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Electromagnetic View of the Seismogenic 
 Zones Beneath Island Arcs 

Hiroaki Toh and Takuto Minami 
Division of Earth and Planetary Sciences, 

Graduate School of Science, Kyoto University 
Japan 

1. Introduction 

The ring of fire is well-known by its intense seismic as well as volcanic activities. Most of 

those activities in the world are concentrated in this narrow circle around the Pacific rim. 

The Japanese Islands are one of the greatest island arcs in the circum-Pacific area and thus 

are located along the so-called seismogenic zone which is globally very unique in the sense 

that it consists of not only a very cold (i.e., old) but also a warm (young) subduction zone 

(Fig. 1). Namely, the very thick Pacific plate is subducting beneath northeast Japan while the 

relatively thin and young Philippine Sea plate is sliding under southwest Japan. The oldest 

parts of each subducting plate are approximately ~140 (Hirano et al., 2006) and ~30 Ma 

(Wang et al., 1995) respectively for the Pacific plate and the Philippine Sea plate at each 

trench’s outer rise, although the latter age is more variable along the Nankai trough to the 

Ryukyu trench than the former along the Japan trench. The two subducting plates with 

different thermal states affect differently the seismic as well as the volcanic activity on the 

Japanese Islands, which makes the island arc an ideal place to conduct a comparative study 

on seismogenic zones with a contrasting tectonic setting. We, therefore, will pursue this 

theme as the main topic of this chapter. 

From a geophysical point of view, there are a lot of physical properties that can give 

constraints on the current dynamics taking place beneath island arcs. Electrical conductivity 

is a physical property that can be determined independently of elastic properties such as 

seismic P- and S-wave velocities. Furthermore, it is known to be a strong function of 

subsurface temperature and very sensitive to presence of melts and/or fluids such as water. 

The electrical conductivity of the Earth’s mantle as well as the seismic velocities changes 

discontinuously when phase changes dominate in the ongoing physical process at critical 

depths such as 410km and 660km. These features are very useful in interpreting the 

characteristics of the geophysical structure beneath an island arc because a joint 

interpretation of the electrical and elastic structures can provide further constraints on the 

island arc’s thermal and physical states. For instance, fraction of fluids and/or melts can be 

estimated more precisely if the electrical properties are determined with known seismic 

geometries/boundaries as a priori information. 

In addition, subduction-driven injection of surface water into the Earth’s crust and 
mantle, and its circulation in the Earth have been a recent matter of hot debate in various 
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disciplines in the geoscience community since Karato (1990) first pointed out a possible 
strong effect of water on the upper mantle properties (especially on electrical 
conductivity). A series of laboratory measurements has been conducted so far. However, 
those experimental results seem to differ severely in a quantitative sense. For example, 
Huang et al. (2005) reported a huge effect of water on electrical conductivity of both 
wadsleyite and ringwoodite, the two major minerals in the mantle transition zone. On the 
contrary, Yoshino et al. (2008) claimed that there is no need to include hydrous minerals 
in the mantle transition zone in order to explain the electrical conductivity profile 
determined by electromagnetic (EM) field works. The same contradiction is applicable for 
the asthenosphere, viz., there exist contrasting experimental results of strong (Wang et al., 
2006) and weak (Yoshino et al., 2006) dependence of olivine conductivity on water 
content. Abundance of water in the mantle transition zone is important in the sense that it 
can form a filter just above the 410km discontinuity (Sakamaki et al., 2006) to segregate 
geochemical components in the lower mantle from those in the upper mantle (Bercovici & 
Karato, 2003). Coexistence of the geochemically enriched lower mantle and the very 
depleted upper mantle has been a long-lasting enigma in the geosciences community, and 
thus we need to identify a reasonable differentiation mechanism. Because there is no 
doubt that the mantle transition zone has high potential as a water reservoir (Inoue et al., 
1995), this issue definitely requires further research. On the other hand, water in the crust 
is important in the sense that it can be the sources for shallow earthquakes, deep low-
frequency tremors and volcanic activities in the seismogenic zones of the island arcs (e.g., 
Obara & Hirose, 2006). It seems to have become a consensus that the subduction-driven 
water injection is strongly dependent on thermal states of each subducting plate beneath 
the island arcs. Namely, cold and warm subduction zones behave quite differently in 
terms of the amount and depth of water release from the slabs. This means that a report 
on electrical images beneath different parts of the Japanese Islands is nothing but the 
aforementioned comparative study itself. 
Northeast Japan can be classified into the cold subduction regime and thus thought to 

