
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322406254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

The Pyrethroid Knockdown Resistance 

Ademir Jesus Martins and Denise Valle 
Fundação Oswaldo Cruz/ Instituto Oswaldo Cruz/ 

Laboratório de Fisiologia e Controle de Artrópodes Vetores 
Brazil 

1. Introduction 

New promising insect control efforts are now being evaluated such as biological alternatives 
or even transgenic insects and Wolbachia based strategies. Although it is increasingly clear 
that successful approaches must involve integrated actions, chemical insecticides 
unfortunately still play a central role in pest and vector control (Raghavendra et al., 2011). 
Development of new safe and effective compounds in conjunction with preservation of 
those currently being utilized are important measures to insure insecticide availability and 
efficiency for arthropod control. In this sense, understanding the interaction of insecticides 
with the insect organism (at physiological and molecular levels), the selected resistance 
mechanisms and their dynamics in and among natural populations is obligatory. 
Pyrethroids are synthetic compounds derived from pyrethrum, present in Chrysanthemum 
flowers. Currently, pyrethroids are the most used insecticides against arthropod plagues in 
agriculture and livestock as well as in the control of vectors of veterinary and human health 
importance. They are chemically distinguished as type I (such as permethrin, compounds 
that lack an alpha-ciano group) and type II (with an alpha-ciano group, like deltamethrin) 
(T. G. Davies et al., 2007b). Pyrethroid insecticides have been largely adopted against vector 
mosquitoes through indoor, perifocal or ultra-low volume (ULV) applications. As of yet 
pyrethroids are the only class of insecticides approved for insecticide treated nets (ITNs), an 
important tool under expansion against malaria, mainly in the African continent (Ranson et 
al., 2011). The consequence of intense and uncontrolled pyrethroid use is the extremely 
rapid selection of resistant populations throughout the world. 
Just like DDT, pyrethroids act very fast in the central nervous system of the insects, leading to 
convulsions, paralysis and eventually death, an effect known as knockdown. However, unlike 
DDT, pyrethroids are not claimed to cause severe risks to the environment or to animal or 
human health, hence its widespread use. The main pyrethroid resistance mechanism (the 
knockdown resistance phenotype, kdr) occurs due to a point mutation in the voltage gated 
sodium channel in the central nervous system, the target of pyrethroids and DDT. 
Herein we aim to discuss the main mechanism of pyrethroid resistance, the knockdown 
resistance (kdr) mutation, its effect and its particularities among arthropods. The most 
common methods presently employed to detect the kdr mutation are also discussed. Some 
aspects regarding the other main pyrethroid resistance mechanisms, like alterations in 
behaviour, cuticle and detoxifying enzymes will be only briefly addressed. The proposal of 
this chapter is to review knockdown resistance to pyrethroids, nowadays the preferred 
insecticide class worldwide. This topic discusses aspects of general biology, physiology, 
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biochemistry, genetics and evolution, with focus on disease vector mosquitoes. It is expected 
that the amount and diversity of material available on this subject may well illustrate 
insecticide resistance in a broader context. 

2. Insecticide resistance mechanisms 

Besides the resistance to chemical insecticides caused by modifications in the target site (also 
called phenotypic resistance), other mechanisms commonly associated are: metabolic 
resistance, behavioral modification and alterations in the integument. In the first case, 
endogenous detoxifying enzymes become more efficient in metabolizing the insecticide, 
preventing it from reaching its target in the nervous system. This occurs due to 1) increase in 
the number of available molecules (by gene amplification or expression activation) or 2) 
mutation in the enzyme coding portion of the gene, so that its product metabolizes the 
insecticide more efficiently. These processes can be very complex and involve three major 
enzyme superfamilies: Esterases, Multi function Oxidases P450 and Glutathion-S-
Transferases (Hemingway & Ranson, 2000; Montella et al., 2007). In contrast, there are few 
examples in literature regarding insect behavioral changes and tegument alterations. 
Resistance to insecticides may be functionally defined as the ability of an insect population 
to survive exposure to dosages of a given compound that are lethal to the majority of 
individuals of a susceptible lineage of the same species (Beaty & Marquardt, 1996). 
Resistance is based on the genetic variability of natural populations. Under insecticide 
selection pressure, specific phenotypes are selected and consequently increase in frequency. 
Resistance can result from the selection of one or more mechanisms. In order to elucidate the 
molecular nature of resistance, many studies report laboratory controlled selection of 
different species (Chang et al., 2009; Kumar et al., 2002; Paeoporn et al., 2003; Rodriguez et 
al., 2003; Saavedra-Rodriguez et al., 2007). With selected lineages, it becomes easier to 
separate the role of each distinct mechanism. In a more direct approach, the current 
availability of a series of molecular tools enables detection of expression of altered molecules 
in model organisms so that the effect of the insecticide can be evaluated under specific and 
controlled circumstances (Smith et al., 1997).  
Regardless of the mono or multi-factorial character of resistance, this phenomenon may be 
didactically divided into four categories: behavioral, cuticular, metabolic and phenotypic 
resistance. In the first case the insect simply avoids contact with the insecticide through 
behavioral adaptations, which are presumably related to genetic inheritance (Sparks et al., 
1989). Among arthropods, mosquitoes are by far the group most intensely investigated in 
relation to behavioral resistance (Lockwood et al., 1984). For instance, Anopheles malaria 
vector mosquitoes from the Amazon Region had the habit of resting in the walls after a 
blood meal. There are registers that some populations changed their behavior after a period 
of indoor residual application of DDT to the dwelling walls (Roberts & Alecrim, 1991). 
Behavioral changes that minimize contact between insect and insecticide may cause a severe 
impact in the insecticide application efficacy, especially if resistance is selected by 
physiological features (Ranson et al., 2011). 
Certain alterations in the insect cuticle may reduce insecticide penetration. However, these 
effects are unspecific, leading to resistance to a series of xenobiotic compounds. This 
mechanism is known as reduced penetration or cuticle resistance. It is probably not related 
to high levels of resistance by itself, but it can interact synergistically with other 
mechanisms. The physiological processes or molecular pathways which describe this type of 
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resistance remain to be elucidated. With respect to pyrethroid resistance, recent evidences 
point to an increase in the levels of expression of two cuticle genes in populations of two 
Anopheles species (Awolola et al., 2009; Vontas et al., 2007). 
The increased ability to detoxify insecticides is one of the main types of resistance, 

