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1. Introduction 

Dyslipidemia is characterized by an aggregation of lipoprotein abnormalities including low 
high density lipoprotein cholesterol (HDL-C), high serum triglycerides (TG) and increased 
small low density lipoprotein cholesterol (LDL-C). Lipoproteins, which contain lipids and 
proteins (apolipoproteins, APO) are responsible, primarily, for transporting water insoluble 
lipids (cholesterol, TG) in plasma from the intestines and liver, where they are absorbed and 
synthesized, respectively, to peripheral tissues (muscle, adipose) for utilization, processing 
and/or storage (Kwan et al., 2007). There are several subtypes of lipoproteins with specific 
functions including, from smallest to largest: 1) chylomicrons, which transport dietary TG 
from the intestines to the peripheral tissue and liver; 2) very LDL (VLDL) particles, which 
transport TG from the liver to peripheral tissues; 3) intermediate density lipoproteins (IDL), 
which are produced from VLDL particle metabolism and may be taken up by the liver or 
further hydrolyzed to LDL; and, 4) HDL, which is key in ‘reverse cholesterol transport’ or 
shuttling cholesterol from peripheral cells to the liver (Kwan et al., 2007). 
The Metabolic Syndrome (MetSyn) is a clustering of traits including dyslipidemia as well as 
hypertension (raised systolic and/or diastolic blood pressure), dysglycemia (high fasting 
glucose) and obesity (high body mass index (BMI) and/or waist circumference). 
Dyslipidemia is formally defined within the context of MetSyn. Various diagnostic 
definitions have been proposed for MetSyn by several organizations including the World 
Health Organization (WHO) (Alberti and Zimmet, 1998), European Group Insulin 
Resistance (EGIR) (Balkau and Charles, 1999), National Cholesterol Education Program 
Adult Treatment Panel III (NCEP ATP III, (2001), International Diabetes Federation (IDF, 
(Alberti et al., 2005), American Heart Association/National Heart, Lung, and Blood Institute 
(AHA/NHLBI) (Grundy et al., 2006) and, with the most recent joint interim statement 
proposed by the AHA/NHLBI, IDF and other organizations (Alberti et al., 2009). Although 
the recommendations differ widely on the obesity component, the dyslipidemia component 
has been fairly consistently defined as having TG ≥ 150 mg/l, HDL-C <40 mg/dL (1.03 
mmol/l, in males) or <50 mg/dL (1.29 mmol/l in females) or drug treatment for elevated 
TG or low HDL-C (NCEP ATP III: (2001), IDF: (Alberti et al., 2005), Joint Statement: (Alberti 
et al., 2009)). However, the WHO (Alberti and Zimmet, 1998) proposed slightly lower limits 
for HDL-C (male: < 0.9 mmol/l (35 mg/dl); female: < 1.0 mmol/l (39 mg/dl)) and the EGIR 
(Balkau and Charles, 1999) recommended dyslipidemia be defined by HDL-C < 1.0 mmol/l 
(39 mg/dl) or TG > 2.0 mmol/l (177 mg/dl). There is currently no recommended value for 
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LDL-C levels in the context of MetSyn yet LDL-C remains the primary target of therapy for 
the management of high blood cholesterol per the most recent guidelines from the NCEP 
ATPIII, which recommended drug therapy for LDL-C values ranging from ≥100 mg/dl to 
≥190 mg/dl depending on the presence/absence of other coronary heart disease (CHD) risk 
factors (Grundy et al., 2004). When LDL becomes lipid depleted, small dense LDL (sdLDL) 
particles are formed, which have a lower affinity for the LDL receptor (LDLR), more 
susceptibility to oxidation and a higher affinity for macrophages; and, thus, sdLDL particles 
contribute to the atherosclerotic process (Austin et al., 1990; Littlewood and Bennett, 2003) 
and likely MetSyn (Kruit et al., 2010). 
Dyslipidemia and MetSyn are common in developed nations and the prevalence of both are 
rising worldwide, which may be attributed, in part, to the rising rates of overweight and 
obesity (Alberti et al., 2009; Halpern et al., 2010). According to the National Health and 
Nutrition Examination Survey (NHANES) III (1988-1994) in the United States (U.S.), which 
used the NCEP ATP III criteria, the age-adjusted prevalence of dyslipidemia defined by 
high TG or low HDL-C, was approximately 30.0% and 37.1%, respectively; and, the 
prevalence of MetSyn was approximately 23.7% (Ford et al., 2002). The prevalence of 
dyslipidemia and MetSyn generally increase with increasing age (Ford et al., 2002). 
However, in a more recent study that used the Health Survey for England (HSE) (2003-2006) 
survey data and NHANES (1999-2006) data with exclusion of persons over 80 years old, the 
prevalence of low HDL-C (defined in both males and females as <40 mg/dL) was 10.0% in 
England and 19.2% in the U.S. (Martinson et al., 2010). Thus, the prevalence can vary markedly 
depending on how these traits are defined (Cook et al., 2008). Interestingly, trends in the U.S. 
and England indicate during the past two decades an increase in the proportion of individuals 
diagnosed with high cholesterol (≥240 mg/dL) but who achieved therapeutic control (Roth et 
al., 2010). For example, in the U.S. in 2006, 54.0% of men (95% CI: 47.6–60.4) and 49.7% of 
women (95% CI: 44.3–55.0) with high total serum cholesterol were on cholesterol-lowering 
medication, as opposed to 10.8% of men (95% CI: 8.0–13.6) and 8.6% (95% CI: 6.7–10.6) of 
women in 1993 (Roth et al., 2010). In England, in 2006, 35.5% of men (95% CI: 32.8–38.3) and 
25.7% of women (95% CI: 23.4–28.1) were on cholesterol-lowering medication as opposed to 
0.6% of men (95% CI: 0.3–1.3) and 0.4% of women (95% CI: 0.1–0.7%) in 1993 (Roth et al., 2010). 
Thus, prevalence rates will also vary by whether or not relevant drug treatments have been 
considered and, perhaps, the list of relevant drugs should include cholesterol lowering 
therapies (e.g., statins) as well as other drugs (e.g., tamoxifen, glucocorticoids) known to alter 
TG and cholesterol levels (Garg and Simha, 2007). 
Both dyslipidemia and MetSyn increase the risk of Type II diabetes mellitus (T2DM) (Adiels 
et al., 2006; Kruit et al., 2010) and cardiovascular disease (CVD) morbidity (Alberti et al., 
2009; Linsel-Nitschke and Tall, 2005) and CVD mortality (Lewington et al., 2007). Patients 
with MetSyn have a five-fold increase in the risk of developing T2DM and are at twice the 
risk of developing CVD over the next 5 to 10 years compared to individuals without the 
syndrome (Alberti et al., 2009). In the presence of both MetSyn and T2DM, the prevalence of 
CVD is markedly increased with an odds ratio (OR) of 3.04 [95% confidence interval (CI) of 
OR: 1.98-4.11] in comparison to those with none of these conditions (Athyros et al., 2004). 
The importance of MetSyn is exemplified by its ICD-9 code (277.7), which was initially 
established as a diagnosis of “Dysmetabolic Syndrome X” (Einhorn et al., 2003; Kahn et al., 
2005). In summary, both dyslipidemia and MetSyn are substantial public health problems, 
which require a better understanding of their respective etiologies to develop more effective 
lifestyle and therapeutic interventions. 
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Heritability estimates suggest there is a strong genetic component to dyslipidemia and 

