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1. Introduction 

Since the first use of transcranial Doppler sonography by Aaslid et al. in 1982 (Aaslid, R. et 
al, 1982), ultrasound exploration of intracranial arteries has become highly advanced. The 
introduction of transcranial color-coded sonography (TCCS) made it possible to use real-
time B-mode imaging and Doppler-signal color coding along with conventional transcranial 
Doppler (TCD) sonography (Bogdahn, U. et al, 1982). 

Thus, with B-mode imaging and color coding of the Doppler, vessels can be reliably 
identified. Theoretically, TCCS studies of the anatomy of the M1 segment of the middle 
cerebral artery (MCA) could have an impact on the precise localization of a blood clot site, 
on the potentialization of thrombolysis using ultrasound, and on the morphological profile 
of recanalization. Thus, TCCS morphological findings provide fundamental information 
that is complementary to that obtained using 3D time-of-flight (TOF) magnetic resonance 
angiography (MRA), which is considered to be the reference standard. 

2. The M1 segment of the middle cerebral artery 

2.1 Anatomical patterns 

The princeps anatomical descriptions of the MCA still represent the basis of current 
knowledge (Duret, H., 1874; Foix, C. and Lévy, M., 1927). Later, microdissection on human 
cadavers led to a better understanding of the anatomical patterns of the MCA (Gibo, H. et al, 
1981; Tanriover, N. et al, 2003; Umansky, F. et al, 1984; Yasargil, M.G., 1984). The proximal 
part of the MCA is commonly known as the M1 segment (Gibo, H. et al, 1981) although 
other terms, such as the horizontal segment (Herman, L.H. et al, 1963) or the sphenoidal 
segment (Gibo, H. et al, 1981), have also been used. The M1 segment may be defined in 
relation to the references to brain structures found nearby, from its origin to its end (Gibo, H. 
et al, 1981). As such, its origin is situated laterally in relation to the optic chiasm, at the  
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level of the medial end of the lateral fissure. Its course then leads laterally, behind the 
anterior perforated substance and towards the insula. Leaving aside the parenchyma, a 
definition based on angiographic references has been suggested and has often been used 
(Krayenbuhl, H.A. and Yasargil, M.G., 1968). The origin of the M1 segment is then located at 
the division of the internal carotid artery (ICA), at the same level as the anterior cerebral 
artery (ACA). Its diameter and direction make the M1 segment appear to be a lateral 
extension of the ICA. According to this definition, the M1 segment ends when the artery 
curves sharply back and up, at the point known as the genu of the M1 segment (Fig. 1).  

 

Fig. 1. Inferior view of the left middle cerebral artery. Its course is straight (c.f. arrow) up to 
the point where the artery curves sharply back and up at the genu where it divides into two 
branches, defined as a bipode division (c.f. arrow heads) 

 

Fig. 2. Deep perforating branches of the M1 segment (c.f. arrows) arising from an early 
cortical branch (c.f. arrow head) 

In most cases, close to the genu, the M1 segment divides into two branches, defined as a 
bipode division (anterior and posterior divisions). An absence of division, defined as the 
monopode type, or an M1 segment trifurcation with superior, middle and inferior divisions, 
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are observed less frequently. The early cortical branches (ECB) are defined as small diameter 
arteries that usually arise almost at a right angle to the M1 segment and that run toward the 
cortex. The type of branch can be defined using anatomical criteria from microdissection 
studies, based on the diameter and direction of the branches in relation to the M1 segment 
(Tanriover, N. et al, 2003). Although these criteria allow us to distinguish the main division 
branches from the ECB in most cases, they may not be entirely accurate, particularly with 
regard to early proximal cortical branches that may be taken for early bifurcations (Foix, C. 
and Lévy, M., 1927).  

The deep perforating branches of the M1 segment, defined as the lenticulostriate arteries, 
arise proximal to the M1 segment division. Usually, deep perforating branches are divided 
into medial, intermediate and lateral groups (Fig. 2).   

2.2 Technical approach of the M1 segment 

The use of conventional angiography, which was considered for a long time to be the gold 
standard in the diagnosis of intracranial arterial anomalies, has also been the source of a 
number of anatomical descriptions (Newton, T.H. and Potts, D.G. 1974; Nomura, T., 1970). 
Most of these studies have been carried out from a neurosurgical perspective with a view to 
contributing to improvements in the treatment of aneurysms and intracranial arteriovenous 
malformations. With the development of high-field-strength MR imaging, it is now possible 
to carry out, in vivo, a precise visualization of the intracranial arteries and, in particular, the 
M1 segment of the MCA, using 3D TOF MRA (Fig.3). However, 3T MRA has not been 
widely used, particularly in stroke patients (Choi, C.G et al, 2007). Thus, 3T MRA could help 
neurologists to better understand the angioarchitecture of intracranial arteries in order to 
optimize stroke management.  