commonly referred to as metabolic resistance. It takes place when the activity of naturally 

detoxifying enzymes is enhanced, impeding the insecticide to reach its target. Among these 

enzymes, Multi function Oxidases (or Monoxigenases P450), Esterases and Glutathion-S-

Transferases (GST) (ffrench-Constant et al., 2004; Hemingway & Ranson, 2000) are the major 

representative families. Although the molecular basis of metabolic resistance has been 

extensively studied, only few reports have investigated the specific metabolic pathways 

involved or their location in the insect organism. Many different mutations may be 

attributed to metabolic resistance, such as those leading to production of more enzymes, via 

gene duplication events or either increases in gene transcription rates, alterations in the 

normal tissue/time specificity of expression, point mutations leading to a gain of function or 

changes in the substrate specificity (ffrench-Constant et al., 2004; Hemingway et al., 2004; 

Perry et al., 2011). Detoxifying enzymes belong to superfamilies composed of numerous 

genes (Ranson et al., 2002), and it is not unusual for different enzymes to produce the same 

metabolites. Additionally, an alteration in one type of enzyme may lead to cross-resistance 

among different classes of insecticides (Ranson et al., 2011). However, population genetic 

markers that make feasible a complete diagnostic of the resistance mechanisms or their 

distribution are not yet available. Current studies are generally based on biochemical assays 

(Valle et al., 2006) and, to a lesser extent, on microarray detox chips (David et al., 2005; Vontas 

et al., 2007). Due to technical limitations, the most common reports are hence oriented to 

single gene responses, such as punctual mutations that increase the ability of a specific 

enzyme in detoxifying an insecticide (Lumjuan et al., 2011; Morin et al., 2008). 

Multi function P450 Oxidases are the enzymes most commonly associated to metabolic 

resistance to pyrethroids. However, despite much indirect evidence of P450 total activity 

increase or even detection of higher expression of some related genes (cyp), little is known 

about their metabolic activity. For instance, 111 genes code for P450 in Anopheles gambiae, but 

only two (cyp6p3 and cyp6m2) were described to be involved in pyrethroid metabolism 

(Muller et al., 2008). Surprisingly, metabolic resistance can still vary during the course of the 

day. This is the case of an Ae. aegypti population whose resistance to the pyrethroid 

permethrin is mediated by the cyp9M9 gene. Expression of this gene is regulated by 

transcriptional factors enrolled in the circadian rhythm of the insect, varying along the day 

(Y. Y. Yang et al., 2010). 

Finally, phenotypic or target site resistance is designated by modification of the insect 
molecule where the insecticide binds, inhibiting its effects. Neurotoxic insecticides have as 
their ultimate target different molecules from the insect central nervous system: the enzyme 
Acetylcholinesterase (for organophosphates and carbamates), the gama-aminobutiric acid 
receptor (for ciclodienes), the nicotinic acetylcholine receptors (for spinosyns and 
neonicotinoids) and the voltage gated sodium channel (for DDT and pyrethroids). Although 
the mutated target molecule decreases or even abolishes its affinity for the insecticide, it is 
essential that this alteration does not result in loss of function regarding the insect 
physiological processes. Since the classical target molecules are much conserved among 
animals, few mutations are permissive to guarantee the viability of their carriers (ffrench-
Constant et al., 1998; Raymond et al., 2001). 

www.intechopen.com



 
Insecticides – Basic and Other Applications 

 

20

The voltage gated sodium channel (NaV) is the effective target for a number of neurotoxins 
produced by plants and animals, as components of their predation or defense strategies. 
Knowledge that mutations in the NaV gene can endow resistance to both the most popular 
insecticides of the past (DDT) and nowadays (pyrethroids) is leading to significant progress 
in the understanding of the physiology, pharmacology and evolution of this channel 
(ffrench-Constant et al., 1998; O'Reilly et al., 2006). 

