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Developing Xenostandards for  
Microbiological Safety: New Zealand Experience 

O. Garkavenko, S. Wynyard, D. Nathu and R. Elliott 
Living Cell Technologies 

New Zealand 

1. Introduction 

Human patients have the potential to become infected with animal viruses following 
xenotransplantation. Concerns have also been raised that in a worst case scenario, 
pathogens originating from pig donors may adapt and then propagate to the wider public 
resulting in a new epidemic (Fiane, Mollnes, & Degre, 2000; Fishman, 2001a; Onions et al., 
2000; Patience, Wilkinson, & Weiss, 1997; Weiss, 2003). The likelihood that cross-species 
infection may occur is enhanced in a xenotransplantation setting because normal host 
defences such as skin and mucosal surfaces are bypassed and direct contact between donor 
and recipient cells is maintained for extended periods of time (O’Rourke, 2000). Similarly for 
applications that use immunosuppression to prevent xenograft rejection, host complement-
mediated immunity is circumvented (Takeuchi, Magre & Patience, 2005). Currently pigs are 
recognised as the most popular choice as donor animals due in part to their ostensibly lower 
infectious risk (compared with non-human primates), excellent breeding potential, 
comparable organ size, physiological similarity, amenability to genetic modification, non 
contentious public perception and the relatively moderate costs associated with their 
maintenance (Sachs, Sykes, Robson, & Cooper, 2001). In terms of pig pathogens it has been 
determined that the preponderance of fungi, bacteria and parasites can be excluded as major 
risk factors simply by the use of good animal husbandry practices in Specific Pathogen Free 
(SPF) herds (Ye, Niekrasz, Kosanke, Welsh, Jordan et al, 1994). Consequently viruses are 
recognised as the predominant infectious agent for zoonosis owing to their rapid rate of 
evolution and excellent adaptive competence within new hosts. Precedents for cross-species 
infection of viruses and adaptation in humans are numerous and include several notorious 
examples, notably AIDS (Gao, Bailes, Robertson, Chen, Rodenburg et al, 1999) and avian 
influenza [reviewed in (Alexander & Brown, 2000)]. Although pigs are not always a natural 
reservoir for exogenous viruses, it has been hypothesised that swine may act as “mixing 
vessels” for adaptation to human hosts, as is certainly the case for avian viruses such as 
Severe Acute Respiratory Syndrome (SARS) (Bush, 2004). 

Recommendations to minimize cross-species infection stipulate that donor pigs should be 

maintained in quarantined facilities and monitored for the presence of exogenous 

pathogens. This type of program requires significant resources so there is considerable 

incentive to monitor only those viruses that are relevant. Several comprehensive reviews 

have been published describing zoonotic agents in pigs that may potentially cause disease in 
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transplant recipients and theoretically the population at large (Fishman, 2001a, 2001b; 

Mueller, Takeuchi, Mattiuzzo, & Scobie, 2011; Scobie & Takeuchi, 2009; Takeuchi et al, 2005). 

A particularly valuable resource is the report in the journal Xenotransplantation by 

Shuurman (2009) that offers a consensus view of organisms that should be excluded from 

donor pigs. The most important pathogens are reported to be swine influenza viruses 

belonging to the influenza A genus, Nipah virus, Marburgvirus and Ebolavirus of the 

Filoviridae family, rotaviruses, parvoviruses, hepatitis E and herpesviruses such as porcine 

circovirus type 2 (PCV2) and porcine lymphotrophic herpes virus type 2 (PLHV2). 

