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1. Introduction

It is commonplace in Quantum Field Theory (QFT) that a QFT with higher (time) derivatives
is believed to be doomed from the point of view of physics, because of ghosts or states of
negative norm, and thus it should be dismissed. The standard reference is the very old result
(known in the literature as the Ostrogradski theorem (1)) claiming a linear instability in any
Hamiltonian system associated with the Lagrangian having the higher (ie. more than one)
time derivative that cannot be eliminated by partial integration.

The key point of the Ostrogradski method (1) is a canonical quantization of the clasically
equivalent theory without higher derivatives via considering the higher derivatives of the
initial coordinates as the independent variables.

The interest in the higher-derivative QFT was recently revived due to some novel
developments in the gravitational theory, related to the so-called f (R)-gravity theories – see
eg., ref. (2) for a review. The f (R) gravity theories are defined by replacing the scalar curvature
R in the Einstein action by a function f (R). The f (R) gravity theories give the self-consistent
non-trivial alternative to the standard Λ-CDM Model of Cosmology, by providing the
geometrical phenomenological description of inflation in the early universe and Dark Energy
in the present universe. Despite of the apparent presence of the higher derivatives, a classical
f (R) gravity theory can be free of ghosts and tachyons. A supersymmetric extension of f (R)
gravity was recently constructed in superspace (3).

Already the simplest model of (R + R2) gravity (4) is known as the viable model of chaotic
inflation, because it is consistent with the recent WMAP measurements of the Cosmic
Macrowave Background (CMB) radiation (5). Its supersymmetric extension was recently
constructed in refs. (6; 7).

On the one side, any quadratically generated (with respect to the curvature) quantum theory
of gravity has ghosts in its perturbative quantum propagator (8). However, on the other side,
any f (R) gravity theory is known to be classically equivalent to the scalar-tensor gravity (ie.
to the usual quintessence) (9–11), while the stability conditions in the f (R) gravity ensure the
ghost-and-tachyon-freedom of the classically equivalent quintessence theory (12; 13). It now
appears that in some cases the presence of the higher derivatives may be harmless (14). It also
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gives rise to the non-trivial natural question of how to make sense out of the quantized f (R)
gravity?

The f (R) gravity theories are just the particular case of the higher-derivative quantum gravity
theories which have been investigated in the past. They were found to be renormalizable
(15) and asymptotically free (16). A generic higher-derivative gravity suffers, however,
from the presence of ghosts and states of negative norm which apparently spoil those QFT
from physical applications. However, the issue of ghosts and their physical interpretation
deserves a more detailed study. The complexity of the higher-derivative gravity is the
formidable technical obstacle for that. It is, therefore, of interest to consider simpler QFT
as the toy-models.

Similar features (like renormalizability and asymptotic freedom) exhibit the quantum
Non-Linear Sigma-Models with higher derivatives, which have striking similarities to the
higher-derivative quantum gravity (17–19). However, even those QFT are too complicated
because of their high degree of non-linearity.

Perhaps, the simplest toy-model is given by the Pais-Uhlenbeck (PU) quantum oscillator in
Quantum Mechanics (20). As was demonstrated by Hawking and Hertog (21), it may be
possible to give physical meaning to the Euclidean path integral of the PU oscillator, as the set
of consistent rules for calculation of observables, even when “living with ghosts”. The basic
idea of ref. (21) is to abandom unitarity, while never producing and observing negative norm
states.

The idea of Hawking and Hertog found further support in refs. (22; 23) where the physical
propagator of the PU oscillator was calculated by using the van Vleck-Pauli approach (the
saddle point method for the Euclidean path integral) and Forman’s theorem (24). In this
Chapter we systematically review the classical and quantum theory of the PU oscillator from
the first principles, along the lines of refs. (14; 21–23).

2. Ostrogradski method with higher derivatives

Consider a one-dimensional mechanical system with the action

S[q] =
∫

dt L
(

q, Dq, · · · , Dnq
)

(2.1)

in terms of the Lagrange function L of q(t) and its time derivatives, where n ≥ 2 and D = d
dt .

The Euler-Lagrange equation reads

n

∑
i=0

(−D)i ∂L

∂(Diq)
= 0 (2.2)

The Ostrogradski method (1) gives the Hamiltonian formulation of the higher derivative
Lagrange formulation by introducing more independent variables.

The independent generalized coordinates Qi are defined by

Qi = Di−1q
(

i = 1, · · · , n
)

(2.3)
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The generalized momentum Pn is defined by

∂L

∂(Dnq)

∣

∣

∣

∣ Di−1q=Qi
Dnq=A

= Pn (2.4)

There are n+ 1 independent variables {Q1, · · · , Qn, Pn} that are in correspondence to the n+ 1
variables {D0q, · · · , Dnq} of the higher derivative action (2.1).

By solving eq.(2.4) with respect to A = Dnq (assuming that it is possible), one gets

Dnq = A(Q1, · · · , Qn, Pn) (2.5)

Therefore, the Lagrange dynamics can be represented in terms of the n + 1 independent
variables {Q1, · · · , Qn, Pn} as

L = L
(

Q1, · · · , Qn, A(Q1, · · · , Qn, Pn)
)

(2.6)

A Legendre transformation is used to pass from the Lagrange formulation to the Hamiltonian
one. With the generalized coordinates {Q1, · · · , Qn} and the generalized momentum Pn as
the independent variables, the total differential of the Lagrangian is given by

dL =
n

∑
j=1

∂L

∂(Dj−1q)

∣

∣

∣

∣

Di−1q=Qi
Dnq=A

dQj + PndA

=
∂L

∂q
dQ1 +

n

∑
j=2

∂L

∂(Dj−1q)
dQj + PndA

= D
n

∑
j=1

(−D)j−1 ∂L

∂(Djq)
dQ1 +

n−1

∑
j=1

∂L

∂(Djq)
dQj+1 + PndA

(2.7)

where we have used eqs. (2.2) and (2.4), and

dA =
n

∑
j=1

∂A

∂Qj
dQj +

∂A

∂Pn
dPn (2.8)

Let us now define the n − 1 generalized momenta as

Pi =
n

∑
j=i

(−D)j−i ∂L

∂(Djq)

(

i = 1, · · · , n − 1
)

(2.9)