3. The role of the voltage gated sodium channel (NaV) in the nerve impulse 
propagation in insects 

The membrane of all excitable cells (neurons, myocites, endocrinous and egg cells) have 
voltage gated ion channels responsible for the generation of action potential. These cells 
react to changes in the electric potential of the membrane, modifying their permeability 
status (Alberts et al., 2002; Randall et al., 2001). Voltage gated sodium channels (NaV) are 
transmembrane proteins responsible for the initial action potential in excitable cells 
(Catterall, 2000). They are members of the protein superfamily which also includes voltage 
gated calcium (CaV) and potassium (KV) channels (Jan & Jan, 1992). Both NaV and CaV 
channels are constituted of four homologous domains whilst KV is a tetramer with only one 
domain. A proposed evolution pathway assumes that CaV have evolved from Kv by gene 
duplication during the evolution of multicelular eukaryotes. NaV channels are supposed to 
have evolved from an ancestral CaV family (family CaV3) (Spafford et al., 1999). Accordingly, 
the four NaV domains are more similar to their CaV counterparts than among themselves 
(Strong et al., 1993). The sodium channel is completely functional by itself, unless the 
kinetics of opening and closure of the voltage gated channel can be modified by other 
proteins, sometimes referred to as complementary subunits (beta subunit in mammals and 
TipE in Drosophila) (Catterall et al., 2003). 
Cell action potential starts with the depolarization of the membrane, with the internal side 
attaining a more positive state (compare Figure 1, pannels A and B). A stimulus that causes 
the depolarization in a given region of the cell membrane promotes activation (opening) of 
the NaV in the vicinity. This process results in the influx of Na+ to the cell, enhancing 
depolarization of the membrane. The action potential works in a positive feedback, that is, 
once started there is no need of additional stimuli to progress. However, one millisecond 
after the channel has been activated, the surrounding membrane reaches the Na+ 
equilibrium potential, and the channel is deactivated. In this state, the pore is still open, but 
it assumes a conformation that halts the ion influx into the cell (Figure 1, C). After some 
further milliseconds, the membrane is repolarized and the channel closes, finally returning 
to its resting configuration (Figure 1, D). This whole process occurs in consonance with 
other channels and pumps, such as KV and sodium/ potassium pumps that restore the 
original electric potential of the cell (Catterall et al., 2003; Randall et al., 2001). The correct 
operation of sodium channels is essential for nerve impulse propagation. Hence, if the 
regular propagation of an impulse is altered, as due to the interaction with an insecticide, 
the organism suffers paralysis and can eventually die. 
The structure of NaV is organized in four homologous domains (I-IV), each containing six 
hydrophobic segments (S1-S6) and a P-loop between S5 and S6 (Figure 2). The segments S1-
S4 work as a voltage sensitive module. Since S4 segments are positively charged and 
sensitive to voltage changes, they move across the membrane in order to initiate the channel 
activation in response to membrane depolarization (schematically represented in Figure 1, 
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compare relative position of the Nav blue domains in the different pannels). The pore 
forming module is composed of the S5-S6 segments and the loop between them, the latter 
acting as an ion selective filter in the extracellular entrance of the pore (Catterall et al., 2003; 
Goldin, 2003; Narahashi, 1992). Additionally, the P-loop residues D, E, K and A, respectively 
from domains I, II, III and IV, are critical for the Na+ sensitivity (Zhou et al., 2004). 
 

  
 

  

Fig. 1. Propagation of the action potential through a neuronal axon - In the resting potential 
stage (A) the axon cytoplasm has Na+ and K+ respectively in low and high concentrations 
compared to the surrounding extracellular fluid. The Na/K pump is constantly expelling three 
Na+ from the cell for every two K+ it transfers in, which confers a positive charge to the outer 
part of the membrane. When there is a nervous stimulus, the NaV opens and the membrane 
becomes permeable affording the influx of Na+, depolarizing the membrane charge (B). This is 
the rising phase of the action potential. Soon (~1 millisecond), the NaV is deactivated, 
precluding further Na+ entrance to the cell (C), whilst K+ exits the cell through KV which is 
now opened, characterizing the falling phase of the action potential (D). The Na/K pump 
helps to reestablish the initial membrane potential. The action potential generates a wave of 
sequential depolarization along the axon. Figure based on T. G. Davies et al. (2007b). 
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Fig. 2. The voltage gated sodium channel - Scheme representative of the NaV inserted in a 
cell membrane, showing its four homologous domains (I-IV), each with six hydrophobic 
segments (S1-S6). In blue, the voltage sensor segments (S4); in green, the S6 segments, which 
form the channel pore together with the S5 segments and the link (P-loop, in red) between 
them. Figure adapted from Nelson & Cox (2000). 