have high potential, in turn, for water supply to the deep mantle (Iwamori, 2004). 

Injection of water into the deep mantle seems to produce electrical conductivity anomalies 

of regional to semi-global scale beneath back-arc regions. Furthermore, those electrical 

anomalies are present irrespective to whether the subducting slab is stagnant at the 660 

km seismic discontinuity (Ichiki et al., 2006) or plunging into the lower mantle (Booker et 

al., 2004)., although their surface manifestations look, naturally, quite different 

(Worzewski et al., 2010). Arc volcanism in northeast Japan is known to be three-

dimensional (3-D) as typically depicted by Tamura et al’s (2002) hot-finger model. A two-

dimensional (2-D) east-west slice of a 3-D P-wave seismic tomography (Mishra et al., 

2003) at 39.5N showed a nearly uniform distribution of moderately fast velocity above the 

subducting Pacific plate within the slice. It can be attributed to the fact that the slice 

covers a non-volcanic part, viz., a region between the hot fingers, of the well-developed 

island arc. An electrical section (Toh et al., 2006), which covers the non-volcanic part of 

northeast Japan, reveals a resistive shallow mantle and a conductive anomaly beneath the 

back-arc region at depths 150-200 km. The electrical conductivity anomaly can be 

interpreted as a direct manifestation of slab dehydration associated with collapse of the 

high-temperature type serpentine such as antigorite. An EM 2-D section of northeast 

Japan at crustal depths (Ogawa et al., 2001) revealed several high conductive anomalies in 
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the lower crust that are considered to bear geofluid. The source of the lower crustal 

geofluid is attributed to the convection in the wedge mantle beneath northeast Japan, 

which is compatible with the distribution of the Quarternary volcanoes on the volcanic 

front as well. 

Although the arc volcanism relevant to northeast Japan looks 3-D in terms of its structure, 

the magma source can be unique and simple. It stems from the deep mantle behind the 

mature island arc. On the contrary, that of southwest Japan cannot be presumed as simple as 

northeast Japan, if one studies basalt samples of this area (Iwamori, 1991; Kimura et al., 

2003). The alkaline, sub-alkaline and adakite basalt magmas of southwest Japan imply 

multiple sources for its magma production in the mantle including slab-melting of the hot 

and young Philippine Sea plate. The presence of the adakite magma is a signature of fluid 

originating from the slab. Toh and Honma (2008) reported a possible mantle plume in the 

west of the Kyushu Island of southwest Japan, which can be another candidate of the 

multiple magma sources. On the other hand, seismic and EM observations on land have 

revealed coincidence of lower crustal conductors and epicenters of both deep low-frequency 

events and earthquakes in the upper crust, which suggests presence of crustal fluid (e.g., 

Kawanishi et al., 2009). 2-D slices of Nakajima & Hasegawa’s (2007) 3-D seismic tomography 

results beneath southwest Japan imply the presence of a deep mantle plume released not 

from the Philippine Sea plate but from the Pacific plate that is located well below the 

younger plate. However, the link between the two kinds of fluid is still missing and needs 

further research, especially based on marine geophysical data or a combination of land and 

marine data. 