They satisfy the relations
∂L

∂(Diq)
= Pi + DPi+1 (2.10)

Therefore, eq. (2.7) can be rewritten to the form

d

[n−1

∑
i=1

Pi(DQi) + Pn A − L

]

= −
n

∑
i=1

(DPi)dQi +
n

∑
i=1

(DQi)dPi (2.11)
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Equation (2.11) gives rise to the Hamiltonian in the form

H =
n−1

∑
j=1

Pj(DQj) + Pn A − L (2.12)

The Hamilton equations of motion are given by

DQi =
∂H

∂Pi
and DPi = − ∂H

∂Qi
(2.13)

3. PU oscillator

The PU oscillator (20) is an extension of the harmonic oscillator with the higher time
derivatives, and is the particular case of the higher-derivative theory introduced in Sec. 2.
The special features of the PU opscilator are
(i) the equation of motion is linear:

F(D)q = 0 (3.1)

where F is a linear differential operator;
(ii) the F is polynomial (with respect to D) with constant coefficients:

F(D) =
n

∑
i=0

aiD
i (3.2)

where a0, · · · , an are the real constants;
(iii) there is the time reversal invariance with respect to t → −t. Hence, the polynomial F has
only even powers of the time derivative D.

The Lagrangian of the one-dimensional PU oscillator reads

L
(

q, Dq, · · · , Dnq
)

= −
n

∑
i=0

ai

2
(Diq)2

(

a0 �= 0, an �= 0
)

(3.3)

where ai (i = 0, · · · , n) are real constants. The Euler-Lagrange equation of motion is given by

0 =
n

∑
i=0

(−D)i

[

−aiD
iq

]

=− a0

[ n

∑
i=0

(−1)i ai

a0
D2i

]

q (3.4)

Accordingly, the differential operator F(D) reads

F(D) =
n

∑
i=0

(−1)i ai

a0
D2i (3.5)

The equation of motion can be rewritten to the form

F(D)q = 0 (3.6)
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The PU Lagrangian takes the form (up to a boundary term)

L̄ = − a0

2
qF(D)q (3.7)

The differential operator F(D) can be brought to the factorized form

F(D) =
n

∏
i=1

(

1 +
D2

ω2
i

)

(3.8)

where the constants ωi (i = 1, · · · , n) are the solutions (roots) of the equation F(iω) = 0. Let
us introduce n new operators

Gi(D) =
n

∏
j=1
j �=i

(

1 +
D2

ω2
j

)

(i = 1, · · · , n) (3.9)

and define the n generalized coordinates as

Qi = Gi(D)q (i = 1, · · · , n) (3.10)

Those generalized coordinates Qj are called harmonic coordinates. By using the harmonic
coordinates, the PU Euler-Lagrange eq. (3.6) can be rewitten to the n equations

[

1 +
D2

ω2
i

]

Qi = 0 (3.11)

It means that the PU oscillator can be interpreted as n harmonic oscillators. Accordingly, the
PU Lagrangian (3.7) can be rewritten to the form

L̄ = − a0

2

n

∑
i=1

ηiQi

(

1 +
D2

ω2
i

)

Qi (3.12)

where the n constants ηi have been introduced as

ηi =

(

ω2
i

dF

d(D2)

∣

∣

∣

∣

D2=−ω2
i

)−1

(3.13)

To prove eq. (3.13), we first notice that it amounts to

n

∑
i=1

ηiGi(D) = 1 (3.14)

By the definiton of G(D) in eq.(3.9) we have

Gi(D2 = −ω2
j ) =

n

∏
k=1
k �=i

(

1 −
ω2

j

ω2
k

)

= δij

n

∏
k=1
k �=j

(

1 −
ω2

j

ω2
k

)

(3.15)
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so that

n

∑
i=1

ηiGi(D) = 1 (3.16)

n

∑
i=1

ηiGi(D2 = −ω2
j ) = ηj

n

∏
k=1
k �=j

(

1 −
ω2

j

ω2
k

)

= 1 (3.17)

indeed. Therefore, the constants ηi are given by

ηi =

[ n

∏
k=1
k �=i

(

1 − ω2
i

ω2
k

)]−1

(3.18)

Next, we prove that

ω2
i

dF

dD2

∣

∣

∣

∣

D2=−ω2
i

=
n

∏
k=1
k �=i

(

1 − ω2
i

ω2
k

)

(3.19)

By the use of eq.(3.8) we find

dF

dD2
=

d

dD2

n

∏
j=1

(

1 +
D2

ω2
j

)

=
n

∑
k=1

1

ω2
k

n

∏
j=1
j �=k

(

1 +
D2

ω2
j

)

=
n

∑
j=1

1

ω2
j

Gj(D) (3.20)

so that

dF

dD2

∣

∣

∣

∣

D2=−ω2
i

=
n

∑
j=1

1

ω2
j

Gj(D2 = −ω2
i )

=
n

∑
j=1

1

ω2
j

δji

n

∏
k=1
k �=i

(

1 − ω2
i

ω2
k

)

=
1

ω2
i

n

∏
k=1
k �=i

(

1 − ω2
i

ω2
k

)

(3.21)

Equation (3.19) is now confirmed and, hence, via eq. (3.18) also eq. (3.13) follows.

In terms of the harmonic coordinates (3.10), the Lagrangian L̄,

L̄ = − a0

2
qF(D)q

= − a0

2

n

∑
i=1

ηiQi

(

1 +
D2

ω2
i

)

Qi (3.22)
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with the constants ηi given by eq. (3.13), can be rewritten to the form

L̃ =
a0

2

n

∑
i=1

ηi

( 1

ω2
i

(DQi)
2 − Q2

i

)

(3.23)

up to a boundary term.