MetSyn. Heritability estimates for dyslipidemia range from 0.20 to 0.60 (Edwards et al., 

1997; Goode et al., 2007; Herbeth et al., 2010; Kronenberg et al., 2002; Wang and Paigen, 

2005) and from 0.24 to 0.63 for MetSyn (Lin et al., 2005; Sung et al., 2009).  

Multiple genetic variants in the form of single nucleotide polymorphisms (SNPs) (i.e., single 

DNA base changes) have been associated with manifestation of dyslipidemia and MetSyn. 

In this chapter, we review and summarize associations between common SNPs (i.e., those 

with a minor allele frequency (MAF) ≥0.05) in the most biologically plausible candidate 

genes and HDL-C, LDL-C and TG levels as well as MetSyn as a single, unifying trait. 

Previous estimates suggest all common variants together explain less than 10 percent of 

HDL-C levels in the general population (Kronenberg et al., 2002); however, more elegant 

statistical modeling methods that combine SNPs in a more biologically meaningful way may 

be needed to better understand the collective role of genetic variants in manifestation of 

dyslipidemia, MetSyn and other complex metabolic traits. As a result, at the end of this 

chapter, we review studies that have undertaken more complex modeling strategies to 

understand the aggregate effects of SNPs in manifestation of dyslipidemia and MetSyn and 

provide our insights for future directions in this field. 