In the closed state, the putative insecticide contact sites are blocked, corroborating the 
assumption that pyrethroids and DDT have more affinity to the Nav channel in its open 
state when the insecticide stabilizes the open conformation (O'Reilly et al., 2006). These 
insecticides, therefore, inhibit the channel transition to the non-conducting and deactivated 
states (T. E. Davies et al., 2008). By interacting with the channel, they form a sort of wedge 
between segments IIS5 and IIIS6 that restricts displacement of the pore forming helices S5 
and S6, preventing closure of the channel. Consequently, the influx of Na+ is prolonged, and 
the cell is led to work at an abnormal state of hyper-excitability. The amplitude of the Na+ 
current will not decrease unless the cell’s level of hyper-excitability is overcome by its ability 
to keep the sodium-potassium pump under operation. This process is responsible for the 
pyrethroid sublethal effect in insects, known as knockdown effect, which may lead to 
paralysis and death if prolonged (T. E. Davies et al., 2008; T. G. Davies et al., 2007b). 
Predictive models suggest that DDT and pyrethroids interact with a long and narrow cavity 
delimited by the IIS4-S5 linker and the IIS5 and IIIS6 helices, accessible to lipophilic 
insecticides. Moreover, some of the aminoacids belonging to the helices engaged in contact 
with these insecticides are not conserved among arthropods and other animals, and this 
could be responsible for the selectivity of pyrethroid effects against insects (O'Reilly et al., 
2006). The crystal structure of a NaV has been recently published (Payandeh et al., 2011), 
pointing to a better understanding of the channel function and to its interaction with 
targeted compounds in a near future. 
Besides pyrethroids and DDT, other insecticides act on the voltage gated sodium channel, 
like the sodium channel blocker insecticides (SCBIs) and N-alkylamide inseticides (like BTG 
502). There are few reports about these compounds. However, it is known that SCBIs, such 
as indoxicarb, act by blocking the impulse conduction, an effect opposite to that of DDT and 
pyrethroids (Du et al., 2011). 

4. The knockdown effect and the kdr phenotype 

In the early 1950s, no sooner had DDT been introduced as an insecticide than resistant 
strains of houseflies were described. When exposed to DDT, these insects in general did not 
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suffer paralysis followed by death (knockdown) but, at most, presented a momentary 
paralysis followed by complete locomotion recovery, this phenotype being named kdr 
(knockdown resistance) (Busvine, 1951; Harrison, 1951; Milani, 1954). Since the introduction 
of pyrethroids, plenty of insect species exhibiting the kdr phenotype have been observed, 
attributed to previous DDT selection pressure, characterizing cross-resistance between both 
insecticides (Hemingway & Ranson, 2000). Kdr resistance results in 10-20 fold decrease in 
the sensitivity to the insecticide. However, kdr lineages of some species can exhibit up to 
100 X increased pyrethroid resistance, an effect denominated super-kdr. Kdr and super-kdr 
alleles act as recessive traits and hence may persist at low levels in the population in 
heterozygous individuals (T. G. Davies et al., 2007a). 
Over three decades after the description of the kdr effect, electrophysiological studies based 
on neuronal cells and tissues suggested that NaV had to be the target site for pyrethroids. 
These reports also indicated that cross-resistance between pyrethroids and DDT must be 
related to that channel (Pauron et al., 1989). Concomitantly, the gene paralytic (para) from 
Drosophila melanogaster was cloned and sequenced. This gene is placed in the locus related to 
behavioral changes and paralysis after exposure to high temperatures, similar to the 
knockdown effect produced by DDT and pyrethroids (Loughney et al., 1989). Comparisons 
within vertebrate nucleotide sequences revealed that para is homologous to the voltage 
gated sodium channel gene (NaV) (Loughney & Ganetzky, 1989). It was then shown, with a 
DDT resistant housefly lineage, that the locus homologous to para was in strong linkage with 
the kdr phenotype (Williamson et al., 1993). This evidence was soon extended to other insect 
species plagues or vectors, such as the tobacco budworm Heliothis virescens (Taylor et al., 
1993), the cockroach Blatella germanica (Dong & Scott, 1994) and the mosquito Aedes aegypti 
(Severson et al., 1997). 
Hitherto, NaV is the only molecule incriminated as the target site for DDT and pyrethroids. 
Although it has been implied that type II pyrethroids can interact with the GABA receptor 
(which is the target, for instance, of the insecticide dieldrin), this interaction has not been 
considered toxically important (Soderlund & Bloomquist, 1989). Research on the molecular 
interaction between pyrethroids and their target site presently guides a series of approaches 
towards the development of a great variety of natural and synthetic neurotoxicants acting 
on the NaV (Soderlund, 2010). 