The Lagrangian (3.23) is just a sum of the Lagrangians of n harmonic oscillators. Hence,
similarly to a free system of n particles, we can change the Lagrangian formulation into the
Hamiltonian formulation. We define the generalized momenta Pi by taking the harmonic
coordinates Qi and the velocities DQi as the Lagrange variables,

Pi =
∂L̃

∂(DQi)

=
a0ηi

ω2
i

DQi (i = 1, · · · , n) (3.24)

The system of n free particles does not have higher derivatives, so its Hamiltonian is

H =
n

∑
i=1

Pi(DQi)− L (3.25)

Equations (3.23) and (3.24) imply

H =
n

∑
i=1

(

ω2
i

2a0ηi
P2

i +
a0ηi

2
Q2

i

)

(3.26)

By rescaling the harmonic coordinates and the generalized momenta as

Qi → Q̃i =

√

a0|ηi|
ωi

Qi and Pi → P̃i =
ωi

√

|ηi|
ηi
√

a0
Pi (3.27)

we get the final Hamiltonian

H =
1

2

n

∑
i=1

ηi

|ηi|
(

P̃i
2
+ ω2

i Q̃i
2)

(3.28)

The presence of both positive and negative values of the constants ηi in the Hamiltonian
implies both positive and negative values of energy. The constants ηi are given by eq. (3.18).
If ωi satisfy i < j ⇒ ωi < ωj, the constants ηi are positive for the odd number i, and are
negative for the even number i. Therefore, the Hamiltonian is

H =
1

2

n

∑
i=1

(−1)i−1

(

P̃i
2
+ ω2

i Q̃i
2
)

(3.29)

This Hamiltonian can be interpreted as that of n harmonic oscillators, with the positive and
negative energy levels appearing alternatively. Because of that reason, the PU oscillator has
an instability (for any interaction). It is related to a possible ghost state of negative norm in PU
quantum theory (see Sec. 6). In what follows we consider the simplest case of PU oscillator
with n = 2 only.

55Quantizing with a Higher Time Derivative
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4. PU oscillator for n = 2: explicit results

Let us consider the Lagrangian

L =
1

2

(

dq

dt

)2

− V(q)− α2

2

(

d2q

dt2

)2
(

where α �= 0
)

(4.1)

with a scalar potential V(q). In the case of the PU oscillator, the potential V(q) is a quadratic
function of q. Since the (mass) dimension of time is −1 (in the natural units h̄ = c = 1), the
dimension of the Lagrangian L is 1, the dimension of q is −1/2, and that of the constant α is
−1.

Let the trajectory q be a sum of the classical trajectory qcl and the displacement q̃, ie. q =
qcl + q̃, where the classical trajectory qcl is a solution to the equation of motion (EOM) with the
boundary conditions (21)

A : q(0) = q0, q(T) = qT , q̇(0) = q̇0, q̇(T) = q̇T (4.2)

where the dots above stand for the time derivatives.

With the boundary conditions (4.2), the boundary condition of q̃ is

˜A : q̃(0) = 0, q̃(T) = 0, ˙̃q(0) = 0, ˙̃q(T) = 0 (4.3)

The action of qcl + q̃ is given by

S[qcl + q̃] = S[qcl ] +
∫ T

0
dt

(

1

2
˙̃q2 − V(qcl + q̃) + V(qcl) + q̃V′(qcl)−

α2

2
¨̃q2

)

(4.4)

where we have introduced the notation

V′(qcl) =
dV

dq

∣

∣

∣

∣

q=qcl

(4.5)

In eq.(4.4) the term V(qcl + q̃)− V(qcl)− q̃V′(qcl) represents the gap between the full action
S[q] and the classical action S[qcl ], which generically depends on both the classical trajectory
qcl and the displacement q̃. After expanding the scalar potential V in Taylor series,

V(qcl + q̃) = V(qcl) + q̃V′(qcl) +
1

2!
q̃2V′′(qcl) + · · · (4.6)

we find that, when the second derivative V′′ is constant, the gap V(qcl + q̃)−V(qcl)− q̃V′(qcl)
does not depend on the classical trajectory qcl . It is the case when the potential V is a quadratic
function of q, like the PU oscillator.

In the path integral quantization (sec. 7), the gap between the full action and the classical
action is a quantum effect. When the potential is a quadratic function (like that of the PU
oscillator), that quantum effect does depend on q̃, but does not depend on the classical
trajectory. In what follows, we only consider a quadratic function for the scalar potential
in the form

V(q) =
m2

2
q2 (4.7)

56 Advances in Quantum Field Theory

www.intechopen.com



Quantizing with a Higher Time Derivative 9

ie. the scalar potential of a harmonic oscillator with the mass m > 0, The Lagrangian is given
by

LPU =
1

2
q̇2 − m2

2
q2 − α2

2
q̈2 (4.8)

The parameter α measures a contribution of the second derivative to the harmonic oscillator.
Therefore, we can expect the classical trajectory to behave just like that of the harmonic
oscillator when α is small.

The Euler-Lagrange EOM of the Lagrangian (4.8) are given by eq.(2.2),

0 =
2

∑
i=0

(−D)i ∂L

∂(Diq)

= −m2q − q̈ − α2....
q (4.9)

or, equivalently,
(

m2 + D2 + α2D4

)

q = 0 (4.10)

It is not difficult to find clasical solutions to the EOM in eq. (4.10). When searching for the
classical trajectory in the oscillatory form qcl = exp(iλt), the EOM reads

(

m2 − λ2 + α2λ4

)

eiλt = 0 (4.11)

and, therefore, we have

λ2 =
1 ±

√
1 − 4α2m2

2α2
(4.12)

When λ is real, the Lagrangian L(PU) is an extension of the harmonic oscillator indeed.
Hence, we need the condition

0 < αm <
1

2
(4.13)

It means that the Lagrangina LPU has the oscillating solution which is similar to the trajectory
of the harmonic oscillator. A general solution reads

q(t) = A+ cos
(

λ+t
)

+ B+ sin
(

λ+t
)

+ A− cos
(

λ−t
)

+ B− sin
(

λ−t
)

(4.14)

where A+, B+, A−, B− are the integration constants, and

λ± =

√

1 ∓
√

1 − 4α2m2

2α2
(4.15)

The values of the constants (A+, B+, A−, B−) are determined by the boundary conditions.

The Hamiltonian formulation for the Lagrangian (4.8) can be obtained by the Ostrogradski
method. The generalized coodinates and momenta are given in Sec. 2, ie.

Q1 = q and P1 =
∂L

∂q̇
− D

∂L

∂q̈

Q2 = q̇ and P2 =
∂L

∂q̈
(4.16)
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which imply

P1 = q̇ + α2...
q

P2 = −α2q̈ (4.17)

The Hamiltonian is given by eq.(2.12). ie.

