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1. Introduction 

The southeast margin of the Tibetan Plateau lies between the heartland of the plateau to the 
west and the stable south China block to the east, spanning from western Sichuan to central 
Yunnan in southwest China. Based on low-gradient topographic slope and lack of large-
scale young crustal shortening at the southeast plateau margin, Royden et al. (1997) and 
Clark and Royden (2000) proposed a channel-flow model in which a weak (low-viscosity) 
zone exists in the mid- to lower crust. Gravitational potential drives crustal materials from 
the Tibetan Plateau outward through the channel, creating a broad and topographically 
gentle margin and also accumulating stress near the strong crust of the Sichuan Basin. Using 
GPS data collected from the Crustal Motion Observation Network of China between 1998 
and 2004, Shen et al. (2005) showed that the crust is fragmented into tectonic blocks of 
various sizes, separated by strike-slip and transtensional faults (Figure 1). They proposed a 
model for Tibetan Plateau deformation in which a mechanically weak lower crust 
experiences distributed deformation underlying a stronger, highly fragmented upper crust.  
On May 12, 2008, a destructive Ms 8.0 earthquake occurred along the Longmen Shan Fault, 
located between the eastern margin of the Tibetan Plateau and the Sichuan Basin (Burchfiel 
et al., 2008). It ruptured mainly toward the northeast over a length of ~270 km along the 
northeast-trending fault, with coseismic slip mainly consisting of thrust- and right lateral 
strike-slip components (Wang et al., 2008b). No noticeable precursors were observed before 
the main shock, which was anticipated because GPS modeling showed very low right-slip 
(~1 mm/yr) and convergence (<~3 mm/yr) rates along the Longmen Shan boundary 
(Meade, 2007). A deep process involving channel flow is hypothesized to be responsible for 
the 2008 Wenchuan Ms 8.0 earthquake (Burchfiel, et al., 2008; Teng et al., 2008; Zhang et al., 
2008). Other models than the channel flow model such as the block model were also 
proposed for causing this earthquake (e.g. Hubbard and Shaw, 2009). 
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Regional seismic tomography studies using body waves (Huang et al., 2002; Wang et al., 
2003; Wang et al., 2007; Huang et al., 2009; Xu and Song, 2010) and surface waves (Yao et al., 
2008, 2010; Huang et al., 2010; Li et al., 2010) found widespread low velocity zones in the 
mid- and lower crust, supporting the channel-flow model proposed by Clark and Royden 
(2000). Receiver function analysis on stations in southwest China also identified low velocity 
zones (LVZs) in the mid- and lower crust and high average Poisson’s ratio in the crust (e.g. 
Xu et al., 2007; Wang et al., 2008a; Liu et al., 2009; Zhang et al., 2009c). In addition, 
magnetotelluric (MT) sounding detected low resistivity layers in the middle and lower crust 
(e.g. Sun et al., 2003; Zhao et al., 2008; Bai et al., 2010). These low velocity and low resistivity 
zones were interpreted to be caused by partial melt.  
 

 

Fig. 1. Distribution of earthquakes (black dots) and stations (green triangles) for the study 
region. The black lines are mapped fault traces on surface. Red star indicates the 2008 
Wenchuan Ms8.0 earthquake. White lines represent boundaries of deformation blocks from 
the surface GPS modeling (Shen et al., 2005). F1: Longmen Shan Fault; F2: Xianshuihe Fault; 
F3: Ganzi Fault; F4: Litang Fault; F5: Anninghe Fault; F6: Zemuhe Fault; F7: Daliangshan 
Fault; F8: Longquan Anticline; F9: Lijiang Fault. 
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In this article, we present the results of a joint inversion for Vp, Vs, and Vp/Vs models, 
applying a modified double-difference seismic tomography method to the catalog picks 
collected by the Seismological Bureau of Sichuan Province for the period 2001-2004. The 
joint interpretation of three models permits a more complete characterization of the 
mechanical properties and geological identity of crustal materials and therefore is helpful 
for better understanding the cause of the low velocity and low resistivity layers. Compared 
to the previous regional tomography studies in the Sichuan region, this is the first time that 
a Vp/Vs model is directly inverted from S and P arrival times instead of from dividing Vp 
by Vs. The three-dimensional (3D) shear-wave velocity model of Yao et al. (2008) indicated 
that the LVZs vary considerably in strength and depth range and faults may mark lateral 
boundaries of the LVZs. Our high-resolution 3D Vp, Vs, and Vp/Vs models are utilized to 
examine the spatial distribution of and interconnectivity between LVZs, which is important 
for understanding the tectonic block motions (Shen et al., 2005). For accurately calculating 
ray paths and travel times between events and stations in the case of strong velocity 
heterogeneity, a spherical-earth finite-difference (SEFD) travel time calculation method is 
developed and tested. 

2. Spherical-Earth Finite-Difference (SEFD) travel time calculation 

Since their introduction to seismology by Vidale (1988), finite difference solutions to the 
eikonal equation have enjoyed widespread application as a robust and efficient technique 
for computing travel times in heterogeneous media. To the extent that one can easily access 
the travel time tables produced by such techniques, they can be readily incorporated into 
earthquake location and tomographic imaging algorithms (e.g. Nelson and Vidale, 1990; 
Hole, 1992). With few exceptions (Fowler, 1994; Schneider, 1995), these finite difference 
algorithms solve the Cartesian form of the eikonal equation: 

 

22 2
2dt dt dt

s
dx dy dz

          
    