In the following, we will first describe the principle and methods of electrical conductivity 

determination by EM field works. The principle and methods section will be followed by an 

EM case study on northeast Japan to illustrate usefulness of the principle as well as the 

methods. Thirdly, the EM image beneath southwest Japan will be presented and discussed 

in contrast to that of northeast Japan. Finally, results of the whole comparative study will be 

summarized and concluded. 

2. Principles and methods in EM field works 

There exist lots of methods for delineating subsurface electrical conductivity structures by 

field works. They are classified broadly into two categories: one to make use of transient 

response of the conducting Earth in time domain, and the other is to derive the Earth’s 

stationary response as a function of location in frequency domain. The latter category is 

often adopted irrespective to observation locations (viz., on land or at sea) and hence 

readers are advised to refer to standard textbooks for the former category (e.g., Kaufman & 

Keller, 1983). We will describe briefly the principles and typical methods in the frequency 

domain here in this section. 

The principle of the EM methods in frequency domain is to use amplitude ratios and phase 

differences between different time-varying EM components observed on the Earth’s surface 

including the seafloor rather than to model observed time-series themselves. Amplitudes of 

the raw time-series are dependent on each event, i.e., they differ from time to time. However, 

their ratios and phase differences are constant for a particular frequency and a fixed site, 

provided that one is really looking at induced parts of temporal variations by external  
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Fig. 1. Tectonic plates around the Japanese Islands. Pa: Pacific Plate, Ph: Philippine Sea Plate, 
Na: North American Plate, Eu: Eurasia Plate, Am: Amurian Plate. 

geomagnetic disturbances. Another fundamental assumption of the frequency-domain EM 
methods is that the external source fields are either stationary plane waves or at least waves 
with known simple geometries such as dipole fields. If this assumption is applicable, the EM 
responses, p and q, of the conducting Earth can be estimated by the following linear 
regression formula in frequency domain: 

 ( ) ( ) ( ) ( ) ( )W f p f U f q f V f     (1) 

where U, V and W are the observed EM components and f is the frequency in concern. U, V 
and W are given by Fourier transforms of the observed time-series for respective EM 
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components. If the source field is stationary enough, stable estimates of the Earth’s EM 
responses (p and q) can then be yielded by standard stacking methods that divide the whole 
time-series into a number of segments of a suitable length. 
There are several variants of the frequency-domain EM method represented by Eq. (1) 
because many combinations of EM components in the regression equation are possible. Of 
those, the geomagnetic depth sounding (GDS) method, the magnetotelluric (MT) method 
and the horizontal geomagnetic transfer function (HGTF) method are often favoured in 
actual field works since each method has its own distinct physical meaning and advantages. 
We will give succinct summaries of those methods in the following three subsections. 

2.1 Geomagnetic depth sounding method 
This method is a case of U=Bx, V=By and W=Bz, where Bx, By and Bz denote the northward, 
eastward and downward geomagnetic components, respectively. The GDS method is 
usually applied when lateral contrast of the subsurface electrical structure is expected to be 
strong. This is because the anomalous Bz is most likely to be induced by the external 
inducing field of plain wave form than any other EM components. Vertically propagationg 
plane waves have Bx and By components alone. As for its detailed physical meaning and the 
graphical representation of the method, refer to Section 2 of Toh & Honma (2008). 
In cases where the inducing source field can be approximated by a global-scale axial dipole, 
it is known that the Earth’s scalar impedance Z is given by the following formula (e.g., 
Schultz & Larsen, 1987); 

 
( )

( ) tan( ) ,
( )

r
E

B f
Z f ifR

B f
    (2) 

where RE, , Br and B are the mean radius of the Earth, co-latitude, radial and southward 
geomagnetic components, respectively. The ratio of the two geomagnetic components is 
equivalent to the Earth’s EM response function p(f) if W=- Bz, U=- Bx and V=0. Eq. (2) is often 
invoked to estimate the Earth’s one-dimensional (1-D) impedance at long periods (typically 
T > 4 days) for EM forcing by the magnetospheric ring currents. The global-scale ring 
currents can produce temporal variations of axially symmetric magnetic dipole fields that 
are the premises of the valid application of Eq. (2). In order to determine tensor impedances, 
however, it is required to measure not only the vector geomagnetic field but also the vector 
(or rather ‘horizontal’) geoelectric field, which will be described in the next subsection. 

