 can be found in alanine or lactate from an 

experiment with [U13C6]-glucose.  M3 of alanine comes from glycolysis of glucose. The 13C in 

carbon 1 of alanine comes from carbon 3 of glucose (G3).  There are two M2 isotopomers 

with 13C on either C3 and C2 or C2 and C1 of alanine.  The sources of 13C’s are from glucose 

carbon 2 (G2) and carbon 1 (G1).  X represents a 12C carbon originated from exchange at the 

level of the TCA cycle.  The mass isotopomers and positions with 13C label in these glucose 

metabolic intermediates are indicated.  These tables can be used as a guide to design tracer 

studies or interpret results from such studies.  The mass and position isotopomers in these 

metabolites represent individual “extreme pathways” from glucose carbon to the respective 

products.  It should be noted that some of the isotopomers are products of the same 

“extreme pathways” thus providing redundancy in the information on the “extreme 

pathways”.  In the example of labeled glucose forming labeled amino acids (Table 1a), we 

can gain insight into the simultaneous reactions of pyruvate carboxylation, pyruvate 

dehydrogenase, malate cycle, gluconeogenic cycle relative to TCA cycle flux.  When the 

distribution of isotopomers is determined using mass spectrometry or NMR, we can use 

these isotopomer ratios to construct phenotypic phase planes (11, 15).  Such a database of 

mass isotopomers can easily be managed with computational algorithm (subroutines) which 

can compare distances between individual phenotypes on different phenotypic phase 

planes.  Phenotypic differences can also be quantitatively compared using isocline analysis.  

Thus, tracer-based metabolomics is a quantitative experimental approach to the study of 

metabolism and metabolic regulation.  
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Pathway 
Isoto-
pomer 

Alanine 
C3-C2-C1 

Serine 
C3-C2-C1 

Glycine 
C2-C1 

Asparate 
C4-C3-C2-C1 

Glutamate 
C5-C4-C3-C2-C1 

 
 
Glycolysis 
Plus 
TCA Cycle 

M5 --- --- --- --- 
G2-G1-G1-G2-

G3@ 

M4 --- --- --- 
G2-G1-G1-

G2@ 
G2-G1-G1-G2-X; 
G2-G1-G1-G1-X 

M3 G1-G2-G3 G1-G2-G3 --- X-G1-G2-G3  

M2 
G2-G1-X 
X-G2-G1 

G2-G1-X 
 

G2-G1 
X-G1-G2-X 
G2-G1-X-X 

G2-G1-X-X-X 
 

M1 
G1-X-X 
X-G1-X 
X-X-G1 

X-X-G1 --- 
G1-X-X-X, 
X-G1-X-X 
X-X-G1-X 

X-X-G1-X-X 
X-X-X-G1-X 
X-X-X-X-G1 

       

1-Carbon 
Metabolism 

M3 --- G1-G2-G3 --- --- --- 

M2 --- G2-G3 G2-G3 --- --- 

M1 --- G3 G3 --- --- 
 

The orientations of the amino acid molecules are shown in the top row.  Mass isotopomers are 
designated as M1 to M5 indicating the number of 13C per molecule of the amino acid.  The 
corresponding position of glucose carbon within the amino acid is designated as G1 to G3. The glucose 
molecule is symmetrical around C3-C4.  In the table, G1-G2-G3 is the same as G6-G5-G4, if these 
positions are labeled equally.  X represents 12C from exchange within the TCA cycle. 
@ When glucose enrichment is high, there is a likelihood of labeled OAA condensing with labeled acetyl-
CoA resulting in M5 –ketoglutarate and subsequently M5 glutamate and M4 aspartate. 
 

 
 
 
 
 
 

Table 1a. Examples of Position and Mass Isotopomer Distribution in Gluconeogenic Amino 
Acids from [U13C6]-glucose (16-24) 
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Pathway Isotopomer 
Glycogen 

C6-C5-C4-C3-C2-C1 
Ribose 

C5-C4-C3-C2-C1 
Lactate 

C3-C2-C1 

Hexose-P cycles M6 G6-G5-G4-G3-G2-G1 --- --- 

Glycolysis 
 
Glycolysis 
Plus 
TCA Cycle 

M3 
G6-G5-G4-X-X-X 
X-X-X-G3-G2-G1 

 
G1-G2-G3 

 

M2 
G6-G5-X-X-X-X 
X-X-X-G3-G2-X 

 
G2-G1-X 
X-G2-G1 

M1 
G1-X-X X-X-X 
X-G1-X-X-X-X 
X-X-G1-X-X-X 

 
G1-X-X 
X-G1-X 
X-X-G1 

     