, (1) 

where s is the local slowness. To the extent that there is no significant spatial regularity in 
the heterogeneity that we are attempting to parameterize, the bias that we introduce by a 
particular choice of grid system, Cartesian or otherwise,  will not be significant or in the 
worst case will increase the level of model noise.    
As a simple consequence of gravity and temperature, wavespeeds in the earth are primarily 
a function of depth; lateral variations in wavespeed often tend to be only a few percent. 
Over regional distances on the order of ~200 km or less, such depth variations should for 
most purposes be modeled adequately by a Cartesian grid. However, there is a potential for 
introducing a model induced signal into an inversion when at greater distances the radial 
variations in wavespeed do not correlate well with the Cartesian grid. One strategy for 
coping with sphericity is to employ earth flattening (e.g. Abers and Roecker, 1991) but the 
transformations for flattening are not appropriate for a laterally heterogeneous medium, 
and moreover there are issues with computing distance properly in the flattened frame (in 
particular they should always be computed along great circles). Another strategy is to 
simply put a round earth in a rectangular box, known as the sphere-in-a-box method 
(Flanagan et al., 2007), but this can artificially introduce anisotropy into the model because 
radial gradients are not represented the same way in all directions. Of course, such artifacts 
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can be reduced by decreasing the grid spacing but resulting increase in the number of grid 
points could make the computations intractable. 
As an alternative, one might consider solving the eikonal equation in a spherical coordinate 
system, so that radial gradients are parameterized equally throughout the model with a 
reduced number of grid points. The eikonal equation in spherical coordinates is: 

 

22 2
21 1

sin

dt dt dt
s

dr r d r d  
          

     
, (2) 

where r is the radius from center of the earth, dr is positive away from the center, and |dr| 

= h;  is the co-latitude (0° at north pole, 90° at equator), d is positive to the south, and 

|d| =  ;  is longitude, d is positive to the east, and |d| = ; and s is slowness. 

To solve this system, we must be account for the differences in r, , and  for each node in 

the mesh. For each node i we assign ri, i, i, and also signs for directional purposes (Table 
1). We derive expressions for each of the finite difference (FD) "stencils" used in the 
algorithm. For example, when applying Scheme A of Vidale (1990), we compute the time at 
one point given the times at 7 adjacent points in the 8-point cell. 
 

Point Position r   r Sign (g) Sign (n) Sign (m) 

0 Deep SE r1 2 2 -1 1 1 

1 Deep SW r1 2 1 -1 1 -1 

2 Deep NW r1 1 1 -1 -1 -1 

3 Deep NE r1 1 2 -1 -1 1 

4 Shallow SE r2 2 2 1 1 1 

5 Shallow SW r2 2 1 1 1 -1 

6 Shallow NW r2 1 1 1 -1 -1 

7 Shallow NE r2 1 2 1 -1 1 

Table 1. Convention on point numbering; the signs are the coefficients for the derivatives 

dt/dr, dt/d anddt/das shown below. 

Referring to Figure 2 and Table 1, the FD derivatives are: 

 

         
       

     
 

4 0 5 1 6 2 7 3

0 3 1 1 2 1 4 7 2 5 6 2

0 1 1 2 3 2 1 1 4 5

2 2 7 6 2 1

dt /dr  t  t   t  t   t  t   t  t  / 4h

1 /r dt /dθ  t  t /r  t  t /r  t  t  /r  t  t  /r  /(4 )

1 /rsinθdt /d  [ t  t /(r sinθ )  t  t /(r sinθ )  t  t /

(r sinθ )  t  t /(r sinθ )]

         
          
      

  /(4 )

 (3) 

From these equations, it can be shown that the eikonal equation for this stencil is 

 

7 6 7 7 6 7
2 2 2 2 2

i i i j j i i i i i j j j
i 0 i 0 j i 1 i 0 i 0 j i 1

7 6 7
2 2

i i i i i i i j j j j
i 0 i 0 j i 1

s t 2 t g t g 16h (t /r ) 2 t n /r t n /r 16Θ

     (t /r sinθ ) 2 t m /r sinθ t m /r sinθ 16

       

   

   
      
      
 
   
  

     

  
 (4) 
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Fig. 2. Geometry of a basic cell for the spherical-earth FD calculation of travel times. 

Given the values for t0 through t6, this expression can be rewritten in the form at72 + bt7 + c = 
0 to solve for t7, with coefficients a, b and c defined as follows: 
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Comparable equations, which are included in the Appendix, can be derived for the "edge" 
and "face" stencils of Vidale (1990). 
One of the problems encountered with these finite difference techniques is that the travel 
times at the grid points in the immediate neighborhood of the starting point need to be 
assigned somehow. As long as the wavespeeds are not overly heterogeneous near the 
starting point, integration of slowness along a straight line path provides a reasonable 
estimate of travel time. This may not always be the case, however, and in any event as 
Vidale (1988) pointed out the finite difference approach does not work well when there is 
significant wavefront curvature over the size of the grid volume element. One efficacious 
way to solve both of these problems is to use a cascading approach by defining a fine grid in 
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the vicinity of the starting point and a coarser grid outside that region. We have adopted 
this approach. 
We tested the SEFD method by calculating travel times in an analytical velocity model V=V0 
(r0/r), where V0=4.0km/s, r0 is the Earth’s radius and r is the distance between the source 
and the Earth’s surface.  Figure 3a shows the analytical travel times for a source located at 
latitude 21.2° and longitude 121.75°. We discretized the model into a 3D grid with a grid 
interval of 0.1° in latitude and longitude and 10 km in depth. The source region is set up to 
be 3 grid nodes in which the travel times are calculated along a straight-line path. The 
differences in travel times compared to analytic times are shown in Figure 3b. The travel 
time error around the source is as much as 1.08 s.  Outside the source region, the mean 
travel time error is 0.108 s, and is everywhere generally smaller than 0.3 s. Along the latitude  
 

 