In New Zealand a very deliberate strategy was employed in order to maximise patient 
safety by ensuring that these viruses and other pathogens were absent in a donor herd 
destined for clinical trials. Two important goals were considered integral to the success of 
the New Zealand approach. The first goal was to ensure the safety of donor material and 
was achieved by utilising the following steps: (1) investigating the health status of the 
New Zealand pig population; (2) developing and implementing an algorithm for herd 
selection; (3) establishing a program to characterise pig endogenous retrovirus; (4) 
defining a testing schedule to maintain the specific pathogen-free (SPF) status of the 
donor herd; (5) certifying the health of all donor animals and (6) certifying the safety of 
the final product. The second goal required the implementation of a robust monitoring 
program for patient follow-up post-transplant. In this case specific emphasis was placed 
upon the development of reliable and sensitive assays to detect pig pathogens in humans 
as well as developing a network of collaborative reference laboratories. Important also 
was the establishment of a xeno-microbiology laboratory and its accreditation as a 
medical diagnostic laboratory to guarantee the highest diagnostic standards. Using this 
strategy regulatory approval was obtained to begin the first clinical trials using insulin-
producing cells (DIABECELL®) for the treatment of Type I Diabetes 
(http://www.lctglobal.com/lctdiabecell-diabetes-treatment.php). 

2. Determining infections relevant to xenotransplantation in NZ 

The Public Health Service Guidelines on Infectious Disease Issues in Xenotransplantation 
states that monitoring programs for source animals should be tailored to specific 
geographical areas (U.S Food and Drug [FDA], 2001). This recommendation implies 
knowledge of the local pig infection profile and in particular, knowledge of virus infections 
potentially relevant to xenotransplantation. The health status of the NZ pig population is 
considered to be favourable thanks largely to its geographic remoteness and strict animal 
health control policies. Unlike many countries NZ remains free from infectious vesicular 
diseases such as foot and mouth, vesicular stomatitis and vesicular exanthema. Notable 
infections like rabies, Brucella suis, swine fever, pseudorabies and spongiform 
encephalopathy are also absent. Routine screening protocols for a source herd intended for 
xenotransplantation may encompass up to 45 different pathogens (H. J. Schuurman, 2009) 
many of which are common to veterinary practices. However, for the NZ pig population 
very limited data was initially available regarding viruses such as Porcine Cytomegalovirus 
(PCMV), Porcine Lymphotrophic Herpesvirus (PLHV), Encephalomyocarditis Virus 
(EMCV), Porcine Circovirus Virus (PCV) and pig Hepatitis E Virus (HEV). In order to 
extend the data regarding the prevalence of these potentially zoonotic viruses an 
investigatory screening program was performed that tested representatives from herds 
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throughout NZ (Garkavenko, Elliott, & Croxson, 2005; Garkavenko, Muzina, et al., 2004; 
Garkavenko et al., 2001). This information led to a significantly improved understanding of 
the infection profile within NZ pig breeds and facilitated the development of a screening 
protocol for viruses that were particularly relevant to xenotransplantation. Numerous NZ 
pig herds intended as a source of islet cells for transplantation were comprehensively 
assessed according to this screening protocol. 

Having established the epidemiology of our test panel of viruses in NZ pigs, a further 
examination was performed in one-week old piglets (the donor age group from which 
islet cells are harvested). All one-week-old piglets were free of the majority of tested 
viruses. This finding implies that infection with PCMV, PLHV and HEV takes place peri- 
or post-natal and that despite the presence of infection within a herd, new-born piglets 
and their tissues may remain virus-free. This conclusion is in contrast with another study 
in which the PLHV virus was shown to be vertically transmitted although it should be 
noted that this type of transmission phenomenon is considered to be a rare event (Tucker 
et al., 2003). The presence of PCV2 in tissues and faecal samples of one-week-old piglets 
was an unexpected result. Although it was shown that this virus can be transmitted 
vertically (Bogdan et al., 2001.; Ladekjaer-Mikkelson et al., 2001; O’Connor et al., 2001; 
Sanchez, Nauwynck, McNeilly, Allan, & Pensaert, 2001), there is a common view that this 
virus is associated with severe pathology in new-born piglets, and its vertical 
transmission is also a rare event.  