5. Molecular biology of the insect NaV and the kdr mutation 

A great variety of sodium channels have been identified by electrophysiological assays, 
purification and cloning (Goldin, 2001). In mammals, nine NaV genes are known, with 
distinct electrophysiological properties as well as different expression profiles in the tissues 
and throughout development (Goldin, 2002; Yu & Catterall, 2003), phylogenetic analyses 
revealing that all are members of only one unique family, deriving from relatively recent 
gene duplications and chromosome rearrangements. On the other hand, CaV and KaV have 
little protein sequence identity and present diverse functions, indicative of more ancient 
segregation of their coding genes (Catterall et al., 2003). 
The NaV orthologous genes and cDNAs from D. melanogaster and An. gambiae share, 
respectively, 56-62% and 82% of nucleotide identity, evidencing a high degree of 
conservation between these species. The NaV C-terminal is the most variable region, but as 
in all dipterans, it is mainly composed of aminoacids of short (Gly, Ala, Ser, Pro) or negative 
(Asp, Glu) side chains, suggesting a conserved function in this domain (T. G. Davies et al., 
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2007a). Concerning size, the voltage gated sodium channel of Ae. aegypti (AaNaV), for 
instance, presents 293 Kb of genomic DNA, with 33 exons. Its longer observed transcript has 
an ORF of 6.4 Kb, coding for 2,147 aminoacids for a protein estimated in 241 KDa (Chang et 
al., 2009). 
The existence of two NaV evolutionary lines in invertebrates, represented by the genes para 
and DSC1 in D. melanogaster, has been suggested (Spafford et al., 1999). These lines do not 
correspond to the different genes observed among vertebrates, and they are supposed to 
have arisen after vertebrate and invertebrate splitting (Goldin, 2002). DSC1 plays a role in 
the olfactory system (Kulkarni et al., 2002) as it has been found in the peripheral nervous 
system and also at high density in the synaptic regions. DSC1 is sensitive to tetradotoxin, a 
specific NaV blocker (Zhang et al., 2011), while BSC1, its homologous in B. germanica, has 
also been identified as a putative sodium channel, being expressed in the cockroach nerve 
cord, muscle, gut, fat body and ovary (Liu et al., 2001). Neither DSC1 nor BSC1, however, 
mapped with any locus related to insecticide resistance (Loughney et al., 1989; Salkoff et al., 
1987). Actually, these channels probably represent prototypes of a new CaV family, highly 
related to the known NaV and CaV (Zhang et al., 2011; Zhou et al., 2004). On the other hand, 
in invertebrates, the D. melanogaster para gene (or DmNaV) and its equivalent in other species 
actually code for sodium channels and are related to pyrethroid/DDT resistance and to 
behavioral changes, as aforementioned. 
In his review, Goldin (2002) suggested that two to four genes coding for sodium channels 
should exist in insects and that differences among them would not result from distinct genes 
but from pos-transcriptional regulation. Accordingly, even after publication of many insect 
genome sequences, there has been no mention whatsoever of NaV gene duplication. 
Furthermore, recent reports attribute the diversity in NaV sequences to alternative splicing 
and RNA editing. These modifications seem to be tissue and stage specific and might also 
have some influence on pyrethroid resistance (Liu et al., 2004; Song et al., 2004; Sonoda et al., 
2008). 

5.1 Alternative mRNA splicing in the NaV 
Briefly, alternative splicing is a post-transcriptional regulated event characterized when 
certain exons are removed together with introns. This is a common mechanism of gene 
expression regulation and increment of protein diversity in eukaryotes. The process may 
occur in different ways: complete exons can be included or excluded (optional exons), 
splicing sites can be altered and introns can be retained in the mature mRNA. There are also 
mutually exclusive pairs of exons, when two exons never unite in the same transcript. 
Alternative mRNA splicing introduces variability in both sequence and size of the NaV 
intracellular region, which by itself should have an impact on its operation (T. G. Davies et 
al., 2007a). 
The regulation for excision of an exon, in detriment of others, may be tissue and 
development specific. In the context of pyrethroid resistance, it is important to know to 
what extent alternative splicing events compromise the interaction between the insecticide 
and the channel. It is also necessary to investigate the amount of alternative transcripts in 
the course of development and their distribution in the different tissues of the insect. The 
sodium channel genes have alternative exons that potentially synthesize a great number of 
different mRNAs (Figure 3). There are also mutually exclusive exons that occur in the 
transmembrane regions of domains II and III (T. G. Davies et al., 2007a). In D. melanogaster, 
many alternative splicing sites have been identified, with seven optional regions and two 
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pairs of mutually exclusive exons (Figure 3) (Olson et al., 2008). These sites are conserved in 
M. domestica (Lee et al., 2002) generating, in both species, 512 potential NaV transcripts by 
alternative splicing. However, they are not all necessarily expressed as less than 10 were 
actually observed in mRNA pools (Soderlund, 2010). 
 

 

Fig. 3. Alternative splice in the insect voltage gated sodium channel gene. Scheme of NaV 
with the sites of alternative exons of DmNaV indicated in dark color. Exons a, b, i, j, e and f 
are optional, while d/c and l/k are mutually exclusive. Figure adapted from Oslon et al. 
(2008). 