Fig. 3. (a) Analytic travel times from a source located at latitude 21.2° and longitude 121.75°. 
(b) Travel time errors for the SEFD method. The spherical grid intervals are 0.1° in latitude 
and longitude and 10 km in depth. (c) Travel time errors for the multi-grid SEFD method. 
The grid intervals are 0.01° in latitude and longitude and 1 km in depth around the source 
region. (d) Travel time errors from the FD travel time calculation method in Cartesian 
coordinates. The time unit is second. 
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and longitude directions and the directions between them, the travel time errors are 
relatively small due to the design of the stencils. To deal with the inaccuracy problem near 
the source region, we applied a cascading-grid strategy, in which a fine grid is used near 
the source region and a coarse one is used outside the source region. The grid interval 
inside the source region is 10 times smaller than that outside. The resulting travel time 
error near the source is much smaller than before, down to 0.17 s and the mean travel time 
error decreases to 0.087 s. The tests show that the cascading-grid strategy improves the 
travel time accuracy near the source region and can also decrease the travel time error 
away from the source region. We also calculated the travel times using the “sphere-in-a-
box” method, in which the travel times are calculated on a 3D Cartesian grid with a 
uniform grid interval using the finite-difference eikonal solver of Podvin and Lecomte 
(1991). The velocity values on Cartesian grid nodes are linearly interpolated from 8 
surrounding spherical grid nodes. The grid interval is set to be 5 km, about 2 times 
smaller than that used for the SEFD travel time calculation. The travel time errors from 
Cartesian grid FD method are plotted in Figure 3d. It can be seen that the travel time 
errors around the source region are small. This is because the FD scheme used in Podvin 
and Lecomte (1991) adopted an initialization procedure to accurately calculate the travel 
times around the source. Similar to our SEFD method, the travel time errors are small 
along latitude, longitude and their middle intersections. However, the travel time errors 
outside the source region are relatively large. The overall mean travel time error is 0.312 s, 
much greater than 0.108 s and 0.087 s for the two SEFD cases. This is mainly due to the 
inaccuracy in velocity values on Cartesian grid nodes when they are interpolated from the 
exact spherical grid nodes. Even when the Cartesian grid interval is finer, the travel time 
errors are still greater compared to the case using spherical grid.   

3. Seismic tomography method 

We employed a new version of the double-difference (DD) seismic tomography method that 
simultaneously solves for Vp, Vs, Vp/Vs and event locations using both absolute and 
differential P, S, and S-P times (Zhang, 2003; Zhang et al., 2009a, b). This new code, named 
tomoDDPS, avoids the pitfalls of inferring Vp/Vs from Vp and Vs models via division 
(Eberhart-Phillips, 1990). We briefly summarize the method as follows. 

The P and S arrival times pT and sT from an earthquake i  to a seismic station k  are 
expressed using ray theory as path integrals 

 
ki i

pk pi
T u dl    (6)                  

 
ki i

sk si
T u dl    (7) 

where i is the origin time of event i , pu and su are the P- and S-wave slowness fields and 
dl is an element of path length. The source coordinates 1 2 3( , , ),x x x  origin times, ray paths, 
and the slowness field are the unknowns. By assuming the ray paths of P and S waves are 
identical, which is true when Vp/Vs is constant, Vp/Vs can be determined from S-P arrival 
times Ts Tp , as follows (Thurber, 1993), 

 
Vp d

T T p 1
V Vs ppath

l
s

 
   
 
 

 . (8) 
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Note here because P and S waves from the same event share the same origin time, the 
unknown origin times are removed from this equation. In the simul2000 algorithm (Thurber 
and Eberhart-Phillips, 1999), Equations (6) and (8) are used to solve for Vp and Vp/Vs using 
P and S-P times and Vs is later calculated by dividing Vp by Vp/Vs. However, as noted by 
Wagner et al. (2005), the Vs model may be biased if calculated in this way because the 
anomaly in Vp may leak into Vs. In the new tomoDDPS algorithm, Vp, Vs, and Vp/Vs are 
determined simultaneously in a system using P, S, and S-P times based on Equations (6), (7) 
and (8) (Zhang, 2003; Zhang et al., 2009a, b). To meet the assumptions made for Equation (8), 
only S-P times from similar P and S ray paths are selected to solve for Vp/Vs. 
Similar to the DD tomography code tomoDD, differential P and S times are also used in 

tomoDDPS to better constrain seismic event locations and Vp and Vs models (Zhang and 

Thurber, 2003). In addition, differential S-P times are also used to determine the Vp/Vs 

structure based on the differential time version of Equation (8), which can be directly 

constructed from differential P and S times. One advantage of using differential S-P times is 

to remove the effect of different ray paths of P and S waves outside the source region. Near 

the source region, P- and S-wave ray paths are generally close to each other. Smoothing 

weights are applied to P- and S-wave slowness perturbations and Vp/Vs perturbations for 

neighboring inversion grid nodes to stabilize the tomographic inverse problem. The 

complete tomographic system is represented as follows (Zhang et al., 2009a): 
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where ( ) ( )i i obs i cal
k k kdr T T   is the absolute time residual, ( ) ( )ij j ji obs i cal

k kk k kdr T T T T     is the 

differential time residual,  is the origin time perturbation, u is the P or S slowness 

perturbation, ( / )Vp Vs is the Vp/Vs perturbation, w1 and w2 are data weights for the 

absolute and differential P or S data, w3 and w4 are data weights for the absolute and 

differential S-P data, w5 and w6 are smoothing weights for slowness and Vp/Vs models, and 

m and n indicate neighboring inversion grid nodes. The complete system is solved using a 
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damped least squares inversion method LSQR in which the weighted data residuals are 

minimized (Paige and Saunders, 1987).  

4. Data and inversion details 

For the Sichuan region, we collected ~38,600 P- and ~36,500 S-wave first arrival times from 
4878 earthquakes observed on 55 stations for the period 2001 to 2004 (Figure 1). These 
arrival times are selected from the original catalog data based on the major trend of travel 
time curves (Figure 4). There are obvious 60-second clock shift errors and other reading 
errors in catalog picks. For each event included in the analysis, there are at least 6 P and 2 S 
observations, increasing the likelihood of reliable relocations. From the absolute P and S 
arrival times, we constructed ~269,000 P and ~261,000 S differential times. The average 
number of differential times (links) per event pair is 11 and the average hypocentral 
separation (based on catalog locations) for the linked event pairs is ~11 km.  
 
 

 
 

Fig. 4. P and S travel time curves for the original (blue) and selected (red) catalog data. 