H = P1(DQ1) + P2 A − L

= P1Q2 −
1

2α2
P2

2 − 1

2
Q2

2 +
m2

2
Q2

1 (4.18)

or, equivalently,

H = α2q̇
...
q − α2

2
q̈2 +

1

2
q̇2 +

m2

2
q2 (4.19)

Since the Hamiltonian does not evolve with time, we can find the energy by substituting q(t)
of eq. (4.14) at t = 0 into eq. (4.19), as well as q, q̇, q̈ and

...
q at t = 0, ie.

q(0) = A+ + A−
q̇(0) = B+λ+ + B−λ−
q̈(0) = −A+λ2

+ − A−λ2
− (4.20)

...
q (0) = −B+λ3

+ − B−λ3
−

It is now straightforward to calculate the Hamiltonian (4.19). We find

H = α2q̇(0)
...
q (0)− α2

2
q̈(0)2 +

1

2
q̇(0)2 +

m2

2
q(0)2 (4.21)

=
1

2
λ2
+

√

1 − 4α2m2(A2
+ + B2

+)−
1

2
λ2
−
√

1 − 4α2m2(A2
− + B2

−)

To get the Hamiltonian formulation in the harmonic coordinates, we begin with the EOM in
the form (4.10), whose differential operator F(D) is defined by

F(D) = 1 +
D2

m2
+

α2D4

m2
(4.22)

It can be factorized as

F(D) =

(

1 +
D2

λ2
+

)(

1 +
D2

λ2
−

)

(4.23)

where λ± are given by eq. (4.15). Therefore, the harmonic coodinates are given by

Q+ =

(

1 +
D2

λ2
−

)

q and Q− =

(

1 +
D2

λ2
+

)

q (4.24)

The constants ηi of eq. (3.13) can be computed as follows. We have

dF

dD2
=

1

m2
+

2α2D2

m2
(4.25)
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so that

η± =

(

λ2
±

dF

dD2

∣

∣

∣

∣

D2=−λ2
±

)−1

=

(

λ2
±

m2
(1 − 2α2λ2

±)
)−1

=

(

±λ2
±

m2

√

1 − 4α2m2

)−1

= ± m2

λ2
±
√

1 − 4α2m2
(4.26)

Therefore, the generalized momenta in eq. (3.24) are

P± =
m2η±

λ2
±

DQ±

= ± m4

λ4
±
√

1 − 4α2m2
DQ± (4.27)

and the Hamiltonian is given by

H = ∑
j=±

( λ2
j

2m2ηj
P2

j +
m2ηj

2
Q2

j

)

= ∑
j=±

j
m4

2λ4
j

√
1 − 4α2m2

(

(DQj)
2 + λjQ

2
j

)

(4.28)

where we have substituted the classical solution (4.14).

The harmonic coodinates (4.24) read

Q+ = A+

(

1 − λ2
+

λ2
−

)

cos
(

λ+t
)

+ B+

(

1 − λ2
+

λ2
−

)

sin
(

λ+t
)

(4.29)

Q− = A−

(

1 − λ2
−

λ2
+

)

cos
(

λ−t
)

+ B−

(

1 − λ2
−

λ2
+

)

sin
(

λ−t
)

(4.30)

where

1 − λ2
±

λ2
∓

= λ2
±

(

1

λ2
±
− 1

λ2
∓

)

= ±λ2
±

m2

√

1 − 4α2m2 (4.31)

Hence, we find

Q± = ±λ2
±

m2

√

1 − 4α2m2

(

A± cos
(

λ±t
)

+ B± sin
(

λ±t
)

)

(4.32)
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Substituting them into the Hamiltonian (4.28), we get

H =
1

2
λ2
+

√

1 − 4α2m2(A2
+ + B2

+)−
1

2
λ2
−
√

1 − 4α2m2(A2
− + B2

−) (4.33)

Equations (4.22) and (4.33) are the same. Therefore, we conclude that the Hamiltonian
formulation by the Ostrogradski method is consistent with the Hamiltonian formulation in
the harmonic coordinates, as they should.

The integration constants (A+, B+) correspond to the harmonic oscillator with positive
energy, while the integration constants (A−, B−) correspond to the harmonic oscillator with
negative energy.

5. Boundary conditions and spectrum

Going back to the Lagrangian (4.8), let us consider its action over a finite time period T,

S[q] =
∫ T

0
dt LPU (5.1)

with the trajectory q being a sum of the classical trajectory qcl and the displacement q̃, q =
qcl + q̃. In quantum theory, the displacement q̃ is a quantum coordinate. The action can be
rewritten as

S[q] = S[qcl ] + S[q̃]−
∫ T

0
dt

(

q̈cl + m2qcl + α2....
q cl

)

q̃ +

[

q̇cl q̃ − α2q̈cl
˙̃q + α2...

q cl q̃

]T

0

(5.2)

Here the first term is the action of the classical trajectory qcl , and the second term is the action
of the quantum part q̃. The integrand of the third term vanishes because the classical trajectory
is a solution of the (Euler-Lagrange) EOM. The fourth term depends on the boundary.
However, if the boundary condition on q̃ is given by

˜A : q̃(0) = 0, q̃(T) = 0, ˙̃q(0) = 0, ˙̃q(T) = 0 (5.3)

the fourth term in eq. (5.2) also vanishes. That boundary condition is the same as that of

A : q(0) = q0, q(T) = qT , q̇(0) = q̇0, q̇(T) = q̇T (5.4)

which was proposed in ref. (21). The quantum action now takes the form

S[q̃] =
∫ T

0
dt

(

1

2
˙̃q2 − m2

2
q̃2 − α2

2
¨̃q2

)

= −1

2

∫ T

0
dt q̃

(

D2 + m2 + α2D4

)

q̃ +
1

2

[

q̃ ˙̃q − α2 ˙̃q ¨̃q + α2q̃
...
q̃

]T

0

(5.5)

where the (last) boundary term vanishes due to the boundary condition (5.3).