 

Fig. 3. MRA of the circle of Willis showing a bipode division of the right MCA (c.f. arrows) 
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In the field of ultrasound application, B-mode imaging and Doppler-signal color coding are 

used only to measure the angle of insonation in order to obtain absolute flow velocities 

more accurately than is possible with TCD (Martin, P.J. et al, 1995; Kimura, K. et al, 1998). 

Consequently, even if TCCS presents certain advantages, its main clinical applications in 

the assessment of cerebrovascular diseases are similar to those of TCD. Prior to our study, 

the ability of TCCS to provide a visualization of the intracranial arteries using a 

morphological approach, especially in the distal part of the M1 segment, had not been 

properly evaluated.  

3. TCCS examination of the M1 segment 

3.1 General procedure 

TCCS is carried out through the left and right temporal bone window with a 2-MHz probe 

and can be performed at the bedside in the stroke unit within the first 48 hours of 

hospitalization. To achieve the best possible visualization of the M1 segment, the 

investigation should be carried out using power-Doppler (Fig. 4). This is the most angle-

independent imaging technique and is more appropriate than color-Doppler for 

morphological studies on arteries (Griewing, B. et al, 1998; Postert, T. et al, 1997). 

  

Fig. 4. M1 segment using color-Doppler (a) and power-Doppler (b) 

Power-Doppler is used taking particular care to obtain a long-axis view of the M1 segment 

and several images of its course, end and division. This is done by tilting, rotating and 

shifting the transducer (Fig. 5). 

For a long time, because the acoustic temporal bone window is more restricted in the 

elderly, and notably in women, TCCS was usually carried out on patients aged under 55 

years (Itoh, T. et al, 1993). Thanks to the use of contrast enhancement, the sensitivity and 

specificity of diagnostic ultrasound imaging have been considerably improved (Droste, 
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D.W. et al, 2002). Usually, contrast enhancement (Sonovue TM) is administered, as 

necessary, via continuous infusion up to a total dose over 8 minutes. The temporal bone 

window is considered as absent when no part of the M1 segment can be detected and as 

insufficient when it is not possible to view the entire course of the M1 segment. In good 

conditions, the course and division patterns of the M1 segment can be defined and 

compared to the MRA results. Thus, it is now possible to carry out TCCS in the conditions 

encountered in most stroke patients.  

 

Fig. 5. Directions of the probe through the temporal bone window to obtain a long-axis view 

of the M1 segment and several images of its course, end and division 

3.2 TCCS anatomical capacity  

Using TCCS, the main anatomical features, such as the type of course and division of the M1 

segment, can be determined.  

As shown in Figure 6, the precise direction in the horizontal plane and the length of the 

M1 segment can be defined. In the majority of cases, the M1 segment is straight, which 

facilitates its exploration using TCCS. In some cases, however, the course of the M1 

segment curves and does not always follow the same concavity direction. This type of 

course, and in particular a curve with a posterior concavity, has already been reported, 

when the M1 segment is described as being parallel to the large sphenoid ridge (Gibo, H. 

et al, 1981). A tendency towards an anterior concavity has been reported, although less 

frequently (Nomura, T., 1970). In these cases, TCCS exploration can be more difficult, 

requiring more complicated manipulations of the probe. The length of the M1 segment, 

which is usually approximately 20mm, can provide the neurologist with important 

information in order to identify the precise location of the clot in relation to the collateral 

branches and to evaluate the gradual recanalization of the M1 segment. Evaluations of the 

diameter of the M1 segment are usually used to judge the severity of stenosis in 

conventional arteriography, angio-CT or MRA. In TCCS, stenosis is usually evaluated 

using velocity values. The advent of ultrasound technology could enable us to evaluate 

the diameter of certain intracranial arteries, such as the distal part of the ICA or of the 

basilar artery.   
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                                          (a)                                      (b)                                            (c) 

Fig. 6. TCCS using power-Doppler showing the division patterns of the M1 segment:  
(a) monopode, (b) bipode and (c) tripode 

TCCS is a useful tool in defining the type of M1 segment division. As in our study, TCCS 
was able to show that the division was monopode in 16/68 cases (23.5%; Fig. 6a), bipode in 
50/68 cases (73.5%; Fig. 6b) and tripode in 2/68 cases (3%; Fig. 6c), confirming the classic 
data (Gibo, H. et al, 1981; Tanriover, N. et al, 2003). The type of division could not be 
defined in the remaining 17/85 cases (20%).  