The inversion grid interval for the velocity model in latitude and longitude is 0.5°. In depth, 
the grid nodes were positioned at 0, 5, 10, 17.5, 25, 35, 45, 65, and 90 km. In the Sichuan 
region, the Moho depth varies from ~60 km in the Songpan-Ganze terrane to ~46 km in the 
Sichuan basin (Xu et al., 2007). Therefore our model mainly reflects the crustal structure of 
the southeastern Tibetan Plateau. We first derived a minimum one-dimensional (1D) 
velocity model for the region based on the regional 1D velocity model of Zhao et al. (1997) 
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(Figure 5). The travel times were calculated using the new SEFD method described above. 
Both damping and first-order smoothing were used to stabilize the inversion. A trade-off 
analysis between data variance and model variance was used to select optimum damping 
and smoothing parameters. The initial unweighted root-mean-square (RMS) travel time 
residual of 1.78 s was reduced to a final value of 0.48 s, a reduction of approximately 73%.  
We assess the model quality by a checkerboard resolution test. ±5% velocity anomalies were 
added to the final 3D Vp and Vs models with an anomaly size of one grid node (Figures 6 
and 7). The velocity anomalies for Vp and Vs are made opposite in sign so that the Vp/Vs 
anomaly ranges from approximately -9% to 11% (Figure 8). A combination of constant noise 
for each station and random noise at a level comparable to the final inversion misfit is added 
to the absolute P and S times. The checkerboard resolution test showed that both Vp and Vs 
models are relatively well resolved for the depth range of 5 to 65 km except for the depth 
slice of 17.5 km. For the Vp/Vs model, it is also well resolved from a depth of 5 to 45 km 
except for the depth slice of 17.5 km. For the depth slice of 65 km, the Vp/Vs model has 
some resolution in the middle part of the model. All three models have poor resolution at 
depth 0 km. 
 
 
 
 

 
 
 
 

Fig. 5. Three different 1D Vp and Vs profiles for the Sichuan region. RRed: the 1D model of 
Zhao et al. (1997); Blue: the inverted 1D model; Black: the average 1D model from the 3D 
inverted model. 
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Fig. 6. Horizontal slices of the recovered Vp checkerboard model.  
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Fig. 6. (Continued)  
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Fig. 7. Horizontal slices of the recovered Vs checkerboard model.  
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Fig. 7. (Continued)  
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Fig. 8. Horizontal slices of the recovered Vp/Vs checkerboard model.  
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Fig. 8. (Continued)  
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5. Results and discussion 

Figure 9 shows the horizontal slices of the Vp, Vs and Vp/Vs models at depths of 0, 5, 10, 
17.5, 25, 35, 45 and 65 km. Figures 10, 11 and 12 show the cross sections of the Vp 
perturbations, Vs perturbations and Vp/Vs model at latitudes of 28°, 29°, 30°, 31° and 32°, 
respectively. Vp and Vs perturbations are with respect to the 1D Vp and Vs models 
averaged from the 3D models (Figure 5). Compared to previous tomography studies in the 
Sichuan region, to our knowledge this is the first time that the Vp/Vs model is directly 
determined from the S-P arrival times instead of being derived from the Vp and Vs models. 
Pei et al. (2010) used the same methodology of Zhang et al. (2009a, b) to solve for the Vp, Vs 
and Vp/Vs models around the Longmenshan Fault, but the depth extent of the model is 
only down to 30 km. 
At shallow depths (0-5 km), our tomographic velocity models are consistent with the local 
geology. The Sichuan Basin is clearly imaged as a low velocity region with high Vp/Vs 
ratios (>1.9). The basin is mainly composed of Tertiary, Quaternary to Mesozoic sediments 
derived from uplift resulting from the collision. Outside the Sichuan Basin, velocities are 
generally higher and the Vp/Vs ratio is lower than 1.7, mainly corresponding to the 
Songpan-Ganze Terrane. One low velocity zone (low Vp and Vs and high Vp/Vs) in the 
Sichuan Basin is located between latitudes 31° to 32° and longitudes 104° to 105°, extending 
all the way from the surface down to the depth of a depth of 25 km. Although this low 
velocity zone is located around the model edge, the checkerboard resolution tests showed 
this area has good resolution. Previous tomography studies also identified this low velocity 
anomaly (Wang et al., 2009).  
At deeper depths (10-25 km), strong velocity variations are present across the region. At 10 
km depth, the Longmen Shan Fault (LMSF) separates a higher velocity region to the 
northwest from lower velocities to the southeast. At 17.5 km depth, the velocity contrast is 
still clear north of latitude ~30.5°, especially for Vs, indicating the LMSF may penetrate at 
least down to ~18 km. The Longquan anticline separates a relatively lower velocity region to 
the west and a higher velocity to the east at depths 10 and 17.5 km. 
In the Songpan-Ganze Terrane, there are scattered low velocity regions bounded by high 
velocity bodies in the depth slices of 10 km and 17.5 km. Especially at 10 km, the velocity 
pattern resembles the deformation block model found by modeling the GPS data by Shen et 
al. (2005). The low velocity anomalies generally follow the derived sub-block boundaries. 
For example, the Songpan-Xihe deformation zone separating the Ahba block to the 
northwest and the Longmen Shan block to the southeast corresponds to a broad low 
velocity zone.  The Yajiang block bounded by the Xianshuihe Fault, Lijiang Fault, and Litang 
Fault corresponds to a high velocity body, whereas these faults fall in low velocity zones. 
The Central Yunnan block bounded by the Anninghe Fault, Zemuhe Fault and Lijiang Fault 
is also associated with a high velocity body with relatively low velocities around it. The 
correspondence between low velocity zones and block boundaries indicates that the blocks 
themselves are strong and are surrounded by relatively weak zones, where deformation 
mainly occurs. At a depth of 17.5 km, there is a strong low Vp and Vs anomaly around 
latitude 30° and longitude of 102°, where the Longmen Shan Fault, the Xianshuihe Fault and 
the Anninghe Fault intersect. This low velocity body corresponds to a normal Vp/Vs value 
of ~1.7. Nakajima et al. (2001) also found similar low Vp, low Vs and average to low Vp/Vs 
patterns in the upper crust of the Japan Island, which they interpreted as being due to the 
presence of fluids.  
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Fig. 9. Horizontal slices of the Vp, Vs and Vp/Vs models at depths 0 to 65 km. 
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Fig. 9. (Continued)  
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Fig. 9. (Continued)  
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Fig. 10. Cross sections of the Vp perturbation model at latitudes 28, 29, 30, 31, and 32.  
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Fig. 11. Cross sections of the Vs perturbation model at latitudes 28, 29, 30, 31, and 32.  
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Fig. 12. Cross sections of the Vp/Vs model at latitudes 28, 29, 30, 31, and 32.  
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Starting from the depth slice of 25 km and down to 65 km, we see widespread low velocity 
zones outside the Sichuan Basin, which itself generally corresponds to a high velocity 
anomaly. These low velocity zones are not uniformly distributed but vary in amplitude and 
they are mostly connected to each other. Previous surface wave and body wave tomography 
studies also found crustal low velocity zones in this region and interpreted them as weak 
zones for possible channel flow (e.g. Yao et al., 2008, 2010; Wang et al., 2009). However, it is 
not clear how these low velocity zones are distributed. Are they bounded by the local 
structures such as faults, which may interrupt or deflect flow? From the Vp model, it is clear 
that the low velocity zones may be bounded by faults. For example, at depths of 25 km and 
45 km, there is a low velocity zone clearly bounded by the Longmen Shan Fault and 
Xianshuihe Fault. This low velocity zone dips towards the south and is bounded by the 
Lijiang Fault and Zemuhe Fault.  Another low velocity zone follows the Daliangshan Fault 
zone from a depth of 25 km to 65 km. The two low velocity zones seem not to be connected 
at a depth of 25 km and are connected at greater depths. Compared to the Vp model, the Vs 
model does not show such patterns as clearly. This could be due to larger data errors in the 
S arrival times and relatively poorer Vs model resolution.  
From cross sections of Vp and Vs perturbations at different latitudes (Figures 10 and 11), we 