The aminoacid sequences translated from optional exons are conserved and generally 

consist of intracellular domains of the channel, suggesting functional relevance to these 

events. NaV transcript diversity derived from alternative splicing has been investigated in 

insects of many orders, revealing a high level of conservation, as shown in the cockroach B. 

germanica (Liu et al., 2001; Song et al., 2004), the silk worm Bombyx mori (Shao et al., 2009), 

the moth Plutella xylostella (Sonoda et al., 2008) and the mosquitoes An. gambiae (T. G. Davies 

et al., 2007a) and Ae. aegypti (Chang et al., 2009). However, in some species not all exons 

were observed nor their expression detected (see Davies et al., 2007a). 

There are two mutually exclusive exons (called c/d) that code for a region between IIS4 and 

IIS5 segments (Figure 3). The absence of one of these exons might be important for 

pyrethroid resistance, since the super-kdr mutation (Met918Thr) is located in this region, as 

will be discussed further. In the cockroach B. germanica, the mutually exclusive exon pair k/l 

codes for the voltage sensitive region at domain III. The two varieties BgNaV1.1a and 

BgNaV1.1b1, which contain the exons l and k respectively, exhibit distinct 

electrophysiological properties. Furthermore, BgNaV1.1b is 100X more resistant to the 

pyrethroid deltamethrin than BgNaV1.1a (Du et al., 2006). 

5.2 Sodium channel RNA editing 
RNA editing has an important role in the regulation of gene expression and protein 
diversity. Recent studies implicate RNA editing in the removal of exons in alternative 
splicing sites, in the antagonism of interference RNA process (iRNA), in the modulation of 
mRNA processing and in the generation of new exons (for a review see Y. Yang et al., 2008). 
The basic mechanism of diversity generated by RNA editing includes nucleoside 
modifications such as C to U or A to I deaminations. Besides, it is possible that non-

                                                 
1 The genes annotation is in accordance with the nomenclature suggested by Goldin (2000). 
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templated nucleotides can be inserted in the edited mRNA. This process alters the protein 
aminoacid constitution so that it differs from the predicted genomic DNA sequence 
(Brennicke et al., 1999). 
Liu et al. (2004) claimed that RNA editing should be the main regulatory mechanism to 
modulate the insect NaV function. For instance, no correlation was found between a variety 
of DmNaV originated by alternative splicing and the observed changes in gating properties. 
Therefore it was implied that RNA editing might play a primary role in determining the 
voltage dependence of activation and deactivation of DmNaV variants (Olson et al., 2008). At 
least 10 A/I RNA editing substitutions were observed in the DmNaV in different points of 
the Drosophila life cycle indicating developmental regulation (Palladino et al., 2000). These 
sites are highly conserved in various organisms. Type U/C editing, which is more usual in 
mitochondria and plastids from higher plants, was also observed in DmNaV and BgNaV, with 
electrophysiological alterations in both cases (Liu et al., 2004). Hence, RNA editing should 
play an important role in the generation of channels with distinct affinities to insecticides. 
Thus, it seems reasonable to infer that insecticide pressure selects for an adaptive 
mechanism which might spatially and temporally modulate NaV mRNA editing. Still, in Cx. 
quinquefasciatus mosquitoes, diversity based on U/A editing in the sodium channel mRNA 
was shown to be related to pyrethroid resistance (Xu et al., 2006). In Ae. aegypti, however, 
recent analysis of AaNaV transcripts from a pyrethroid resistant lineage did not identify any 
sign of RNA editing (Chang et al., 2009). 

5.3 The kdr mutation 
The very first mutation identified as responsible for the kdr trait was a leucine to 
phenylalanine substitution (Leu1014Phe)2 in the NaV IIS6 segment of M. domestica (Ingles et 
al., 1996). Since then, the genomic sequence spanning the region coding for the IIS6 segment 
has been explored in a vast number of insects, in most of which, the same substitution being 
found at homologous sites (1014). Besides Phe, Ser is also encountered replacing Leu at the 
1014 site in An. gambiae. They were initially observed respectively in western and eastern 
African regions, being commonly referred to as w-kdr and e-kdr mutations (Pinto et al., 2006). 
However, nowadays it is known that none of these alleles is restricted to either part of the 
continent (Ranson et al., 2011). A different substitution in the same 1014 site, Leu1014His, 
was also associated to pyrethroid resistance in the tobacco budworm Heliothis virescens (Park 
et al., 1999). Many studies identified at least 20 additional substitutions in the NaV sequence, 
the majority being placed between segments S4 and S5, or internally to segments S5 or S6 of 
domain II. However, for most of them, the relationship with pyrethroid resistance is only 
speculative. Good compilations have recently been presented (T. G. Davies et al., 2007a; 
Dong, 2007; Du et al., 2009). 
It is noteworthy that many of these mutations are not in the precise domain of interaction 
between insecticide and NaV (O'Reilly et al., 2006). On the other hand, it is likely that 
substitutions in these points of interaction could result in the super-kdr trait, which has a 
more pronounced resistance effect (T. G. Davies et al., 2007b). This phenotype was also first 
described in M. domestica (Williamson et al., 1996) and Haematobia irritans (Guerrero et al., 
1997). In both species, beyond the Leu1014Phe substitution, a Met918Thr mutation (in the 
IIS4-S5 linker) was disclosed in flies with very high resistant ratios to pyrethroids, referred 