2.2 Magnetotelluric method 
The MT method needs two linear regression equations in which two sets of (U, V, W) are 
substituted: (Bx, By, Ex) and (Bx, By, Ey). Ex and Ey are the horizontal geoelectric components. 
The resultant EM response functions are neither scalar nor vector but tensor, which are 
elements of the so-called ‘MT impedance tensor’. Namely, the MT impedance tensor is 
defined by the following matrix formula: 

 
    

             
.

xx xyx x

y yyx yy

Z ZE B

E BZ Z
 (3) 

Zij (i, j = x, y) denotes each tensor element. The frequency f is intentionally dropped off from 
each variable in Eq. (3) for simplicity. 
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The MT impedance tensor is originated from the MT scalar impedance as in Eq. (2), which 
is a complex ratio of mutually orthogonal geomagnetic and geoelectric components. If the 
Earth’s electrical conductivity varies in the vertical direction only, an external 
geomagnetic field variations polarized in a particular horizontal direction induces 
toroidal telluric currents in the Earth perpendicular to the magnetic field. It is the 1-D 
complex ratio of the MT scalar impedance Z(=E/B), which has already appeared in Eq. (2). 
In this case, it follows that Zxx=Zyy=0 and Zxy=-Zyx=Z. If we substitute the magnetic field 
(Hx, Hy)T into Eq. (3) instead of the magnetic induction (Bx, By)T, it is straightforward to 
show that the physical dimension of each impedance tensor element becomes ohm. Thus, 
the primary physical meaning of the MT impedance is the resistance of the Earth. 
However, if we use ‘magnetic induction’ in place of ‘magnetic field’, the MT impedance 
has a physical dimension of ‘velocity’. 
When the subsurface electrical structure elongates in a specific direction and x-axis is 

aligned to the structural strike, the diagonal elements of the MT impedance tensor vanish 

again while the absolute values of off-diagonal elements are not necessarily equal to each 

other. It is well-known that the Maxwell equations decouple into two independent modes in 

2-D cases: one mode involves Ex, By, Bz and Zxy alone and the other Ey, Ez, Bx and Zyx. The 

former combination is called ‘TE-mode’ or ‘E-polarization’ while the latter is called ‘TM-

mode’ or ‘B-polarization’ borrowing the nomenclatures of the EM wave-guide theory. It is 

evident that the GDS responses appear only in TE-mode for 2-D cases. The MT impedance 

tensors can be defined even for 3-D cases and remain being powerful tools in estimation of 

electrical structures. However, we need to work with full tensors rather than more simpler 

antisymmetric tensors after pertinent coordinate rotations in the horizontal plane. 

2.3 Horizontal geomagnetic transfer function method 
If one substitutes two sets of (U, V, W), (Bx0, By0, Bx) and (Bx0, By0, By), into the linear 

regression formula (Eq. (1)), you will end up with the following matrix equation with a 2 x 2 

matrix: 

 

   
            

0

0
.

xx xyx x

y yx yy y

K KB B

B K K B
 (4) 