The boundary term in eq. (5.5) also vanishes by another boundary condition,

˜A
′ : q̃(0) = 0, q̃(T) = 0, ¨̃q(0) = 0, ¨̃q(T) = 0 (5.6)
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As a result, the action (5.5) takes the Gaussian form, which is quite appropriate for a path
integral quantization with the Gaussian functional

− 1

2

∫ T

0
dt q̃

(

D2 + m2 + α2D4

)

q̃ (5.7)

Let us now compute the spectrum of the operator D2 + m2 + α2D4. For this purpose, we need
to find the solutions uk to the eigenvalue equation

(

D2 + m2 + α2D4
)

uk(t) = kuk(t) (5.8)

with the eigenvalues k. A general solution is

uk(t) = A1 cos
(

ω+t
)

+ A2 sin
(

ω+t
)

+ A3 cos
(

ω−t
)

+ A4 sin
(

ω−t
)

ω± =

√

1 ∓
√

1 − 4α2(m2 − k)

2α2
(5.9)

where A1, A2, A3, A4 is the constants of integration. The function q̃ can be expanded in terms
of uk,

q̃ =
∫

dk uk(t) (5.10)

The spectrum of k is now determined by appying the physical boundary conditions (5.3) or
(5.6) to uk in the form of eq. (5.9). Applying the boundary condition (5.3) at t = 0 yields

q̃(0) = A1 + A3 = 0, ˙̃q(0) = A2ω+ + A4ω− = 0 (5.11)

The boundary condition (5.3) at t = T then takes the form

q̃(T) = A1 cos
(

ω+T
)

+ A2 sin
(

ω+T
)

− A1 cos
(

ω−T
)

−A2
ω+

ω−
sin
(

ω−T
)

= 0

˙̃q(T) = −A1ω+ sin
(

ω+T
)

+ A2ω+ cos
(

ω+T
)

+A1ω− sin
(

ω−T
)

− A2ω+ cos
(

ω−T
)

= 0

In particular, the determinant of the matrix on the left side of this equation,

det

⎛

⎜

⎜

⎝

ω−

[

cos
(

ω+T
)

− cos
(

ω−T
)

]

ω− sin
(

ω+T
)

− ω+ sin
(

ω−T
)

−ω+ sin
(

ω+T
)

+ ω− sin
(

ω+T
)

ω+

[

cos
(

ω+T
)

− cos
(

ω−T
)

]

⎞

⎟

⎟

⎠

=ω+ω−

[

cos
(

ω+T
)

− cos
(

ω−T
)

]2

+ ω+ω−

[

sin2
(

ω+T
)

+ sin2
(

ω−T
)

]

− (ω2
+ + ω2

−) sin
(

ω+T
)

sin
(

ω−T
)

=2ω+ω−

[

1 − cos
(

ω+T
)

cos
(

ω−T
)

]

− (ω2
+ + ω2

−) sin
(

ω+T
)

sin
(

ω−T
)

(5.12)
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must vanish. We find

2ω+ω−

[

1 − cos
(

ω+T
)

cos
(

ω−T
)

]

= (ω2
+ + ω2

−) sin
(

ω+T
)

sin
(

ω−T
)

2
√

m2 − k

α

[

1 − cos
(

ω+T
)

cos
(

ω−T
)

]

=
1

α2
sin
(

ω+T
)

sin
(

ω−T
)

1 − cos
(

ω+T
)

cos
(

ω−T
)

=
1

α
√

m2 − k
sin
(

ω+T
)

sin
(

ω−T
)

(5.13)

where ω±(k) ar given by eq. (5.9). Apparently, there is no simple solution here.

When employing the boundary conditions (5.6) with eq. (5.9) on uk, the boundary condition
in t = 0 yields

q̃(0) = A1 + A3 = 0, ¨̃q(0) = −A1ω2
+ − A3ω2

− = 0 (5.14)

so that we find A1 = A3 = 0 when ω+ �= ω−. Now the boundary condition at t = T reads

q̃(T) = A2 sin
(

ω+T
)

+ A4 sin
(

ω−T
)

= 0

¨̃q(T) = −A2ω2
+ sin

(

ω+T
)

− A4ω2
− sin

(

ω−T
)

= 0 (5.15)

To get a nontrivial solution, the correspending determinant must vanish, which yields the
condition

(ω2
+ − ω2

−) sin
(

ω+T
)

sin
(

ω−T
)

= 0 (5.16)

Since ω+ �= ω−, we find

sin
(

ω+T
)

= 0 or sin
(

ω−T
)

= 0 (5.17)

It means
ω+ =

nπ

T
or ω− =

nπ

T

(

where n is an integer
)

(5.18)

and ω± are the solutions to the equation

x2 + m2 + α2x4 = k (5.19)

Therefore, the spectrum of k with the boundary condition ˜A ′ has the simple form

k =

(

nπ

T

)2

+ m2 + α2

(

nπ

T

)4

(5.20)

6. Canonical quantization and instabilities

In this section we recall about istabilities and ghosts in the quantum PU oscillator (14). The
most straightforward way is based on identifying the energy rasing and lowering operators
(14). The classical solution (4.14) can be rewritten to the form

q(t) =
1

2
(A+ − iB+)e

iλ+t +
1

2
(A+ + iB+)e

−iλ+t

+
1

2
(A− − iB−)eiλ−t +

1

2
(A− + iB−)e−iλ+t (6.1)
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Since the λ− modes have negative energy, the lowering operator must be proportional to
the (A− − iB−) amplitude. Similarly, since the λ+ modes have negative energy, the raising
operator must be proportional to the (A+ + iB+) amplitude, ie.

α± ∼ A± ± iB±

∼ λ±
2

(1 ±
√

1 − 4α2m2)Q1 ± iP1 ∓
i

2
(1 ∓

√

1 − 4α2m2)− λ±P2

(6.2)

where we have used

A± =
q̈0 + λ2

∓q0

λ2
∓ − λ2

±
(6.3)

and

B± =

...
q 0 + λ2

∓ q̇0

λ±(λ2
∓ − λ2

±)
(6.4)

as well as 1

Q1 = q0 (6.5)

Q2 = q̇0 (6.6)

P1 = q̇0 + α2...
q 0 (6.7)

P2 = −α2q̈0 (6.8)

It is now straightforward to derive the commutation relations,

[α±, α†
±] = 1 (6.9)

The next step depends upon physical interpretation (14).