                                                 
2 Number refers conventionally to the position in the voltage gated sodium channel primary sequence 
of M. domestica Vssc1, according to Soderlund & Knipple 2003. 
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to as the super-kdr mutation (Jamroz et al., 1998). However, since it occurs only in association 
with the Leu1014Phe mutation, its isolated effects are as yet unknown. Although no super-
kdr mutation has so far been identified in mosquitoes, it was suggested that Leu932Phe, in 
association with Ile936Val (both also in the IIS4-S5 linker), in Culex might play this role, 
being the first example of super-kdr in this group (T. G. Davies et al., 2007a). Accordingly, 
these sites have proved to be important for the interaction between NaV, in the D. 
melanogaster sodium channel and pyrethroids or DDT (Usherwood et al., 2007). 
Substitutions in site 929 are also involved in enhanced pyrethroid resistance, as is the case 
with the Lepidoptera Plutella xylostella mutation Thr929Ile, detected in association with 
Leu1014Phe (Schuler et al., 1998). However, in the maize weevil Sitophilus zeamais, the 
Thr929Ile was found alone (Araujo et al., 2011). In the louse Pediculus capitis, in turn, the 
Thr929Ile mutation was together with Leu932Phe (Lee et al., 2000). There were other 
substitutions in the same site: Thr/Cys and/or Thr/Val in the diamondblack moth 
Frankliniella occidentalis (Forcioli et al., 2002) and in the cat flea Ctenocephalides felis (Bass et 
al., 2004). 
Ae. aegypti mosquitoes do not present any substitution in the classic 1014 kdr site, unlike 
many other insects or even mosquitoes from other genera, such as Anopheles and Culex, very 
likely because the 1014 site of Ae. aegypti NaV is coded by a CTA, in place of the TTA codon 
present in the majority of other insects. For this reason, two simultaneous nucleotide 
substitutions would be necessary in order to change from Leu (CTA) to Phe (TTT) or Ser 
(TCA) (Martins et al., 2009a; Saavedra-Rodriguez et al., 2007). Instead, mutations in different 
positions have been observed in Ae. aegypti populations from Latin America and Southeast 
Asia, but at least two sites seem to be indeed related to pyrethroid resistance: 1016 (Val to Ile 
or Gly) and 1534 (Phe to Cys), respectively in the IIS6 and IIIS6 segments (Brengues et al., 
2003; Harris et al., 2010; Martins et al., 2009a, b; Saavedra-Rodriguez et al., 2007). Mutations 
in the vicinity of this site in the IIIS6 segment were also encountered in the southern cattle 
tick Rhipicephalus microplus (He et al., 1999) and in the two-spotted spider mite Tetranychus 
urticae (Tsagkarakou et al., 2009). 
Although different NaV site mutations are known to confer resistance to pyrethroids, their 
number is quite restricted; additionally, far related taxa present alterations in the same 
homologous sites. For instance, the Leu1014Phe kdr mutation must have arisen at least on 
four independent occasions in An. gambiae (Pinto et al., 2007). Alterations that do not 
interfere with the endogenous physiological functions of the Nav must be rare as it is much 
conserved among animals (ffrench-Constant et al., 1998). As a matter of fact, most of the 
species studied so far have the kdr mutation in the 1014 site, few species proving otherwise 
due to codon constraints, like Ae. aegypti and some anopheline species. 