Three factors must be considered when assessing the infectious risk of PCV2 associated with 

xenotransplantation: (1) the ubiquity of the PCV type 2 virus (Celera & Carasova, 2002; 

Garkavenko et al., 2005; Kim et al., 2002; Labarque, Nauwynck, Mesu, & Pesaert, 2000; 

Trujano, Iglesias, Segales, & Palacios, 2001; Wattrang et al., 2002); (2) the potential that the 

virus might be transmitted vertically without showing any sign of abnormality 

(Garkavenko, Croxson, et al., 2004) and (3) transmission of the virus occurs in human cells in 

vitro (Hattermann, 2002, unpublished data), and in experimental mice in vivo (Kiupel et al., 

2001). Despite evidence that caesarean section and barrier rearing techniques are effective in 

excluding PCV and PLHV from pig populations, these interventions do not guarantee the 

exclusion of all viruses from a pig herd (Tucker et al., 2003). While each of these factors 

requires further intensive study, it seems reasonable to suggest that any source herd 

intended for xenotransplantation must be free from PCV and PLHV. 

3. Selection criteria for xenotransplantation donors 

The microbiological ‘xenostandard’ demands the absence of identifiable infectious agents in 

the source herd. A NZ donor herd that fulfilled this standard was found through a 

monitoring program that required the completion of several key tasks. This included a viral 

profile assessment of the pig population within the country, identification of a specific 

source herd, development of safety criteria including a plan to manage positive animals and 

finally, implementation of a multilevel monitoring schedule encompassing pig founders 

through to the final product. For the New Zealand herd an algorithm to determine whether 

source animals were suitable for xenotransplantation was developed (see Figure 1). This 

algorithm stipulates that if an agent capable of infecting human cells cannot be eradicated 

from the herd then an assessment of risk versus benefit must be made. Using this algorithm 
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it became apparent that pigs from the Auckland Islands (AI) represented the ideal donor 

herd.  

 

Fig. 1. Algorithm for donor herd selection 

3.1 The Auckland Island donor herd 

The Auckland Islands are a group of islands to the south of mainland New Zealand. In 1807 
individual pigs were first introduced to the island as a source of food for whalers and 
shipwrecked sailors. Over subsequent decades these animals were reported to be thriving 
leading to further releases in 1840, 1842 and 1890. By the end of the nineteenth century a 
strong feral pig population had been established that was to remain isolated for the next 
hundred years. By the mid 1990’s these animals were marked for eradication by the New 
Zealand Department of Conservation as part of a program to restore the natural ecosystems 
on the island. Consequently the Rare Breeds Conservation Society of New Zealand 
(RBCSNZ) attempted to preserve the breed in captivity. In 1999 a RBCSNZ expedition 
caught and removed seventeen pigs, including several pregnant sows, from Auckland 
Island, transferring them to Invercargill, New Zealand. These animals were subsequently 
acquired by the private biotech company Living Cell Technologies for the purposes of 
providing donor material for cell transplantation in humans for the treatment of disease. 
Currently these animals are maintained within quarantined facilities with one founder herd 
of approximately 40 animals kept in Invercargill, New Zealand and a second smaller donor 
herd of 15 animals located in Kumeu, Auckland, New Zealand. These animals as well as the 
cellular products derived from them are subject to a rigorous testing schedule for an 
extensive list of pathogens (Table 1). 
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Pathogen/Disease Type Frequency NZ Status 
Herd 