The vector (Bx, By)T is horizontal geomagnetic variations at the observation site in concern 
while (Bx0, By0)T is that of a reference site. Both the observation site and the reference site 
can be either on land or at the seafloor. In any land-sea combinations, each element, Kij (i, j 
= x, y), of the horizontal transfer function matrix in Eq. (4) constitues another set of EM 
response functions representative of the electrical properties of the Earth. Among the 
various combinations, an interesting pair is a seafloor observation site and a near-by 
reference site on land. This combination involves vertical shears of each horizontal 
geomagnetic component, which are measures of the net electric currents induced in the 
ocean. The pair, therefore, is called as the vertical gradient sounding (VGS) method, 
which is a good alternative of the seafloor MT method when geoelectric measurements at 
the sealoor are missing. As for details of the VGS method, refer to Ferguson et al. (1990) 
and references therein. 
The goal of the EM methods described above is to derive electrical conductivity structures 

that can explain the spatial distribution as well as the frequency dependence of the Earth’s 
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EM response functions thus derived. We will illustrate how to estimate electrical structures 

that are compatible with EM field works by introducing a few case studies in and around 

the Japanese Islands using the two subsequent sections. 

3. EM view of the seismogenic zone beneath northeast Japan 

Northeast Japan is classified into the cold subduction regime and thus said to be the very 

spot of on-going water supply into the deep mantle (Iwamori, 2004). Injection of water into 

the deep mantle can produce electrical conductivity anomalies beneath back-arc regions. In 

order to image such kind of anomalies, we constructed a seafloor MT array in the Japan Sea 

(Toh et al., 2006). 

The seafloor array consisted of six ocean bottom electromagnetometers (OBEMs) that are 

capable of measuring both vector geomagnetic and horizontal geoelectric fields in addition 

to horizontal tilt variations. The attitude data were used to rotate each measuring frame at 

the seafloor back to a common reference frame in the horizontal plane. Directions of the 

geomagnetic north at each site were estimated using the averages of the horizontal 

geomagnetic components in order to carry out azimuthal corrections. The thus corrected EM 

time-series were further processed by the robust remote reference MT response estimator in 

frequency domain (Chave et al., 1987) to yield MT impedance tensors in Eq. (3). The seafloor 

MT response functions, together with those at four sites on land, were used in the 

subsequent 2-D inversion to explain their spatial distribution as well as the frequency 

dependence. 

To construct a 2-D electrical model of northeast Japan, a Reduced Basis OCCam’s (REBOCC) 

inversion method (Siripunvaraporn & Egbert, 2000) was applied to the land and sea MT 

impedances observed at the latitude of 39.5N. The REBOCC inversion is a variant of Occam 

inversion (Constable et al., 1987), which works with sensitivity matrices in data space 

instead of the conventional model space. This significantly reduces the size of the sensitivity 

matrices required in the course of the inversion procedure. Because the REBOCC inversion 

prefers high correlation of the final model with a priori model, it was possible to build in the 

basic tectonic model of northeast Japan such as the presence of the thick and resistive 

subducting Pacific plate. The known 2-D section for crustal depths (Ogawa et al., 2001) was 

also included in the REBOCC inversion as another a priori information. The inversion 

converged at an rms of 3.55 using both TE and TM mode responses. 

The derived electrical 2-D section (Toh et al., 2006), which is an EW slice of the non-volcanic 

part of northeast Japan, reveals a resistive shallow mantle and a conductive anomaly 

beneath the back-arc region at depths 150-200 km (Fig. 2). The electrical conductivity 

anomaly can be interpreted as a direct manifestation of slab dehydration associated with 

collapse of the high-temperature type serpentine (Iwamori, 1998) rather than that of a 

group of minor hydrous phases such as phlogopite (Tatsumi, 1989). To test the robustness 

of the anomaly, we examined changes in the rms when the anomaly was replaced by a 

normal and uniform mantle conductivity of 3.3x10-2 S/m. It turned out that the rms 

increase is too large to explain the observed MT data by the normal conductivity if we 

mask the anomaly surrounded by the black-dashed lines in Fig. 2. However, the increase 

was marginal if we do the same thing for the anomaly surrounded by the white-dashed 

lines. We, therefore, concluded that the anomaly surrounded by the black-dashed lines is 

required by the MT data. 
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Fig. 2. The 2-D electrical conductivity model of northeast Japan at the latitude of 39.5N. The 
inverted triangles with labels indicate the locations and names of the observation sites. The 
horizontal gray bar represents the island arc of northeast Japan, while dots denote 
hypocenters in this region. The areas surrounded by black- and white-dashed lines are those 
masked in the F-tests (See text for details). Reproduced from Toh et al. (2006). 