Oxidative 
 

M5 

Glycogen glucose are 
labeled as in 
glycolysis/ 

gluconeogenesis 
shown above 

G6-G5-G4-G3-
G2 

 

Non-oxidative 
 

M4 G3-G2-X-G3-G2  

Oxidative 
plus 
Non-oxidative 

M3 G3-G2-X-X-G3  

M2 
X-X-X-G3-G2 
G3-G2-X-X-X 

 

M1 G3  

The orientations of the glycogen, ribose and lactate molecules are shown in the top row.  Mass 
isotopomers are designated as M1 to M6 indicating the number of 13C per molecule of the amino acid.  
The corresponding position of glucose carbon within the glycogen, ribose and lactate is designated as 
G1 to G6. The glucose molecule is symmetrical around C3-C4.  In the table, G1-G2-G3 is the same as G6-
G5-G4, if these positions are labeled equally.  X represents 12C from exchange within the TCA cycle. 

Table 1b. Examples of Position and Mass Isotopomer Distribution in Glycogen, Ribose and 
Lactate from [U13C6]-glucose (16-24) 

6. “Extreme pathways” as targets for drug screening 

The application of phenotypic phase plane (PPP) analysis of balance of flux data from tracer-

based metabolomics is a graphical way of presenting experimental data that is unique to 

tracer-based metabolomics.  Since metabolic phenotype of a cell is characterized by the 

pattern of its utilization of substrates, the phenotype of a cell is represented by the 

input/output characteristics which can be measured as fluxes through the “extreme 

pathways”.  Any two of these “extreme pathways” can form a phenotypic phase plane. The 

metabolic phenotype of a cell is given by a vector in the plane and the vector divides the 

plane into two regions representing regions of relative excess and relative deficiency of 

substrate utilization (4).  The use of phenotypic phase plane analysis together with isocline 

analysis allows quantitative comparison of different treatment effects.  An example of the 

use of isocline analysis is illustrated by the study of effects of fructose and glutamine on the 

glycolytic/gluconeogenic pathways (11).   

Other applications of phenotypic phase plane analysis to investigate metabolic mechanisms 
of a therapeutic intervention are illustrated in Figure 4.  Panel (i) of the figure shows the 
metabolic response of a cell to two therapeutic interventions (e.g. drugs, receptor inhibitor, 
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Fig. 4. Examples of phenotypic phase plane analysis showing the quantitative relationship 

among phenotypes by isocline analysis. Panel (i) shows effects of two drugs (A and B) with 

different mechanisms on metabolic pathways X and Y. N represents the normal phenotype. 

Panel (ii) shows the effect of A is orthogonal to the X-Y plane. Panel (iii) shows dose 

dependent effect of A. Panel (iv) shows non-linear response to two different doses of A.  

or siRNA) A and B.  These treatments result in changes in phenotypes (decrease in 
production of Z) accompanied by different metabolic compensations in substrate utilization. 
Treatment B results in a decreased utilization of substrate X (or its metabolic pathways) 
which is compensated by a slight increase in the utilization of substrate Y.  Whereas 
treatment A results in the increase utilization of X and decreased utilization of Y as 
compared to control (N).  If the mechanism of action of treatment B is known (such as 
inhibition of a specific kinase), one can conclude that treatment A must act on a different set 
of metabolic and/or signaling pathways. Such an approach will allow an iterative approach 
to the discovery of new treatment or new pathways.  Additional examples of using 
phenotypic phase plane to understand phenotype changes of fibroblasts from a patient with 
thiamine responsive megaloblast anemia (TRMA) and pancreatic cancer cell (MIA) and 
normal fibroblasts using PPP have been provided by Lee and Go in their review (15). When 
TRMA cells were treated with high doses of thiamine, the phenotype approached that of the 
normal fibroblasts. On the other hand, MIA cells had a high pentose synthesis phenotype 
which was corrected when they were treated with oxythiamine. (15)  We have recently used 
phenotypic phase plane analysis to show that inhibition of histone acetylation by genetic 
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intervention or by chemical inhibitor of the reaction had similar metabolic phenotypes (25). 
Panel (ii) shows result of treatment A which is orthogonal to the phenotypic phase plane of 
X and Y.  This means that treatment A affects a different part of the metabolic system which 
is not linked to the utilization of substrates X and Y.  Metformin and rosiglitazone, two 
antihyperglycemic drugs, have been shown to alter de novo lipogenesis.  While inhibition of 
de novo lipogenesis by metformin is in the plane of ribose metabolism, meaning changes in 
pentose cycle metabolism is related to the decrease in lipogenesis. On the other hand, the 
increase in fatty acid synthesis by rosiglitazone is orthogonal to the ribose phenotypic phase 
plane suggesting very different mechanism of actions by these two drugs (26).  The ability to 
detect orthogonal phenotypic phase plane is important because there are potentially many 
of these orthogonal phenotypic phase planes which can be discovered using tracer-based 
metabolomics, and each of the orthogonal pair would suggest different mechanism of action 
by different drugs.  The finding of orthogonal planes is one of the unique capability of the 
metabolomics approach in generating mechanistic hypothesis.  Panel (iii) shows the 
proportional response to inhibitor of substrate X where all of the isoclines are parallel to 
each other.  An example of this type of response is provided by our study on the response of 
a methotrexate resistant colon cancer cell line (HT29) to the effect of DHEAS, oxythiamine 
and methotrexate treatment alone and in combination (27).  Panel (iv) shows response to 
two inhibitors of substrate X with non-linear compensation of substrate Y.  The application 
of PPP analysis has allowed a far better understanding of metabolic adaptation in cellular 
homeostasis using tracer-based metabolomics. Using PPP and isocline analysis, we can 
directly exploit the large dataset accumulated from tracer-based metabolomics studies for 
target discovery and lead identification in pharmaceutical industry.   