Status 

Porcine Circovirus Type 1 Virus Quarterly Ubiquitous Absent 

Porcine Circovirus Type 2 DNA virus Annually Not present Absent 

Porcine Lymphotrophic 
Herpesvirus Type 2 

DNA virus Quarterly Ubiquitous Absent 

Porcine Cytomegalovirus DNA virus Quarterly Ubiquitous Absent 

Toxoplasma gondii 
Parasitic 

protozoan 
As 

Required 
Ubiquitous Absent 

Porcine Hepatitis E virus RNA virus Annually Ubiquitous Absent 

Rotavirus RNA virus Annually Ubiquitous Absent 

Reovirus RNA virus Annually Ubiquitous Absent 

Porcine Enterovirus Type 1 RNA virus Annually Ubiquitous Absent 

Porcine Enterovirus Type 3 RNA virus Annually Ubiquitous Absent 

Porcine 
Encephalomyocarditis Virus 

RNA virus Annually Ubiquitous Absent 

Mycoplasma 
hyopneumoniae 

Bacterium Annually Ubiquitous Absent 

Bovine Virus Diarrhea RNA virus Annually Ubiquitous Absent 

Aujesky's Disease RNA virus Annually Not present Absent 

Porcine Parvovirus DNA virus Quarterly Ubiquitous Absent 

Porcine Reproductive and 
Respiratory Syndrome Virus 

RNA virus Annually Not present Absent 

Leptospira hardjo Bacterium Quarterly Ubiquitous Absent 

Leptospira pomona Bacterium Quarterly Ubiquitous Absent 

Leptospira tarrasovi Bacterium Quarterly Ubiquitous Absent 

Campylobacter Bacterium Annually Ubiquitous Absent 

Coccidia (Isospora) 
Parasitic 

protozoan 
Annually Ubiquitous Absent 

Cryptosporidium 
Parasitic 

protozoan 
Annually Ubiquitous Absent 

Yersinia Bacterium Annually Ubiquitous Absent 

E.coli K88 Bacterium Annually Ubiquitous Absent 

Salmonella Bacterium Annually Ubiquitous Absent 

Table 1. List of pathogens tested for in the NZ Auckland Island donor herd. 

www.intechopen.com



 
Xenotransplantation 82

3.2 Multilevel monitoring 

A key facet of the ‘selection algorithm’ is that a multilevel monitoring process is adopted 
that begins with the regular screening (see table 1) of every individual pig within the donor 
herd. For certain pathogens such as PCV2, PLHV2 and PCMV sampling maybe performed 
from multiple tissues including pancreas and peripheral blood leukocytes (PBL). In the case 
of HEV both blood serum and faeces are processed. This is followed by the screening of all 
the sows’ pre and post farrowing as well as the screening of each piglet donor (see table 2 
for tests performed). Prior to surgery and removal of organs each piglet is examined for 
signs of infection. Any abnormalities are noted and in certain cases further consultation 
maybe sort from veterinary specialists. A strict policy is enforced to exclude even slightly 
suspect piglets from contributing donor material. Following removal of donor material each 
piglet is subject to a full post mortem by veterinary pathologists. Lastly the transplant 
product itself is screened immediately prior to transplantation. This final clearance is 
mandatory before the product can be released for transplantation. Such a comprehensive 
schedule of testing was judged necessary to assure the microbiological safety of xenografts 
and to satisfy NZ regulatory authorities. 

 

Sows
(pre- and post-farrowing)

Piglets Injected product 

Leptospira HEV Toxoplasma PCR 
PPV Toxoplasma serology PCV2 

Mycoplasma Post-mortem autopsy PLHV 
Toxoplasma PCV2* PCMV 

HEV PLHV2* HEV
PLHV PCMV* Mycoplasma 
PCV2
PCMV

Table 2. List of porcine microorganisms for multi-level screening program. *PCR is 
performed on DNA extracted from both peripheral blood leukocytes and pancreas tissue. 

4. Porcine Endogenous Retrovirus (PERV) – Developing a standard approach 

In comparison to exogenous viruses a unique problem is posed by endogenous retroviruses 
(ERV). In pigs this pathogen is known as Porcine Endogenous Retrovirus (PERV) and is 
ubiquitous to all pig species studied to date. Endogenous retroviruses can be distinguished 
from exogenous types by their presence as genomic components that do not present 
pathology in their natural host (Stoye, Le Tissier, Takeuchi, Patience, & Weiss, 1998). 
Moreover, endogenous retroviruses behave like normal cellular genes in that they are 
inherited by the offspring and not acquired by infection. Accordingly PERV cannot be 
removed by conventional barrier methods instead requiring more elaborate strategies such 
as the selective breeding of pigs with favourable PERV genetic characteristics (Garkavenko, 
Wynyard, Nathu, Muzina, Muzina et al, 2008; Garkavenko, Wynyard, Nathu, Simond, 
Muzina et al, 2008; Stoye et al, 1998), or the development of vaccines to protect against PERV 
transmission or the inhibition of PERV expression by RNA interference using PERV-specific 
short hairpin RNA (shRNA) and retroviral vectors [reviewed in (Denner, 2008)]. Like most 
retroviruses PERV has an element of unpredictability in regards to its transmission 
potential. The concern exists that retroviral transmission may occur ‘silently’ by means of an 
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undetectable recombination event, oncogenesis or alteration in gene regulation resulting in 
pathology that does not manifest until decades later. Such transmission is typical for 
gammaretroviruses and xenotransplantation could provide the right environment for 
selection of variants that can efficiently infect the human population. Numerous studies 
have been performed examining the risk of PERV transmission as it relates to 
xenotransplantation with the consensus that PERV must be considered an endogenous 
agent to be reduced or excluded where possible in animals destined for clinical use (H.J. 
Schuurman & Pierson, 2008; Taylor, 2008; Wilson, 2008). 