6. Molecular assays for monitoring frequency of kdr mutation in insect 
natural populations 

Currently, there are many PCR based diagnostic methods for kdr mutation available with 
elevated sensitivity and specificity. For technique choice, one must consider mainly the 
laboratory resources, facilities and training of technical personnel, which is as important as 
establishing an defining localities and frequency of sampling. There is neither consensus nor 
strict rules suitable for all insect species or even for different populations of the same 
species. Resistance is a very dynamic process depending upon a series of external factors. 
Therefore, resistance level as well as the selected mechanisms may fluctuate in a short 
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period of time and space (Kelly-Hope et al., 2008). Moreover, one must be aware about the 
patterns of distribution and structure of the evaluated populations in order to determine an 
adequate frequency and sampling size (Ranson et al., 2011). 
Allele-specific PCR assays (AS-PCR), as the name suggests, consists of amplification and 
detection of a specific allele from the DNA of an individual, who is further classified as 
hetero or homozygous for that allele. Many methodologies based on this strategy have been 
well succeeded in high-throughput individual diagnostic of kdr mutations. Herein, we 
highlight some PCR based amplifications by allele-specific primers and TaqMan 
genotyping. 
There is ample variation for PCR methods based on allele specific primers. As a first 
example, one can use two primers (forward and reverse) common for both alleles that 
amplify a region spanning the mutation site. In this case, additional specific primers, 
bearing the SNP (single nucleotide polymorphism) at the 3’-end, have opposite 
orientations in relation to each other (Figure 2-A). The common primers will pair 
themselves giving rise to a bigger product (that can also be assumed as the positive 
control reaction) and shorter ones, the consequence of pairing with each allele-specific 
primer of contrary orientation. The common primers must anneal at sites that result in 
differently sized products when paring with the specific ones. If both alleles are present 
(cases when the individual is heterozygous) three products with distinct sizes will be 
produced (Chen et al., 2010; Harris et al., 2010). 
Instead of amplifying a common region for both alleles, it is possible to directly obtain only 
the specific products (Figure 2-B). This can be accomplished by using only one common 
primer in one orientation and the two allele specific primers in the opposite sense. However, 
since the specific primers are at the same orientation and their specificity continues lying 
upon the 3’-end, something should be incremented in order to obtain distinguishable 
products. Germer & Higuchi, (1999), later improved by Wang et al. (2005), proposed 
attaching a GC-tail of different sizes to the 5’-end of the specific primers in a way that the 
products could be distinguishable by their Tm in a melting curve analysis. In this case the 
mix reaction contains a fluorescent dye, which lights up when bounded to double strand 
DNA, carried out in a fluorescence-detecting thermocycler (“Real time PCR”). Additionally, 
a different mismatch (pirimidine for purine or vice–versa) is added to the third site before 
the 3’-end of each allele specific primer, in order to strengthen their specificity (Okimoto & 
Dodgson, 1996). Alternatively, the products can also be distinguishable in a gel 
electrophoresis. 
The second group of techniques is based on the amplification of a region spanning the kdr 
mutation site followed by the detection of the different alleles by specific hybridization 
with minor groove binding (MGB) DNA fluorescent probes, also known as TaqMan assay 
(Figure 2-C). Different alleles can be detected in the same reaction, since each probe is 
attached to a distinct fluorophore. The probe is constituted of an oligonucleotide specific 
for the SNP with a reporter fluorescent dye in the 5’-end and a non fluorescent quencher 
in the 3’-end (Araujo et al., 2011; Morgan et al., 2009; Yanola et al., 2011). Bass et al., (2007) 
concluded that TaqMan probes were the most accurate for kdr genotyping among six 
different evaluated methods. 
Other techniques have also been applied. The Hola (Heated Oligonucleotide Ligation Assay, 

see details in Black et al., 2006) revealed high specificity in detecting different NaV alleles in 

the 1011 (Ile, Met and Val) and 1016 (Val, Ile and Gly) sites from Thai Ae. aegypti populations 

(Rajatileka et al., 2008) and in the 1014 site of Cx. quinquefasciatus from Sri Lanka (Wondji et 
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Fig. 4. Examples for kdr genotyping based on PCR methods. A – Allelic specific PCR with 
specific primers in different orientations; B – Allelic specific PCR with specific primers in the 
same orientation but with additional and differently sized [GC]n tails, in addition to a 
mismatch in the 3rd base before the 3’-end; C – TaqMan assay based on specific probes with 
a different luminescence for each allele. Figure adapted from Yanola et al. (2011). 
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al., 2008). However, comparison between HOLA and pyrosequencing revealed more 
specificity for this latter method in the diagnostic of the kdr mutation Leu1014Phe in Cx. 
quinquefasciatus (Wondji et al., 2008). Sequencing of regions that encompass the SNP allows a 
direct visualization of the nucleotide allele sequences, eliminating the problem of unspecific 
amplification or hybridization of PCR based protocols. Moreover, it enables visualizing 
potential novel variations that would never be identified by PCR diagnostic SNP techniques. 
However, sequencing in large scale is much more expensive than the aforementioned 
genotyping tools. It is also mandatory that the eletropherograms generated have a clean 
profile, so that the heterozygous individuals can be undoubtedly discriminated. 

7. Conclusions 

New strategies for arthropod control based on the release of laboratory manipulated insects 
that would suppress or substitute natural populations are being tested in the field with great 
prospect. The release of transgenic insects carrying a dominant lethal gene (RIDL) (Black et 
al., 2011) or of mosquitoes with the intracellular Wolbachia, that lead to refractoriness to 
other parasites (Werren et al., 2008) are currently the most discussed strategies. However, 
the laboratory handling process has to consider specific and sometimes complex aspects for 
each insect species, and it may take many years until field control based on this kind of 
approach can be effectively accomplished. Moreover, field studies that guarantee the 
environmental safety of releasing manipulated insects may take even longer. Hence, even if 
these strategies prove to be efficient to reduce, extinguish, or substitute a target insect 
population, the use of insecticides may still indeed play an essential role for many years to 
come, especially during periods of high insect or disease incidence. 
Pyrethroids are largely the most adopted insecticide class in agriculture and for public 
health purposes. Their use tends to increase, since pyrethroids are the only safe compound 
to impregnate insecticide treated nets (ITNs), a strategy under expansion against 
mosquitoes. Advances regarding knowledge of its target, the voltage gated sodium channel, 
can contribute to the design of new compounds as well as the rapid identification of 
resistance related mutations. The continuous monitoring of insecticide resistance status, and 
its mechanisms, in natural populations has proven to be an important tool in the 
preservation of these compounds. 
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