(I) The ‘empty’ (or ‘ground’) state may be defined by the condition

α+
∣

∣Ω̄
〉

= α†
−
∣

∣Ω̄
〉

= 0 (6.10)

Then the ‘empty’ state wave function Ω̄(Q1, Q2) (in the Q-representation, with P = −i∂/∂Q)
reads

Ω̄(Q1, Q2) = N exp

[

−
√

1 − 4α2m2

2(λ− − λ+)
(λ+λ−Q2

1 − Q2
2)− imαQ1Q2

]

(6.11)

and is infinite or not normalizable, because the size of the wave function gets bigger with the
increase of Q2, so that the integral over the whole space diverges.

In addition, when the eigenstate |N̄+, N̄−〉 with the eigenvalues N̄ = (N̄+, N̄−) is defined by

|N̄+, N̄−〉 =
a†
+√

N+!

a−√
N−!

∣

∣Ω̄
〉

(6.12)

1 The canonical variables were calculated at the initial time value because the operators in Schrodinger
picture do not depend upon time.
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the norm of the (0, 1) state is given by

< 0, 1̄|0, 1̄ > =
〈

Ω̄
∣

∣ α†
−α−

∣

∣Ω̄
〉

=
〈

Ω̄
∣

∣ (−1 + α−α†
−)
∣

∣Ω̄
〉

= − < Ω̄|Ω̄ >

= −1 (6.13)

which is a ghost. The non-normalizable quantum ‘states’ are physically unacceptable, so the
interpretation (I) should be dismissed (14).

(II) It is, however, possible to treat all particles (with positive or negative energy) as the truly
ones by defining the ‘empty’ state Ω differently, namely, as

α± |Ω〉 = 0 (6.14)

In this interpretation the negative energy can arbitrarily decrease and the Hamiltian is
unbounded from below. The ‘empty’ state solution Ω(Q1, Q2) in the Q representation is now
given by

Ω(Q1, Q2) = N exp

[

−
√

1 − 4α2m2

2(λ− + λ+)
(λ+λ−Q2

1 + Q2
2) + imαQ1Q2

]

(6.15)

and is apparently finite or normalizable, because the first term in the exponential is negative.

The eigenstate |N̄+, N̄−〉 of the eigenvalues N̄ = (N̄+, N̄−) is now given by

|N+, N−〉 =
a†
+√

N+!

a†
−√

N−!
|Ω〉 (6.16)

while the norm of the (0, 1) state is

< 0, 1|0, 1 > = 〈Ω| α−α†
− |Ω〉

= 〈Ω| (1 − α†
−α−) |Ω〉

= < Ω|Ω >

= 1 (6.17)

ie. it is not a ghost.

In the correct physical interpretation (II) the correspondence principle between the classical
and quantum states is preserved, but the system has indefinite energy. When interactions
are switched on, mixing the negative and positive energy states would lead to instabilities in
the classical theory, and the exponentially growing and decaying states in quantum theory
(25; 26). Excluding the negative energy states would lead to the loss of unitarity (21).

7. Path integral quantization and Forman theorem

The idea of ref. (21) is to define the quantum theory of the PU oscillator as the Euclidean path
integral and then Wick rotate it back to Minkowski case. It makes sense since the Euclidean
action of the PU oscillator — see eq. (8.3) below — is positively definite. It can also make
the difference to the canonical quantization and the Ostrogradski method (Sec. 2) when one
integrates over the path only, but not over its derivatives.
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Let us first recall some basic facts about a path integral in QFT, according to the standard
textbooks in Quantum Field Theory – see, for example, ref. (27).

The definition of the probability amplitude for a one-dimensional quantum particle by
Feynman path integral is given by

Z(qb, tb; qa, ta) =
∫ qb

qa

Dq exp

[

i

h̄

∫ tb

ta

dtL

]

(7.1)

where the integration goes over all paths q(t) between qa and qb. After Wick rotation

t → t = −iτ (7.2)

the path integral takes the form2

Z(qb, tb; qa, ta) =
∫ qb

qa

Dq exp

[

− 1

h̄

∫ τb

τa

dτLE

]

(7.3)

It is called the Euclidean path integral. In the case of the PU oscillator the Euclidean path
integral is Gaussian. Let us recall some basic properties of the Gaussian integrals.

The simplest Gaussian integral reads

∫ ∞

−∞
dxe−ax2

=

√

π

a
a > 0 (7.4)

It can be easily extended to a quadratic form in the exponential as

∫ ∞

−∞
dxe−ax2−bx =

√

π

a
exp

(

b2

4a

)

(7.5)

It can also be easily extended to the case of several variables with the diagonal quadratic form
as

∫ ∞

−∞
[dnx] exp

(

−
n

∑
i=1

aix
2
i

)

=
1

∏
n
i=1 a

1
2

i

(7.6)

where we have introduced the normalized measure [dx] = dx/
√

π.

By diagonalizing a generic (non-degenerate) quadratic form, one can prove a general
finite-dimensional formula,

∫ ∞

∞
[dnx] exp

(

−xt Ax − btx
)

=
1

∏
n
i=1 λi

exp

(

1

4
bt A−1b

)

(7.7)

=
1

detA
exp

(

1

4
bt A−1b

)

Finally, when formally sending the number of integrations to infinity, one gets the Gaussian
path integral,

∫ qb

qa

Dq exp

[

−
∫ tb

ta

dt(q(t)F(D)q(t) + q(t)J(t))

]

=
1

√

DetF(D)
exp

[

−1

4

∫ tb

ta

dtJ(t)F−1(D)J(t)

]

(7.8)

2 The sign factor in the Wick rotation is chosen to make the path integral converging.
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where DetF(D) is now the functional determinant.

A generic functional determinant diverges since it is defined as the product of all the
eigenvalues in the spectrum of a differential operator. Therefore, one needs a regularization.
It is most convenient to use the zeta function regularization in our case — see, for example,
ref. (28) for a comprehensive account. The Riemann zeta function is defined by

ζ(s) =
∞

∑
n=1

1

ns
(7.9)

in the convergence area of the series. It is then expanded for Re(s) > 1 by analytic
continuation. It is often useful to employ an integral representation of the zeta function in
the form

ζ(s) =
1

Γ(s)

∫ ∞

0
dt ts−1

∞

∑
n=1

e−nt (7.10)

where the (Euler) gamma function has been introduced,

Γ(s) =
∫ ∞

0
dt ts−1e−t (7.11)

Equation (7.10) allows one to define the zeta function for an elliptic operator L as

ζ(s|L) = 1

Γ(s)

∫ ∞

0
dt ts−1tre−tL (7.12)

where tre−tL is given by

tre−tL = tr

⎛

⎜

⎜

⎜

⎝

e−λ1t

e−λ2t

. . .