4.1 PERV infectivity in vitro – The gold standard 

With regard to PERV infectious characteristics, a standard infectivity method can be applied to 

check the infectivity of primary tissues such as peripheral blood mononuclear cells (PBMC) 

and islets derived from SPF pigs (Patience, Wilkinson, et al., 1997; Takeuchi et al., 1998). Such 

data is necessary because PCR for either the PERV pol or PERV env region does not always 

provide information on the transmission characteristics of PERV. In fact recombinant PERV is 

most often detected in transmission studies by co-culturing primary pig cells with target 

human cell lines as was performed in the NZ SPF herd. To ensure the release of infectious 

PERV particles (if any), tested cells were mitogenically stimulated prior to co-culture with 

standard susceptible cell lines 293 (to elucidate xeno-tropic PERV) and St-Iowa (to elucidate 

eco-tropic PERV). Although mitogenic stimulation enhanced proliferation of all tested cells, no 

evidence of PERV transmission was detected in the infectivity test with both human and pig 

target cells using PBMC or islet cells isolated from the New Zealand SPF pigs (Garkavenko, 

Wynyard, Nathu, Muzina, et al., 2008; Garkavenko, Wynyard, Nathu, Simond, et al., 2008). 

Thus it was concluded that the New Zealand SPF pigs could be classified as non-transmitters 

for PERV, possessing the “null” transmission phenotype. The term “null”, as coined by (Wood 

et al, 2004), simply means that despite the presence of PERV-A, PERV-B and PERV-C 

sequences in the genome of these pigs they lack the ability to infect human or pig cells in vitro. 

This method must be considered the gold standard for determining PERV infectious risk and 

should be considered compulsory when evaluating new donor herds. 

One aspect that can complicate the issue of transmission phenotype is the potential for the 

transmission status of an animal to change over time. Indeed, data has shown that miniature 

swine do not maintain their transmission status. For example Wood et al demonstrated that 

during one 14 month interval, several adolescent miniature swine that were initially capable 

of infecting pig cells only (non-transmitters) eventually infected human cells thus converting 

to the transmitter phenotype (Wood et al., 2004). It is unclear if this phenomenon is 

applicable for other pig breeds, nevertheless any monitoring program of donor SPF herds 

should include a periodic screening for infectious PERV. Founder animals in New Zealand 

are tested annually or biennially for PERV infectivity by co-culturing with target cell lines 

and data has shown that these animals have retained their PERV null phenotype for more 

than 6 years (Wynyard, 2011). 

4.2 PERV expression and RT activity 

In addition to studying in vitro co-culture infectivity it is recommended that the PERV viral 

load and RT activity is measured in donor blood plasma. During the characterisation of the 
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New Zealand SPF herd PERV viral load in donor blood plasma was measured by real-time 

PCR using a methodology similar to that described by Dieckhoff et al (2009). RT activity that 

would indicate retroviral activity and therefore the presence of retroviral particles was also 

measured in the blood of the donors using a C-Type RT kit (Garkavenko, Wynyard, Nathu, 

Muzina, et al., 2008; Garkavenko, Wynyard, Nathu, Simond, et al., 2008). No evidence of 

PERV expression or RT activity in pig donors’ blood plasma or from stimulated PBMC was 

found. 