In our study, TCCS anatomical patterns of the M1 segment were compared to 3D TOF-MRA 
at 3 T, which is the gold standard technique used to depict the normal anatomy of the 
intracranial artery (Willinek, W.A. et al, 2003). Our comparisons between TCCS and MRA 
findings indicated concordance in most cases (67%), especially when the division was 
bipode (Fig. 7).  

The fact that false-positive results were uncommon (positive predictive value = 87%) 
indicates the efficacy of TCCS in depicting bipode division. Nevertheless, in all false-
negative cases, the division was taken to be monopode, whereas it was bipode on MRA. 
These facts illustrate the difficulty of identifying certain division branches, confirming a 
classic limitation of TCCS. Our results demonstrate that if TCCS is performed with care, it 
can provide anatomical information on the whole M1 segment. Our results also highlighted 
the ability of TCCS to analyze the distal part of the M1 segment, despite potential difficulties 
such as the insonation angle and a more superficial situation (Itoh, T. et al, 1993; Zunker, P. 
et al, 2002). The main technical limitation that we encountered (in 11/23 cases) was an 
unfavourable angle between the ultrasound beam and the division branches of the M1 
segment, which led to an unfavourable insonation angle. As for the anatomical causes of 
discordance, we observed that the anatomical criteria could not be applied accurately in 
12/23 cases. This can be explained by the difficulty of accurately evaluating the diameter of 
the branch and its angle of origin, because contrast enhancement creates color artefacts  
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Fig. 7. MRA (a) and TCCS (b) showing a bipode division with a good correlation between 
the two techniques 

  

Fig. 8. In 8a, the top of the head is at the left of the image and the probe is placed at the top 
of the image. MRA (a) and TCCS (b) showing an ECB arising from the M1 segment at a right 
angle (c.f. arrows) 
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(blooming). Our study showed that TCCS can be used to obtain anatomical information on 
the M1 segment of the MCA. Nevertheless, the resolution of TCCS to detect MCA branches 
needs to be improved through technical developments. 

Regardless of the technique used, it is quite possible for the main division branches to be 
taken for cortical branches and vice-versa (Tanriover, N. et al, 2003). In good conditions, 
TCCS enables the visualisation of the ECB despite their small diameter. The identification of 
these ECB using TCCS is also possible thanks to the application of anatomical criteria, in 
particular the almost 90° angle at which they branch from the M1 segment (Fig. 8).  

Finally, it is also possible using TCCS to determine the site of the division as being before, at 
the level of, or distal to the genu. 

To our knowledge, our study was the first to compare anatomical patterns as shown on 
MRA and TCCS images. 

4. Pathological applications 

The benefits of TCCS in detecting MCA stenosis or occlusion have been widely 
demonstrated (Kimura, K. et al, 1998; Baumgartner, R.W. et al, 1999; Tang, S.C. et al, 2005), 
particularly when contrast enhancement is used (Gerriets, T. et al, 2000; Ogata, T. et al, 
2005). Similarly, as TCCS is a bedside tool that can be used easily and as required, it has 
become the test of choice for evaluating the recanalization of the M1 segment after 
thrombolysis (Gerriets, T. et al, 2000; Ogata, T. et al, 2005). These clinical applications of 
TCCS are based exclusively on an evaluation of flow velocities, particularly for the proximal 
part of the M1 segment. Yet with improvements in image quality, thanks to the recent 
advent of harmonic imaging and contrast enhancement (Burns, P.N., 1996), it is now 
possible to obtain precise morphological knowledge of various vascular lesions. Wherever 
the stenosis or occlusion in the M1 segment is located, it can now be identified and located 
more accurately with respect to the origin of the division of the branches of the M1 segment. 
It is also possible to specify the consequences of occlusion with regard to the ECB. These 
morphological data are essential in achieving a good understanding of the functional 
consequences of stenosis or occlusion. 

Obviously, the same applies regarding the quality of recanalization of the M1 segment and 
the consequences of recanalization on its division branches, which can also be determined 
using morphological patterns. In addition, more precise localization of the blood clot can 
improve the capacity of low intensity ultrasound to accelerate thrombolysis (Alexandrov, 
A.V. et al, 2000; Molina, C.A. et al, 2004) or better guide the thrombectomy procedure. Hence, 
there is a need to pursue further TCCS studies with an increased focus on morphology. 
Moreover, the use of TCCS in pathological conditions and in the elderly population should 
now be easier. This would make it possible to implement clinical applications such as the 
localization of lesions and the time course of the morphological parameters of reperfusion, 
both of which may improve treatment strategies for stroke in the future. 
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