The Pacific plate is subducting beneath New Zealand as well. Wannamaker et al. (2009) 
derived a 2-D electrical cross-section beneath the South Island of New Zealand using a 
wide-band MT dataset on a densely distributed profile perpendicular to the island arc 
strike. They found three conductivity anomalies beneath the fore-arc region, the volcanic 
front and the back-arc region. The fore-arc conductor can be regarded as a natural result of 
dehydration from a younger and thus relatively hot subducting plate. The age of the Pacific 
plate there is approximately twice as young as northeast Japan (70-75 Myr). The conductor 
at the volcanic front is no wonder if the MT transect traverses a volcanic part of the island 
arc. However, there is a significant difference in the depth of dehydration beneath the back-
arc region. They concluded the back-arc dehydration to occur at depths ranging from 75 to 
100 km and attributed the process to breakdown of amphibole-zoisite. It is natural that the 
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depth of the back-arc dehydration as well as the collapsing minerals at that depth differs in 
the case of northeast Japan and the South Island of New Zealand, since the different ages 
mean different thermal effects of the subducting plates on the wedge mantle. In the case of 
the South Island of New Zealand, the temperature may be too high for the hydrous minerals 
to penetrate deep into the mantle beneath its back-arc region. 

4. EM view of the seismogenic zone beneath southwest Japan 

Southwest Japan makes a good contrast to northeast Japan in terms of Volcanology, 

Seismology and Geomagnetism in the sense that: 

1. The subducting slab is much younger (and thus warmer) than that of northeast Japan 
(e.g., Iwamori, 1998). 

2. Not only the structure but also the source of volcanism seems 3-D with its peculiar 
distribution of volcanoes and multiple sources for the magma production (e.g., 
Iwamori, 1991; Kimura et al., 2003). 

3. The region shows a more distinct relation of its seismic and volcanic activity to 
‘geofluid’ typically appearing to the very linear distribution of the upper crustal 
hypocenters along the Japan Sea coast (Kawanishi et al., 2009), which coincide well with 
the volcanic front and the lower crustal conductors. It is also noteworthy that deep low 
frequency events, which are also signatures of the presence of ‘geofluid’, occur in this 
region as well (e.g., Obara & Hirose, 2006). 

In the following, we will try to illustrate how the magma source can be multiple in 

southwest Japan and how the subducting young slab influences the seismogenic zone 

beneath southwest Japan by reviewing an EM study in and around the Kyushu Island and 

the ongoing field work in the back-arc region of southwest Japan. 

4.1 Mantle plume in the west of Kyushu Island 
It has been long known that if one calculates GDS responses using short-period vector 

geomagnetic variations observed in southwest Japan, they end up with |p(f)|<<|q(f)| and 

q(f) > 0 where p(f) and q(f) are the transfer functions (i.e., the GDS responses) appeared in Eq. 

(1). This implies that there exists a prominent electrical conductivity anomaly in the west of 

southwest Japan. In order to identify the intensity of the conductivity anomaly and its 

spatial extent, a genetic algorithm inversion (e.g., Sambridge & Drijkoningen, 1992) of the 

observed GDS responses using non-uniform thin sheet approximation (McKirdy et al., 1985) 

was applied. 

The genetic algorithm inversion converged at an rms of 3.20 after 112 iterations. Because we 

worked with 50 models per iteration, the best model in Fig. 3 is the result of more than 5000 

forward calculations using the non-uniform thin-sheet approximation. It is evident that the 

model can give no constraints on the spatial extent both in westward and southward 

directions. This is due to the spatial distribution of the original GDS dataset that were 

mainly collected on land in southwest Japan. Direct EM measurements at the seafloor both 

in the south and west of the model in Fig. 3 will be indispensable for any further 

improvement in spatial resolution of the derived model. 