4.3 PERV gene dosage (copy number) 

Pigs that possess a low number of PERV provirus within their genome will theoretically 
pose less infectious risk than those with a high copy number. This is because the majority of 
PERV sequences appear to be either defective or deleted, i.e., they contain only one or two 
intact retro- viral open reading frames of gag, pol and env (Bosch, Arnauld, & Jestin, 2000; 
Czauderna, Fischer, Boller, Kurth, & Tonjes, 2000; Herring et al., 2001; Niebert, Rogel-
Gaillard, Chardon, & Tonjes, 2002). Consequently PERV proviral copy number is another 
important characteristic that should be investigated when assessing a donor herd for 
infectious risk. This data can be obtained using a real-time PCR absolute quantification 
methodology. If this is not feasible then a laboratory may employ the simpler PCR based 
limited dilution assay (PLDA). PLDA has been widely used to quantify different target 
molecules, including human immunodeficiency virus copy number (Rodrigo, Goracke, 
Rowhanian, & Mullins, 1997). The New Zealand SPF herd has been screened using both 
methods (Wynyard, 2011; Wynyard, Garkavenko, & Elliott, 2011) for which a high 
concordance was observed. PERV copy number in NZ SPF pigs varied from 3 to 68 copies 
per cell with an average copy number of 17.6 and were found to be not statistically different 
from the NZ landrace breed or more interestingly the Miniature Swine breed that are known 
to infect human cells in vitro (Patience, 1997; Takeuchi, 1998). These techniques provide a 
sensitive and reliable method to specifically identify animals with low PERV copy number 
(<10 copies per cell) that are suitable for further selective breeding. Numerous such 
individual pigs have been identified in the AI pig herd and are currently being bred to 
reduce PERV infectious risk. 

4.4 PERV recombinants 

Another important aspect to consider is the ability of PERV-A and PERV-C to recombine as 
there is evidence that PERV A/C recombinants show higher titres when cultured in human 
cells in vitro (Bartosch et al., 2004; Oldmixon et al., 2002; Wilson, Wong, VanBrocklin, & 
Federspiel, 2000; Wood et al., 2004). As discussed earlier, using the co-culture infectivity test 
with human HEK293 and swine St Iowa target cell lines, it was established that primary 
cells (PBMCs) from NZ donor pigs do not release either xeno- or ecotropic infective viruses 
(Garkavenko, Wynyard, Nathu, Muzina, et al., 2008; Garkavenko, Wynyard, Nathu, 
Simond, et al., 2008). To support the lack of transmission from this herd, animals were tested 
for and found to lack the genomic presence of high titre recombinant PERV A/C.  A 
potential PERV-C locus that may contribute to recombination and the generation of 
transmissible PERV sequences in miniature swine was also found to be absent. These 
animals also appear to be transcriptionally inactive for PERV-C as PERV-C RNA could not 
be detected despite possessing PERV-C proviral sequences. 
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4.5 PERV infectivity in vivo 

An assessment of PERV infectious risk can be made at multiple levels beginning with the 

ability to release virus from the cells of a xenografted organ. Subsequent analysis would 

need to characterise the virus’s ability to cause viremia by revealing productive infection 

within the recipient cells. Final recognition as a public health hazard would require 

demonstration of the infectious virus circulating within the patients’ bodily fluids. While 

the ability of PERV to infect human cells in vitro is well documented, less is actually 

known about PERV infectious potential in vivo and its capacity to cause disease. To 

address this question numerous animal models have been investigated. The most 

common models have been concentrated around the use of non-human primates (NHP) or 

small animals such as severe combined immunodeficiency (SCID) mice. Unfortunately 

both models have proven problematic and in the case of SCID mice somewhat 

contentious. In NHP, conflicting results have been reported as regards the resistance of 

NHP cells to PERV infection, with some studies reporting non-permissiveness (Martin, 

Steinhoff, Kiessig, Chikobava, Anssar et al, 1999; Patience et al, 1997; Takeuchi et al, 1998; 

Wilson et al, 2000) and others suggesting susceptibility (Blusch, Patience, Takeuchi, 

Templin, Von Der Helm et al, 2000; Specke, Tacke, Boller, Schwendemann & Denner, 

2001; Templin, Schroder, Simon, Laaff, Kohl et al, 2000). For mice the situation is more 

complicated. Originally it was discovered that PERV, produced from pig pancreatic cells 

and transplanted into SCID mice, could infect mouse tissues in vivo. However, the virus 

produced appeared to be transcriptionally inactive, signifying a non-productive infection 