⎞

⎟

⎟

⎟

⎠

=
∞

∑
n=1

e−λnt (7.13)

in terms of the positive eigenvalues λn of L. One easily finds

ζ(s|L) =
∞

∑
n=1

1

λs
n
=

∞

∑
n=0

e−s ln λn (7.14)

Differentiating both sides of this equation with respect to s at s = 0, one finds

dζ(s|L)
ds

∣

∣

∣

∣

s=0

= −
∞

∑
n=1

ln λn

= − ln
∞

∏
n=1

λn

= − ln DetL (7.15)

so that the functional determinant of an elliptic operator L is given by

DetL = e−ζ ′ |s=0 (7.16)
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The zeta function regularization of the right hand side of this equation is

ln Det
L(ǫ)

μ2
= −1

ǫ
ζ

(

ǫ

∣

∣

∣

∣

L

μ2

)

= − 1

Γ(ǫ + 1)

∫ ∞

0
dt tǫ−1tre

−t L
μ2

= −1

ǫ

∞

∑
n=1

1
(

λn

μ2

)ǫ = −μ2ǫ

ǫ

∞

∑
n=1

1

λǫ
n
= −μ2ǫ

ǫ
ζ(ǫ|L)

= −1

ǫ
(1 + ǫ ln μ2)(ζ(0|L) + ǫζ ′(0|L)) + O(ǫ2)

= −1

ǫ
ζ(0|L)− ζ ′(0|L)− ln μ2ζ(0|L) + O(ǫ2) (7.17)

where we have introduced the regularization parameter ǫ and the dimension parameter μ.

The zeta-function renormalization amounts to deleting the first term in eq. (7.17), since it
UV-diverges in the limit ǫ → 0, as well as the third term since it IR-diverges in the limit
μ → 0.

To put equation (7.17) into a more explicit form, without resorting to the spectrum of the
differential operator, it is convenient to use Forman’s theorem (24): 3

Let KA and K̄ ¯A
are the differential operators defined by

{

K = P0(τ)
dn

dτn + O( dn−1

dτn−1 )

K̄ = P0(τ)
dn

dτn + O( dn−1

dτn−1 )
(7.18)

over the domain [0, T]. Consider a linear differential equation

Kh(τ) = 0 (7.19)

with a boundary condition

A : M

⎛

⎜

⎜

⎜

⎝

h(0)

h(1)(0)
...

h(n−1)(0)

⎞

⎟

⎟

⎟

⎠

+ N

⎛

⎜

⎜

⎜

⎝

h(0)

h(1)(0)
...

h(n−1)(0)

⎞

⎟

⎟

⎟

⎠

= 0 (7.20)

and take the boundary condition ¯A to be smoothly connected to A . The time evolution
operator YK(τ) is introduced as

⎛

⎜

⎝

h(τ)
...

h(n−1)(τ)

⎞

⎟

⎠
= YK(τ)

⎛

⎜

⎝

h(0)
...

h(n−1)(0)

⎞

⎟

⎠
(7.21)

so that the boundary condition can be written to

(M + NYK(T))

⎛

⎜

⎝

h(0)
...

h(n−1)(0)

⎞

⎟

⎠
= 0 (7.22)

3 Forman theorem is an extension of the Gel’fand-Yaglom theorem.
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The Forman theorem is given by the statement:

DetKA

DetK̄ ¯A

=
det (M + NYK(T))

det (M̄ + N̄YK̄(T))
(7.23)

This theorem is effective for finding the functional determinant of the operator K with
unknown spectrum by connecting it to the one with a simple spectrum via changing the
boundary conditions.

8. Path integral of PU oscillator

The Euclidean path integral of the PU oscillator over a domain [0, T] was calculated in
refs. (21–23). Here we confirm the results of ref. (22) by our calculation.

The path integral of PU oscillator with the action

SPU =
∫ T

0
dt

(

1

2
q̇(t)2 − m2

2
q(t)2 − α2

2
q̈(t)2

)

(8.1)

after the Wick rotation (t → it) takes the form

Z(qT , T; q0, 0) =
∫ qT

q0

Dq exp (−SE) (8.2)

where the Euclidean PU action is given by

SE =
∫ T

0
dt

(

1

2
q̇(t)2 +

m2

2
q(t)2 +

α2

2
q̈(t)2

)

(8.3)

This SE is positively definite, so that the Euclidean path integral is well defined.

Since our discussion of the classical theory (Sec. 4), the integral trajectory is a sum of a classical
trajectory qcl and quantum fluctuations q̂, q = qcl + q̂. Accordingly, the action can be also
written down as a sum,

SE[q] = Scl + S[q̂] (8.4)

and the path integral of the PU oscillator takes the form

Z(qT , T; q0, 0) = e−Scl

∫ 0

0
D q̂ exp (−S[q̂]) (8.5)

where the quantum action S[q̂] is given by

S[q̂] =
1

2

∫ T

0
dt q̂

(

α2 d4

dt4
− d2

dt2
+ m2

)

q̂ (8.6)

after integration by parts.

Let us denote the differential operator α2 d4

dt4 − d2

dt2 + m2 with the boundary condition A as
KA . Then the path integral can be written down in the form

Z(qT , T; q0, 0) = e−Scl

∫ 0

0
D q̂ exp

(

−1

2

∫ T

0
dt q̂KA q̂

)

(8.7)
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The path integral of the PU oscillator is Gaussian and, therefore, can be computed along the
lines of Sec. 7 as

Z(qT , T; q0, 0) =
N√

DetKA

exp (−Scl) (8.8)

where N is the normalization constant. The classical part Scl was found in ref. (21), and it is
quite involved. The functional determinant is the key part of a quantum propagator of PU
oscillator, which is of primary physical interest. It can be computed by the use of Forman
theorem (Sec. 7).