The surface conductance (a product of the layer thickness and its electrical conductivity) 

anomaly model in Fig. 3 has two intriguing features in terms of arc volcanism if the 

distribution can be interpreted as that of a subsurface mantle plume: 
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1. The plume can be one candidate of the multiple magma sources suggested by Iwamori 
(1991). 

2. There seems to exist a short volcanic chain that branches out from the main volcanic 
front on the Kyushu Island. 

 

 

Fig. 3. Result of the genetic algorism (GA) inversion in search for the optimized conductance 
distribution within the surface thin sheet. Additional conductance [S] required by the GA 
inversion is shown by the white-to-red scale. Bathymetric contours are also shown. 
Triangles denote Quarternary volcanoes in the East Asia (yellow) and on the small volcanic 
branch (magenta) such as the Unzen Volcano and the Cheju Island. The focal mechanism of 
the main shock of the west off Fukuoka Prefecture earthquake (Mw 6.7) is also shown. 
Reproduced from Toh & Honma (2008). 

www.intechopen.com



 
Electromagnetic View of the Seismogenic Zones Beneath Island Arcs 

 

193 

Presence of a regional-scale mantle plume in the middle of the East China Sea has been 
favoured by many researchers (e.g., Ichiki et al., 2006) since Miyashiro (1986) first claimed its 
existence. It is noteworthy that the geological strike of the volcanic branch is nearly parallel 
to the northeastern boundary of the partly discovered anomaly. A vertical slice of a seismic 
tomography result (Zhao et al., 2000) cutting through the northern Kyushu Island from the 
northwest to southeast direction has also imaged a low velocity branch toward the back-arc 
region. Another interesting evidence is the occurrence of the west off Fukuoka Prefecture 
earthquake near the edge of the electrical anomaly. Even though the direct cause of the 
earthquake is probably due to the extensional regional stress field in the back-arc region of 
the Kyushu arc induced by the mantle upwelling (Wei & Seno, 1998), the focal mechanism 
implies a lateral motion between the Eurasian plate and the Amurian plate. 

4.2 2-D electrical section of southwest Japan 
One major characteristic of the seismicity in southwest Japan is that the epicenters tend to 
concentrate within a belt of about 4-9 km wide parallel to the coast line of the Japan Sea 
(Kawanishi et al., 2009). Most of the focal depths there are shallower than approximately 
10km and thus the earthquakes are occurring in the upper crust. In the seismic belt, several 
large earthquakes of M6.2-7.4 also occurred in 1943, 1983 and 2000, respectively. 
Furthermore, quaternary volcanoes, such as the Daisen and Oginosen Volcanoes are located 
in the seismic belt while the basalt that formed the Oki Islands in the back-arc region is 
much older (> 5 Myr) and of different composition (Kimura et al., 2003). 
Wide-band MT observations have been made along a number of north-south profiles on 
land since 1998 so as to reveal high conductivity regions beneath the seismic belt on each 
MT profile. It is noteworthy that the earthquakes seem to occur on the boundary between 
the upper resistive crust and the highly conductive body in the lower crust. The high 
conductivity regions found beneath each wide-band MT profile may form a connected 
conductive zone extending in an almost east-west direction. Coincidence of the hypocenter 
distribution with the upper surface of the conductive zone as well as the presence of deep 
low-frequency events suggests that crustal fluid must involve the focal mechanism in the 
seismogenic zone. 
In order to clarify the relation among the mantle dynamics in the back-arc region, the lower 

crustal conductors found on land and the complicated volcanism, seafloor EM observations 

were conducted off southwest Japan together with MT measurements on land. We laid out 

two seafloor MT arrays, one traversing the non-volcanic region in the eastern part of 

southwest Japan and the other running through a volcanic ridge including the Oki Islands. 