(van der Laan, Lockey, Griffeth, Frasier, Wilson et al, 2000). Subsequent analysis revealed 

that this was not a true infection but rather evidence of pseudotyping involving the 

collaboration of mouse (endogenous xenotropic MLV) and PERV retroviral elements 

(Martina, Kurian, Cherqui, Evanoff, Wilson et al, 2005). In terms of overall success, 

despite several studies demonstrating the transmission of PERV in vivo (Argaw, Colon-

Moran & Wilson, 2004; Martina, Marcucci, Cherqui, Szabo, Drysdale et al, 2006; Popp, 

Mann, Milburn, Gibbs, McCullagh et al, 2007), no report has conclusively demonstrated 

productive infection (Denner, Specke, Karlas, Chodnevskaja, Meyer et al, 2008; Hermida-

Prieto, Domenech, Moscoso, Diaz, Ishii et al, 2007; Levy, Argaw, Wilson, Brooks, 

Sandstrom et al, 2007; Moscoso, Hermida-Prieto, Manez, Lopez-Pelaez, Centeno et al, 

2005; Paradis, Langford, Long, Heneine, Sandstrom et al, 1999; Specke, Schuurman, 

Plesker, Coulibaly, Ozel et al, 2002). In terms of in vivo transmission from the AI pig herd 

no evidence of PERV infection was found in non-human primates following 

transplantation of islet cells (Garkavenko, Dieckhoff, Wynyard, Denner, Elliott et al, 2008) 

or in twelve human patients sampled from the New Zealand clinical trial (Wynyard, 

2011). 

Such a predominance of data against PERV infection in vivo begs the question as to whether 

PERV is of real importance. On the other hand it may just be a case of having not yet found 

a suitable animal model. It is worth noting that the difficulties associated with PERV in vivo 

infection may also be attributed to the inconsistency of methods used for PERV detection in 

recipients. Indeed the detection of all PERV subtypes, especially PERVA/C, may not be 

adequately covered by currently employed PCR and serological methodologies. 

Establishing quality testing practices therefore becomes vital. 
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5. Patient follow up and laboratory standards 

Approval for clinical trials in xenotransplantation requires comprehensive regulation and 

approval by government authorities.  Crucial to any successful application is demonstration 

that the methodologies employed to test both donor animals and xenograft recipients are 

current and accurate. The Molecular Diagnostic Laboratory responsible for testing the New 

Zealand SPF donor herd and transplant patients employs both serological (ELISA, Late 

Agglutination Test) and molecular techniques (PCR, real-time PCR) as part of its testing 

program. However the preferred methodology is a multiplex High Resolution Melting 

(HRM) real-time PCR similar to that described in (Wynyard, 2011). In this study the 

superior melting properties of the HRM chemistry enable the simultaneous amplification of 

sequences for PERV pol, Cytochrome Oxidase II (a pig cell marker) and a heterologous 

internal control in a single multiplexed reaction. This assay has been employed successfully 

to screen 12 xenograft recipients of porcine islets to exclude PERV infection whilst 

simultaneously checking for template integrity, PCR inhibition and microchimerism. 

Research groups expecting to perform xeno-testing must be prepared to show competencies 

with nucleic acid methodologies preferably with expertise in both veterinary and medical 

diagnostic fields. For pathogens that lack commercially available tests or where in-house 

capabilities are insufficient then a network of reference laboratories and collaborators maybe 

employed to perform the tests instead. All assays should be suitably validated to ensure 

accuracy, reproducibility, specificity and sensitivity (both analytical and where possible 

diagnostic) as expected from any medical diagnostic laboratory (American Association of 

Veterinary Laboratory Diagnosticians, 2010; Raymaekers, Bakkus, Boone, de Rijke, El 

Housni et al, 2011). It is important that assays for pathogens that are screened in donor 

animals show equal efficacy when tested from human tissues and validation protocols 

should account for this. Controls are mandatory and it is recommended that suitable 

internal controls are incorporated to improve assay reliability (Hoorfar, Malorny, 

Abdulmawjood, Cook, Wagner et al, 2004). For example in the New Zealand diagnostic 

laboratory tissues destined for real-time PCR analysis are routinely spiked with a 

heterologous internal control that can be used to infer nucleic acid integrity and PCR 

inhibition (Wynyard, 2011; assays in preparation for publication).  