see low velocity anomalies below ~20 km depth underneath the Songpan-Ganze block. In 

comparison, the region beneath the Sichuan basin is shown as a high velocity body. For 

example, in the cross section of latitude 30°, there is an evident low velocity layer in both Vp 

and Vs around 20 km depth from longitude 101.5° to 102.5°. This low velocity layer was 

previously detected from a deep seismic sounding profile and by receiver function analysis 

(Wang et al., 2008) along latitude 30°. A magnetotelluric (MT) survey between longitudes 

102° to 104° and slightly to the north of latitude 29° also showed a low resistivity layer 

around 20 km depth (Zhao et al., 2008). This low resistivity layer is associated with low Vp, 

low Vs and high Vp/Vs (Figure 12). Receiver function analysis at station MC09 (latitude 29° 

and longitude 102.8°) also showed a low Vs layer in the crust associated with a high Vp/Vs 

ratio (Xu et al., 2007).   

Because of high regional surface heat flow values (Hu et al., 2000), the low Vp and Vs 

anomalies in the eastern Tibetan Plateau have been suggested by many researchers to be 

due to elevated temperatures or partial melt (e.g. Yao et al., 2008). However, the recent 

receiver function analysis by Robert et al. (2010) found low Vp/Vs (=1.69) beneath the 

Songpan-Ganze terrane, which is lower than the mean value for continental areas (Zandt 

and Ammon, 1995). This observation led them to dispute the existence of a thick and 

extensive zone of partial melt in the crust of the Songpan-Ganze terrane. In contrast, Wang 

et al. (2008) showed high Vp/Vs (or Poisson ratio) perturbations and Xu and Song (2010) 

showed high Poisson ratios in the middle and lower crust of the Songpan-Ganze terrane. 

Both of their models are obtained by directly dividing Vp by Vs. In comparison, our Vp/Vs 

model is obtained by directly inverting absolute and differential S-P times and thus is more 

reliable.  Above ~35 km, most of the Songpan-Ganze terrane has a Vp/Vs value of ~1.6. 

Below ~35 km, the Vp/Vs value starts to increase and reaches up to ~1.85. By averaging 

from 0 to 60 km, the Vp/Vs value from our study is close to what Robert et al. (2008) found 

from the receiver function analysis. Although low velocity anomalies start from ~20 km 

depth in the crust of the eastern Tibetan Plateau, partial melt may not exist until 35 to 40 km 

depth where the Vp/Vs ratio is relatively high (Christensen, 1996). In the shallower part, the 

low velocity anomalies could be caused by the existence of aqueous fluids (Li et al., 2003). 

www.intechopen.com



Seismic Imaging of Microblocks and Weak Zones 
in the Crust Beneath the Southeastern Margin of the Tibetan Plateau 

 

183 

The distribution of aqueous fluids in spheroidal pores can result in low Vp and Vs 

anomalies and an average to low Vp/Vs anomaly (Takei, 2002). In this study area, the 

earthquakes are mostly located above 30 km (Figure 13), supporting the argument that 

partial melt does not occur above this depth. Most of the earthquakes are located in the 

region with Vp>4.4 km/s and Vs>2.6 km. 

 
 
 
 

 
 
 

Fig. 13. Scatterplot of hypocenter depth versus Vp, Vs, and Vp/Vs at the hypocenter.  

Laboratory experiments show that even a small percentage of melt dramatically reduces the 
viscosity of rock and it essentially loses its solid nature and behaves like fluid when the melt 
content reaches 20% to 55% (Kohlstedt and Zimmerman, 1996). A rock containing a fluid 
content greater than 5% is 10 times weaker than the surrounding material with the same 
composition (Rosenberg and Handy, 2005). An MT survey through latitude 30° showed a 
strong low resistivity anomaly below ~30 km depth, which may contain 5% to 20% of fluid 
content (Bai et al., 2010). The low velocity layer in the shallower part of the crust (such as 
depth 17.5 km) may play a role of decoupling the upper crust from the mid- and lower crust 
and the low velocity layer in the lower crust may decouple the crust from the upper mantle. 
If both low velocity layers exist, they can act as upper and lower sliding planes for the 
crustal materials to move eastward from the Tibetan Plateau (Teng et al., 2008). Jamieson et 
al. (2006) found that simply adding a weakened layer in the upper crust to a channel-flow 
model allowed the model to reproduce several geological observations. Our tomography 
results support the existence of low velocity zones in the shallower part of the crust.  
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The 2008 Wenchuan Ms 8.0 earthquake occurred at latitude 31° and longitude 103.4°, where 

there is a high velocity body seen in the 17.5 km and 25 km depth slices. This high velocity 

body may act as a local barrier to the channel flow so that it cannot flow to the east and 

north. As a result, the strain was continuously built up around the corner and the high 

velocity body acted as an asperity for the main shock. From a local-scale seismic 

tomography study around the Longmen Shan Fault using aftershocks of the 2008 Wenchuan 

earthquake, Pei et al. (2010) found two high velocity bodies around Wenchuan and 

Beichuan, associated with two large slip patches there. These two high velocity bodies act as 

asperities for the strain to accumulate and lead to large slip during earthquakes. These two 

high velocity bodies can also be identified in the depth slice of 17.5 km. There exists a 

relatively low velocity zone between two high velocity bodies along the Longmen Shan 

fault, where the aftershocks are relatively sparse (Pei et al., 2010). 