7. Concluding comments 

Study of metabolism in the post-genomic era differs from the traditional biochemistry in 

that the study is focused on the function of the system of biochemical reactions in a cell (or 

the cellular metabolic network) and its regulation. Metabolic function of a living organism 

(cell) is what mediates the the genetic potential of a cell and its interaction with its 

environment to maintain homeostasis.  The maintenance of homeostasis by the cellular 

metabolic network in a living organism is the basis of normal physiology and histology (28).  

When the metabolic environment of a living organism or a cell is altered such as in diabetes 

or metabolic diseases, maladaptation or the lack of homeostasis in the living organism is the 

underlying cause for pathophysiology and histopathology (29).   

Metabolic phenotype of a cell is the result of genetic and environmental interaction. 

Understanding metabolic phenotyping changes is important to our understanding of how cells 

maintain homeostasis by metabolic regulation.  We have reviewed three approaches that are 

used in such investigations based on three different models.  Of these different approaches, the 

gene-switch approach is the most extensively used in the pharmaceutical industry.  In the gene-

switch model, metabolic regulation begins with the interaction between genes and signaling 

pathways which eventually impact on biochemical reactions known as down-stream effects 

(30).  This model ignores the fact that many of these signaling pathways or transcriptional 

factors are altered through post-translational events such as phosphorylation, acetylation, 

glycosylation and methylation. Since all these post-translational modifications are basic 

biochemical reactions, they are all subject to the stoichiometric and energy substrate constraints.  
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Once the downstream events are initiated, the interconversion of metabolic intermediates is 

subject to all the constraints as described in preceding paragraphs.  We have previously shown 

that altered metabolic pathways can be the initiating events in gene transcription and post-

translational modification of signaling pathways and enzymes (31, 32). Therefore, gene-switch 

model is an incomplete model to understand metabolic regulation.  Because of these conceptual 

problems, application of gene-switch approach has had disappointing results in identifying 

drug candidates or targets and appalling failures in clinical trial due to unexpected toxicity or 

lack of efficacy. Of the two remaining approaches, tracer-based metabolomics is a practical 

experimental approach that does not require complicated mathematical modeling.  

Furthermore, the results can be graphically presented and the quantitative difference of 

metabolic phenotypes can be compared. Such features make the tracer-based metabolomics a 

powerful approach for drug screening in pharmaceutical research.  Since the model does not 

assume any signaling pathways, it is most suitable for studies of nutriceuticals such as 

phytochemicals (33) or for screening of compounds in a chemical library that have no known 

molecular targets (34).  It is also applicable to investigate the metabolic effect of drug 

combinations, in which the interaction of drugs can be studied.  Most important of all, tracer-

based metabolomics approach provides the understanding of cellular homeostasis and its 

changes under the influence of nutrient conditions or pharmaceuticals. 

Since our first publication on metabolic profiling (35), progress in tracer-based 
metabolomics has been slow because there are few investigators who are trained in tracer 

technology. The current tracer model mainly addresses the area of glucose metabolic 
pathways.  Methods for the investigation of other metabolic systems that may be distantly 

connected to glucose metabolism (orthogonal systems) are not represented. These systems 
include the systems of glutamine metabolism which connects glucose metabolism to nucleic 

acid synthesis; arginine metabolism which is part of the urea cycle and nitric oxide synthesis 
system; and the methyl donor pathways which are important in nucleic acid synthesis and 

choline synthesis.  The complete development of tracer-based metabolomics is probably a 
decade away provided the development has the attention and adequate funding to complete 

the tasks to cover the metabolic pathways of the whole cellular metabolic network. 
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