First, one calculates the time evolution operator YK . It is given by

YK(t) =

⎛

⎜

⎜

⎝

u1(t) u2(t) u3(t) u4(t)
u̇1(t) u̇2(t) u̇3(t) u̇4(t)
ü1(t) ü2(t) ü3(t) ü4(t)...
u1(t)

...
u2(t)

...
u3(t)

...
u4(t)

⎞

⎟

⎟

⎠

(8.9)

where
Kui(t) = 0 (i = 1, . . . , 4) (8.10)

and the inital condition is
Yk(0) = 1 (8.11)

The operator K ¯A
is equal to KA , so they have YK(t) is common.

By solving the equation Kui = 0 for ui with

K = α2 d4

dt4
− d2

dt2
+ m2 (8.12)

one gets its general solution in the form

ui(t) = Ai sinh(λ+t) + Bi cosh(λ+t) + Ci sinh(λ−t) + Di cosh(λ−t) (8.13)

The boundary condition YK(0) = 1 amounts to the relations

Bi + Di = δ1i (8.14)

λ+Ai + λ−Ci = δ2i (8.15)

λ2
+Bi + λ2

−Di = δ3i (8.16)

λ3
+Ai + λ3

−Ci = δ4i (8.17)

Therefore, the solutions are

u1 =
λ2
−

λ2
− − λ2

+

cosh(λ+t) +
λ2
+

λ2
+ − λ2

−
cosh(λ−t) (8.18)

u2 =
λ2
−

λ+(λ2
− − λ2

+)
sinh(λ+t) +

λ2
+

λ2(λ
2
+ − λ2

−)
sinh(λ−t) (8.19)

u3 = − 1

λ2
− − λ2

+

cosh(λ+t)− 1

λ2
+ − λ2

−
cosh(λ−t) (8.20)

u4 = − 1

λ+(λ2
− − λ2

+)
sinh(λ+t) +

1

λ2(λ
2
+ − λ2

−)
sinh(λ−t) (8.21)
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Next, one writes down the boundary conditions A and ¯A in terms of the matrices M and N
appearing in the Forman theorem. The boundary condition A is

A : q̂(0) = 0 , q̂(T) = 0 , ˙̂q(0) = 0 , ˙̂q(T) = 0 (8.22)

so that its matrices M and N are given by

M =

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

(8.23)

and

N =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

(8.24)

In the same way, the boundary condition ¯A is

¯A : q̂(0) = 0 , q̂(T) = 0 , ¨̂q(0) = 0 , ¨̂q(T) = 0 (8.25)

so that its matrices M and N are given by

M̄ =

⎛

⎜

⎜

⎝

1 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

(8.26)

and

N̄ =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

⎞

⎟

⎟

⎠

(8.27)

Having found M, N and YK , as well as M̄, N̄ and YK̄ , we calculate

det(M + NYK(T))

=
α3

m

[

1

1 + 2mα
sinh2

(√
1 + 2mα

2α
T

)

− 1

1 − 2mα
sinh2

(√
1 − 2mα

2α
T

)]

(8.28)

and

det(M̄ + N̄YK̄(T))

=
α

m

[

sinh2

(√
1 + 2mα

2α
T

)

− sinh2

(√
1 − 2mα

2α
T

)]

(8.29)
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A calculation of DetK ¯A
goes along the standard lines (21–23),

DetK ¯A
=

∞

∏
n=1

kn =
∞

∏
n=1

(

α2
(nπ

T

)4
+
(nπ

T

)2
+ m2

)

(8.30)

=
α

mT2

[

sinh2

(√
1 + 2mα

2α
T

)

− sinh2

(√
1 − 2mα

2α
T

)]

(8.31)

By using the Forman formula, one gets the final answer:

DetKA =
det (M + NYK(T))

det (M̄ + N̄YK̄(T))
DetK ¯A

=
α3

mT2

[

(1 + 2αm)−1 sinh2

(√
1 + 2mα

2α
T

)

−(1 − 2αm)−1 sinh2

(√
1 − 2mα

2α
T

)]

(8.32)

in full agreement with ref. (22) in its last (v2) version. In the large T limit one finds

DetKA ≈ α

m

⎡

⎢

⎣
(1 + 2αm)−1

exp
(√

1 + 2mα T
α

)

(

2T
α

)2
− (1 − 2αm)−1

exp
(√

1 − 2mα T
α

)

(

2T
α

)2

⎤

⎥


, (8.33)

and in the small T limit one gets

DetKA ≈ T2

12
+O(T4) (8.34)

The ground state probability amplitude (or the Euclidean quantum propagator) of PU
oscillator, is given by

< qT , q̇T ; τ = T|q0, q̇0; τ = 0 >=

√

2π

DetKA

exp (−SE[qcl ]) , (8.35)

The classical Euclidean action SE[qcl ] was calculated in Appendix of ref. (21). It is finite for
large T ≫ 1 and behaves like 1

2T for small T ≪ 1. Hence, the transition amplitude (or the
quantum Euclidean propagator) is exponentially suppressed both for small and large T, ie. the
transition amplitude is normalizable and the Euclidean path integral is well defined indeed.

9. Conclusion

The procedure of calculating Euclidean transition probabilities (for observables) in the
quantum PU theory was outlined in ref. (21). The probabilities in the Minkowski space can be
obtained by analytic continuation. It is, therefore, possible to make physical sense out of the
quantum PU theory.

In classical PU theory with interactions, even at a very small value of the parameter α > 0,
one gets runaway production of states with negative and positive energy. However, as
was suggested in ref. (21), the Euclidean formulation of the quantum theory implicitly
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imposes certain restrictions that can remove classical instabilities. The price of removing
the instabilities is given by an apparent violation of unitarity (21). Indeed, integrating over
the basic trajectory, and not over its derivatives in the Euclidean path integral formulation
of the quantum PU oscillator given above is not in line with the canonical quantization and
the Ostrogradski method. By doing it, one looses some information and, hence, one loses
unitarity. As was argued in ref. (21), one can, nevertheless, never produce a negative norm
state or get a negative probability, so that the departure from unitarity may be very small at
the low energies (say, in the present universe), but important at the very high energies (say, in
the early universe). Of course, it is debateable whether the ‘price’ of loosing unitarity is too
high or not.

Apparently, the f (R) gravity theories are special in the sense that for each of them there
exist the classically equivalent scalar-tensor field theory without higher derivatives, under the
physical stability conditions. Still, as the quantum field theories, they may be very different.
It may be possible to quantise f (R) gravity without loosing unitarity. Figuring out details is
still a challenge.
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