6. Conclusions 

New three-dimensional velocity models including Vp, Vs and Vp/Vs for the southeastern 

margin of the Tibetan Plateau covering most of Sichuan, China, provide new insights into 

the geodynamics of the region. The tectonic subblocks found by modeling the GPS data 

(Shen et al., 2005) are associated with high velocity (or strong) bodies, surrounded by low 

velocity (or weak) regions. Widespread low velocity zones are found below ~20 km depth in 

the crust with a complicated spatial distribution. At some depths, the low velocity zones are 

clearly bounded by faults. Aqueous fluids may exist in the mid-crust above ~35 km depth 

where the Vp/Vs values are low to average. Partial melt may only exist in the deeper part 

where the Vp/Vs values are high. The existence of aqueous fluids and/or partial melt can 

significantly reduce the strength of rock and allow the channel flow in the crust to occur 

beneath the southeaster Tibetan Plateau. The 2008 Wenchuan Ms 8.0 earthquake likely 

resulted from the strain accumulation around the high velocity region near the main shock 

when the channel flow was obstructed there. 
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8. Appendix 

In this appendix, we give details of “edge” and “face” stencils used in the spherical finite-

difference travel time calculation method. 

1. “Edge” Stencils 

In this stencil (or Scheme B in Vidale (1990)), 3 previously known nodes and one new node 

are used to compute an unknown time. Typically this occurs on the edges of new faces. All 

possible stencils are shown in Figure A1. 

Using the above stencils, all the derivatives are: 
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 dt/dr 1/r dt/d 1/rsindt/d 
T-N [(t4 - t1) +(t5 - t2)]/2h [(t4-t5)/r2 + (t1-t2)/r1]/2 (t0-t3)/r1sin 
T-S [(t4 - t1) +(t5 - t2)]/2h [(t5-t4)/r2 + (t2-t1)/r1]/2 (t3-t0)/r1sin 
T-E [(t4 - t1) +(t5 - t2)]/2h (t0-t3)/r1/2 [(t5-t4)/r2 + (t2-t1)/r1]/2sin 
T-W [(t4 - t1) +(t5 - t2)]/2h (t3-t0)/r1/2 [(t4-t5)/r2 + (t1-t2)/r1]/2sin 
B-N [(t1 - t4) +(t2 - t5)]/2h [(t4-t5)/r2 + (t1-t2)/r1]/2 t3-t0)/r1sin 
B-S [(t1 - t4) +(t2 - t5)]/2h [(t5-t4)/r2 + (t2-t1)/r1]/2 t0-t3)/r1sin 
B-E [(t1 - t4) +(t2 - t5)]/2h t3-t0)/r12 [(t5-t4)/r2 + (t2-t1)/r1]/2sin 
B-W [(t1 - t4) +(t2 - t5)]/2h t0-t3)/r12 [(t4-t5)/r2 + (t1-t2)/r1]/2sin 
W-T [(t2 - t1) +(t5 - t4)]/2h t0-t3)/r12 [(t2-t5)/r2 + (t1-t4)/r1]/2sin 
W-B [(t1 - t2) +(t4 - t5)]/2h t3-t0)/r12 [(t2-t5)/r2 + (t1-t4)/r1]/2sin 
W-N (t0 - t3)/2h [(t4-t5) + (t1-t2)]/2r1 [(t1- t4)/sin +(t2-t5)/sinr1 
W-S (t3 - t0)/2h [(t5-t4) + (t2-t1)]/2r1 [(t1-t4)/sin +(t2-t5)/sinr1 
E-T [(t2 - t1) +(t5 - t4)]/2h (t3-t0)/r1/2 [(t5-t2)/r2 + (t4-t1)/r1]/2sin 
E-B [(t1 - t2) +(t4 - t5)]/2h (t0-t3)/r1/2 [(t5-t2)/r2 + (t4-t1)/r1]/2sin 
E-N (t3 - t0)/2h [(t4-t5) + (t1-t2)]/2 r1 [(t4-t1) /sin +(t5-t2)/sinr1 
E-S (t0 - t3)/2h [(t5-t4) + (t2-t1)]/2 r1 [(t4-t1) /sin +(t5-t2)/sinr1 
N-T [(t2-t1) + (t5-t4)]/2h [(t2-t5) /r2 + (t1-t4)/r1]/2 (t3-t0)r1sin 
N-B [(t1-t2) + (t4-t5)]/2h [(t2-t5) /r2 + (t1-t4)/r1]/2 (t0-t3)r1sin 
N-W (t3 - t0)/2h [(t2-t5)  + (t1-t4)]/2r1 (t1-t2)sin(t4-t5)sin2r1 
N-E (t0 - t3)/2h [(t2-t5)  + (t1-t4)]/2r1 (t2-t1)sin(t5-t4)sin2r1 
S-T [(t2-t1) + (t5-t4)]/2h [(t5-t2) /r2 + (t4-t1)/r1]/2 (t0-t3)r1sin 
S-B [(t1-t2) + (t4-t5)]/2h [(t5-t2) /r2 + (t4-t1)/r1]/2 (t3-t0)r1sin 
S-W (t0 - t3)/2h [(t5-t2)  + (t4-t1)]/2r1 (t1-t2)sin(t4-t5)sin2r1 
S-E (t3 - t0)/2h [(t5-t2)  + (t4-t1)]/2r1 (t2-t1)sin(t5-t4)sin2r1 

Note that for each case:   