These seafloor arrays are indispensable to image the subducting Philippine Sea plate, a 

possible source of the crustal fluid and seismicity of the region. 

Figure 4 shows the result of 2-D finite element forward modeling of the eastern profile, 

which ended up with an rms of 3.3. Note that the electrical section is a product of not 

inversion but forward modeling, although the finite element code was improved to give 

high precision even at locations very close to the coastline as well as those on the rugged 

bathymetry/topography. It was not until a superior differential scheme (Li et al., 2008) and 

triangular elements suitable for describing complicated bathymetry/topography had been 

adopted that the good precision in forward calculation was achieved. 

The 2-D model shows that the lower crustal conductor has seaward extension at least more 

than 30 km further north of the coastline. Because we were unable to identify the tip of the 
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subducted Philippine Sea plate beneath the volcanic front of the profile, it is unlikely that 

the lower crustal conductor beneath the volcanic front stems from the slab melting at least 

for this particular portion of the island arc. Another major feature of the model is that it has 

a deep (> 100 km) conductor in the back-arc region. This conductor may be attributed to the 

magma source for the volcanism that made the Oki Islands. However, it is difficult to relate 

the conductor to the slab melting or the dehydration from the Philippine Sea plate, since the 

plate initiated its subduction too recently to allow itself enough penetration toward the 

back-arc region. It is more appropriate to regard it as a result of mantle upwelling from the 

deeper slab, i.e., the Pacific plate, whose subduction beneath the back-arc region of 

southwest Japan has been clearly imaged by recent seismic tomography studies (e.g., 

Nakajima & Hasegawa, 2007). 

 

 

Fig. 4. The 2-D electrical section around the land-sea boundary of southwest Japan. The red 
vertical arrow indicates the location of the coastline of the Japan Sea. The red and black 
inverse triangles are the seafloor and land EM observation site, respectively. Small black 
dots show the distribution of hypocenters. Estimated location of the edge of the subducted 
Philippine Sea plate is also shown by thick dashed lines. 

5. Conclusion 

The very cold and thick subducting plate beneath northeast Japan can supply water deep into 

the back-arc region (Iwamori, 1998), which forms 3-D counter flows to generate arc volcanism 

of that part of the Japanese Islands (Tamura et al., 2002). Because of this scenario, the magmatic 

source of northeast Japan can be simple enough to be approximated by ‘uni-source’ 

magmatism even though the magmatic structure itself can remain 3-D. The seismogenic zone 
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beneath northeast Japan is governed by its regional stress field rather than by the presence of 

‘geofluid’. Major earthquakes of this region are mostly related to the processes involved with 

the plate boundary. However, the geofluid in northwest Japan is important for generation of 

hazardous inland earthquakes as well as water circulation in the wedge mantle. 

The scenario by the warm and thin subducting plate beneath southwest Japan is more 
complicated than that of northeast Japan. In terms of Volcanology, the structure as well as 
the magma source is 3-D in the sense that there are several firm evidences for the presence 
of multiple magma sources (Iwamori, 1991; Toh and Honma, 2008) and 3-D seismic 
structures (Nakajima & Hasegawa, 2007). Because the subducting plate is too warm to carry 
the surface water deep into the mantle, there occurs major dehydration from the slab 
beneath the fore-arc region that causes much more geofluid-related seismic activities in 
southwest Japan (e.g., Obara & Hirose, 2006) than in northeast Japan. The young slab 
commenced its subduction several million years ago to have the penetration of its edge as 
close as just beneath the Japan Sea coast. The shallow penetration resulted in production of 
adakite magmas, which is a signature of slab melting and gives the volcanism in southwest 
Japan further complexity. However, it also turned out that the mantle upwelling in the back-
arc region of southwest Japan is governed by not the warm slab but the cold slab further 
below the warm slab. 
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