To achieve the highest diagnostic standards it is advisable that laboratories expecting to 
perform xenomicrobiology testing are accredited to international standards. This will 
facilitate the use of suitable methods and that laboratory staff are trained and competent to 
perform each assay. Moreover, accreditation ensures that a suitable QA/QC program is put 
in place to guarantee that results are reliable and can be trusted. The NZ testing laboratory 
is audited annually and registered with International Accreditation New Zealand (IANZ). 
Accreditation is maintained to the ISO15189:2007 standard. It is important to note that for 
the screening of both the herd and recipients that robust protocols for managing positive 
results are established. This encompasses the confirmatory testing needed to exclude false 
positives and describes clearly defined communication lines for reporting. Reporting 
contacts may include the animal facilities, executive management, pig handlers or in the 
case of positive results for non-endemic pathogens, the involvement of government 
departments responsible for biosecurity, animal welfare and public health. Full 
documentation (integral to the accreditation process) is essential for providing traceability 
when subject to auditing by regulatory bodies. 
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6. Conclusions 

Any xenotransplantation project should consider a comprehensive safety program that 
includes two key aspects – donor monitoring and patients’ follow-up. Initial identification of 
donor herds suitable for xenotransplantation requires a comprehensive understanding of 
viral epidemiology within pig populations and an understanding of the relevant viruses as 
dictated by the geographical area. A clear decision making process is required to exclude 
animals that carry infectious agents that ultimately requires a risk versus benefit analysis. 
Upon the selection of suitable pig donor herd a multilevel screening program is required 
that tests donor material from breeding animals at the herd level through to the final 
product. Strategies for management of positive animals must be in place to minimize the 
risk to the donor herd and transplant recipients. PERV remains the central safety 
consideration in xenotransplantation. It is very important to develop a standard approach 
towards the characterization of PERV infectious potential within a potential donor herd. 
Such a benchmark allows for the comparison of PERV characteristics from pig donors of 
different backgrounds and ensures the selection of techniques and methods that are reliable 
and practical for the industry. To effectively characterize PERV in source animals requires a 
rigorous PERV screening program as has been implemented in a New Zealand specific 
pathogen free (SPF) pig herd. The key elements of this program should consist of: (a) testing 
for in vitro infectivity of both eco- and xenotropic viruses using standard cell culture 
infectivity methods (Patience, Takeuchi, & Weiss, 1997); (b) measuring reverse transcriptase 
(RT) activity and PERV viral expression in donors’ blood plasma (Dieckhoff et al., 2009; 
Garkavenko, Wynyard, Nathu, Muzina, et al., 2008; Garkavenko, Wynyard, Nathu, Simond, 
et al., 2008); (c) measuring the PERV proviral copy number per cell (Wynyard, 2011) and (d) 
testing for the presence or absence of PERV recombinants and a potential PERV-C loci that 
may contribute to recombination and the generation of highly transmissible PERV 
sequences (Garkavenko, Wynyard, Nathu, Muzina, et al., 2008; Garkavenko, Wynyard, 
Nathu, Simond, et al., 2008). These data provide the basis for a selective pig breeding 
program with the ultimate goal of enhancing the safety of donors for cell transplantation by 
minimising PERV infectious risk. It should be evident that patient safety relies heavily upon 
a robust program of monitoring in transplant recipients. It is expected that laboratory 
practices meet international standards to ensure technical competence and result validity. 

The strategies described in this chapter have been successfully applied in New Zealand and 
proven crucial towards facilitating clinical trials using porcine islets. It is expected that the 
same strategies will find broad application outside of New Zealand and provide sufficient 
guidelines to benefit interested parties looking to enter the xenotransplantation field. 
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