T-N = +-(T-S) = +-(B-N) = +-(B-S) 
T-E = +-(T-W) = +-(B-E) = +-(B-W) 
W-T = +-(W-B)=+-(E-T)=+-(E-B) 
W-N = +-(W-S) =+-(E-N) =+-(E-S) 
N-T = +-(N-B)=+-(S-T)=+-(S-B) 
N-W = +-(S-W) =+-(N-E) =+-(S-E) 
So, because we square derivatives, we need only concern ourselves with expressions for 6 
cases. 
 

        
 dt/dr 1/r dt/d 1/rsindt/d 
T-N [(t4 - t1) +(t5 - t2)]/2h [(t4-t5)/r2 + (t1-t2)/r1]/2 (t0-t3)/r1sin 

T-W [(t4 - t1) +(t5 - t2)]/2h (t3-t0)/r1/2 [(t4-t5)/r2 + (t1-t2)/r1]/2sin 

W-T [(t2 - t1) +(t5 - t4)]/2h (t0-t3)/r1/2 [(t2-t5)/r2 + (t1-t4)/r1]/2sin 

W-N (t0 - t3)/2h [(t4-t5) + (t1-t2)]/2r1 [(t1- t4)/sin +(t2-t5)/sinr1 

N-T [(t2-t1) + (t5-t4)]/2h [(t2-t5) /r2 + (t1-t4)/r1]/2 (t3-t0)r1sin 
N-W (t3 - t0)/2h [(t2-t5)  + (t1-t4)]/2r1 (t1-t2)sin(t4-t5)sin2r1 

The general form of the equation is: 
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4s2 = [(t4-t1)/d14 +(t5-t2)/d25]2  [(t4-t5)/d45 + (t1-t2)/d12]2(t0-t3)/d012 

And we solve for t5 

4s2 = [(t4-t1)/d14]2  [(t1-t2)/d12]2(t0-t3)/d012 

+ [(t52 + t22 - 2t2t5)/d252 + 2(t1t2 - t1t5 - t2t4+ t4t5)/d14d25] 
+ [(t52 + t42 - 2t4t5)/d452 + 2(t1t4 - t1t5 - t2t4+ t2t5)/d12d45] 

Isolating t5: 

4s2 = [(t52 - 2t2t5)/d252 + 2(- t1t5 + t4t5)/d14d25]  + [(t52 - 2t4t5)/d452 + 2(- t1t5 + t2t5)/d12d45] 

      + [(t4-t1)/d14]2  [(t1-t2)/d12]2(t0-t3)/d012 

      + [(t22)/d252 + 2(t1t2 - t2t4)/d14d25] + [(t42)/d452 + 2(t1t4 - t2t4)/d12d45] 

 

4s2 = t52 [1/d252 + 1/d452]  +  2t5[(- t2)/d252 + (- t1 + t4)/d14d25 + (- t4)/d452 + (- t1 + t2)/d12d45] 
         + [(t4-t1)/d14]2 + [(t22)/d25 + 2 t2 (t1 - t4)/d14d25]  

         + [(t2-t1)/d12]2+ [(t42)/d45 + 2 t4 (t1 - t2)/d12d45] +(t0-t3)/d012 

 

4s2 = t52 [1/d252 + 1/d452] +  2t5[(- t2)/d252 + (t4 - t1)/d14d25 + (- t4)/d452 + (t2 - t1)/d12d45] 

          + [(t4-t1)/d14 - t2/d25]2 + [(t2-t1)/d12 - t4/d45]2 +(t0-t3)/d012 

 

4s2 = t52 [1/d252 + 1/d452]  +  2t5[ (t4 - t1)/d14d25 + (t2 - t1)/d12d45 - t2/d252 - t4/d452] 

          + [(t4-t1)/d14 - t2/d25]2 + [(t2-t1)/d12 - t4/d45]2 +(t0-t3)/d012 

 
 d01 d12 d14 d25 d45 

TN r2sin2 r2 h h r1 
TW r2 r2sin1 h h r1sin1 
NW h r1sin2  r1  r1  r1sin1 
NT r2sin2  h r2  r1  h 

WN h r2 r1sin2 r1sin1 r2 
WT r2 h r2sin2 r1sin1 h 

In General: 

4s2 = at52+b t5+c 

with 

a = 1/d252 + 1/d45
 

b = 2[ (t4 - t1)/d14d25 + (t2 - t1)/d12d45 - t2/d252 - t4/d452] 
b = 2[ (t4 - t1)/d14 - t2/d25]/d25+ [(t2 - t1)/d12 - t4/d45]/d45] 

When d14 = d25 (TN, TW, NW) 

b = 2[ (t4 - t1 - t2)/d252 + (t2 - t1)/d12d45 - t4/d452] 

When d12 = d45 (WN, WT, NT) 

b = 2[(t2 - t1 - t4)/d452  + (t4 - t1)/d14d25 - t2/d252] 

c = [(t4-t1)/d14 - t2/d25]2 + [(t2-t1)/d12 - t4/d45]2 +(t0-t3)/d012s2 

When d14 = d25 (TN, TW, NW) 

c = [(t4-t1-t2)/d25]2 + [(t2-t1)/d12 - t4/d45]2+(t0-t3)/d012s2 

www.intechopen.com



Seismic Imaging of Microblocks and Weak Zones 
in the Crust Beneath the Southeastern Margin of the Tibetan Plateau 

 

187 

When d12 = d45 (WN, WT, NT) 

c = [(t2-t1-t4)/d45]2 + [(t4-t1)/d14 - t2/d25]2+(t0-t3)/d012s2 

2. Face stencils (or Scheme C in Vidale (1990)) 

New face stencils solve for point 5 on a new face given 4 points on an existing face.  The 
geometries are shown in Figure A2. Given the geometries shown, the derivatives are: 
 
 
 
 
 
 

 dt/dr 1/r dt/d 1/rsindt/d 

T (t5-t2)/h  (t0-t4)/2r1 (t3-t1)r2sin1 

B (t2-t5)/h  (t0-t4)/2r1 (t1-t3)r2sin1 

N (t4-t0)/2h (t2-t5)/r1 (t1-t3)r2sin2 

S (t4-t0)/2h (t5-t2)/r1 (t3-t1)r1sin2 

W (t3-t1)/2h (t0-t4)/2r1 (t2-t5)r1sin1 

E (t1-t3)/2h (t0-t4)/2r1 (t5-t2)r1sin1 

 
 
 
 
 
 

Note that T = +-B; N = +-S and W = +-E in each case, so it is enough to know (T, N, W). 

The general form is: 

s2 = [(t5-t2)/d25]2  [(t4-t0)/2d02]2(t3-t1)/2d122 

And we solve for t5 

[(t5-t2)/d25]2 = s2 - [(t4-t0)/2d02]2(t3-t1)/2d122 

t45 = t2 + d25(s2 - [(t4-t0)/2d02]2(t3-t1)/2d122)1/2 

t5 = t2 + d25(s2 - (t4-t0)2/d022 (t1-t3)
d12

 
 
 
 
 
 

 d02 d12 d25 

T r2 r2sin1 h 

N h r1sin2  r1 

W r1 h r1sin1 
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Top Side 

 

 
 
 
 

Bottom Side 
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Bottom Side 
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North Side 
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South Side 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

www.intechopen.com



Seismic Imaging of Microblocks and Weak Zones 
in the Crust Beneath the Southeastern Margin of the Tibetan Plateau 

 

193 

 
 
 
 
 
 
 
 
 
 
 

West Side 
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East Side 
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New Face Stencils 

 

 

 

 
 
 
 
 
 

 
 
 
 
 

 
 

 

 

www.intechopen.com



 
Earth Sciences 

 

196 

Two dimensional stencils 

For each edge there are 8 stencils:  4 parallel to the face and 4 perpendicular to the face.  We 
number the nodes (t0, t1, t2, t3), with t0 being the unknown, t1, t2 being the adjacent points and 
t3 being at the opposite corner. 

 

t0-------t1 

|          | 

t2--------t3 

 
The perpendicular stencils all have (0-2) as a common edge, and the parallel stencils all have 
point 0 in common and either (0-1) or (0-2) as a common edge. 

It is easy to show that in each case the Eikonal equation can be written as: 

4s2 = [(t0-t2)/d02 + (t1-t3)/d13] 2 + [(t1-t0)/d01 + (t3-t2)/d23] 2 

And so the solution consists of solving for t0 and identifying the proper distances (d01, etc) 
in each case.  To solve for t0:
4s2 = (t02 + t22 -2 t2t0 )/ d022 + [(t1-t3)/d13] 2 t0t1 - t0t3 - t1t2 + t2t3)/d02d13 +
         (t02 + t12 -2 t1t0 )/ d012 + [(t3-t2)/d23] 2 t0t2 - t0t3 - t1t2 + t1t3)/d01d23 

Isolating t0 : 

4s2 = (t02 -2 t2t0 )/ d022  t0t1 - t0t3)/d02d13 + (t02 -2 t1t0 )/ d012  t0t2 - t0t3)/d01d23 + 

         (t22)/ d022 + [(t1-t3)/d13] 2t1t2 + t2t3)/d02d13 +
 (t12)/ d012 + [(t3-t2)/d23] 2- t1t2 + t1t3)/d01d23 
 

4s2 = (t02)/ d022 (t02)/ d012 +  

         2t0 [(-t2)/ d022  t1 - t3)/d02d13 +(-t1 )/ d012  t2 - t3)/d01d23 ]+ 

         (t22)/ d022 + [(t1-t3)/d13] 2 t2t1 + t3)/d02d13 +
         (t12)/ d012 + [(t3-t2)/d23] 2 t1- t2 + t3)/d01d23  
 

4s2 = t02[1/ d022 1/ d012] - 2t0 [t2/ d022  t3 - t1)/d02d13 +(t1 )/ d012  t3 - t2)/d01d23 ]+ 

         (t22)/ d022 + [(t1-t3)/d13] 2 t2t3 - t1)/d02d13 +
         (t12)/ d012 + [(t3-t2)/d23] 2 t1t3 - t2)/d01d23  
 

4s2 = t02[1/ d022 1/ d012] - 2t0 [(t2/d02  t3 - t1)/d13 )/ d02 +(t1/d01  t3 - t2)/d23)/ d01 ] + 

         [t2/d02  + (t3-t1)/d13]2  +  [t1/ d01  + (t3-t2)/d23]2  
4s2 = t02[1/ d022 1/ d012] + 2t0 [(t1 - t3)/d13  - t2/d02)/ d02 +(t2 - t3)/d23 - t1/d01)/ d01 ] + 

         [(t1-t3)/d13 - t2/d02]2  +  [(t2-t3)/d23 - t1/ d01]2  

Which is quadratic for t0: 

a = 1/ d022 1/ d012
b = 2*[(t1 - t3)/d13  - t2/d02)/ d02 +(t2 - t3)/d23 - t1/d01)/ d01 ]
c = [(t1-t3)/d13 - t2/d02]2  +  [(t2-t3)/d23 - t1/ d01]2 s2
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Perpendicular Stencils: 

  d01 d02 d13 d23 

T/B NS r1 h h r2 

 EW r1sin h h r2sin 
E/W TB h rsin1 rsin2 h 

 NS r1 rsin1 rsin2 r2 
N/S TB h r1 r2 h 

 EW rsin1 r1 r2 rsin2 

Parallel Stencils: 

 d01 d02 d13 d23 

T/B rsin r1 r1 rsin2 
E/W h r1 r2 h 

N/S rsin1 h h r2sin 
 
 
 
 
 
 

Top and Bottom Faces.  Stencils for the Top face shown below.  Bottom differs only in sign 

of  r and 
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North and South Faces.  Stencils for the North face shown below.  South differs only in sign 

of   and 

           

West and East Faces.  Stencils for the West face shown below.  East differs only in sign of   

and r

           

One Dimensional Stencils 

Change in r:  t0 = t1 + hs 

Change in :  t0 = t1 + rs 

Change in :  t0 = t1 + rsins 
Note that this needs to be along the edge of the volume element for energy that travels along 
the edge, in the same way as the Cartesian coordinate system. 
There are three types, depending on which variables are along the boundary.  In each case 
we have (t0, t1, t2, t3), with t0 being the unknown, t1, t2 being the adjacent points and t3 being 
at the opposite corner. 
 

t0-------t1 

|          | 

t2--------t 
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