2. Genetic variants in lipid metabolism and HDL-C levels 

As mentioned above, HDL-C is important for “reverse cholesterol transport” or the 

shuttling of cholesterol from peripheral cells to the liver. Many of the genetic variants 

associated with HDL-C levels have been summarized nicely in a recent comprehensive 

review by Boes et al. (Boes et al., 2009). In Table 1, we include common SNPs tabulated in 

Boes et al. (2009) review of large studies (ethnic group sample sizes ≥500) as well as common 

SNPs in large studies that have been identified since their review.  

 

Gene Polym. rs Number MAF Ethn. Sample 
Size 

Results 
(Effect Size,  

p-value) 

Reference 

ABCA1 C (-297)T rs2246298 0.25 (T) A 1625 
(GP) 

p=0.0455 (Shioji et al. 
2004b) 

ABCA1 G (-273)C rs1800976 0.40 (C) A 1626 
(GP) 
735 

(HBP) 

+1.9/+2.7 mg/dl 
(1/2copies); p=0.03
+1.9 /+5.0 mg/dl 

(1/2 copies); p=0.03

(Shioji et al. 
2004b) 

ABCA1 G (-273)C rs1800976 0.38 (T) Tu 2332 
(GP ) 

+0.7/+1.9 mg/dl 
(1/2 copies); 

p<0.02 

(Hodoglugil et 
al. 2005) 

ABCA1 G378C rs1800978 0.13 (C) W 5040 
(GP) 

-1.2/- 2.7 mg/dl 
(1/2 copies); 

p=0.03 

(Porchay et al. 
2006) 

ABCA1  rs3890182 0.13 (A) W 5287 
(GP) 

-1/-3 mg/dl (1/2 
copies) ; p=0.003 

(Kathiresan et 
al. 2008) 

ABCA1  rs2275542  A <1880 
(GP) 

p=0.006 (Shioji et al. 
2004b) 
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ABCA1  rs2515602 0.27 B 1943 (P) M; p=0.034;
F; p<0.001

(Klos et al. 
2006a) 

ABCA1 G596A rs2853578 0.28 (A) W 2468 
CVD 

834 (Co)

0.2 /+2.8 mg/dl 
(1/2 copies); 

p=0.02 

(Whiting et al. 
2005) 

ABCA1 2310G>A rs2066718 0.03 (A) W 9123 (P) F: higher levels in 
carriers; p=0.02 

(Frikke-
Schmidt et al. 

2004) 

ABCA1 G2706A rs2066718 0.05 (A) Tu 2458 
(GP) 

M: +2.0 mg/dl for 
heterozygotes; 

p<0.01

(Hodoglugil et 
al. 2005) 

ABCA1 2472G>A 
G2868A 

rs2066718 0.06 (A) Tu 2105 
(GP) 

F: +3.1 mg/dl for 
carriers; p=0.0005

(Hodoglugil et 
al. 2005) 

ABCA1 1883M rs4149313 0.12 (G) W 9123 (P) F: + heterozygotes; 
p=0.05 

(Frikke-
Schmidt et al. 

2004) 

ABCA1 32b.+30, 
ABC32 

  W 1543 (P) -2.2 mg/dl for 
carriers ; p=0.0040

(Costanza et 
al. 2005) 

ABCA1 R1587K rs2230808 0.24 (A) W 9123 (P) M: - 1.5 mg/dl for 
heterozygotes; 

p=0.008

(Frikke-
Schmidt et al. 

2004) 

ABCA1 4759G > A rs2230808 0.26 (K) W 779 
(CVD) 

-1.5 mg/dl for 
carriers; p=0.03 

(Clee et al. 
2001) 

ABCA1 50b.3038, 
ABC50 

rs41474449 . W 1543 (P) +1.6 mg/dl for 
carriers; p=0.043 

(Costanza et 
al. 2005) 

ABCA1  rs3890182 0.12 (A) EA 25,167 p= 4.53E-07 (Dumitrescu et 
al. 2011) 

APOA1 T84C 
(HaeIII) 

rs5070 0.23 (C) A 1637 
(GP) 

+1.9 /+5.4 mg/dl 
(1/2copies); 

p=0.0005

(Shioji et al. 
2004a) 

APOA1 MspI 
RFLP 

rs5069 0.31 (C) B 3831 (P) M/F; p=n.s/0.022 (Brown et al. 
2006) 

APOA1  rs28927680 0.93 (G) EA 25,167 p= 8.61E-09 (Dumitrescu et 
al. 2011) 

APOA1  rs964184 0.86 (C) EA 25,167 p= 6.08E-10 (Dumitrescu et 
al. 2011) 

APOA5 - 1131T > 
C 

rs662799 0.06 (C) UK 1696 (P) -1.5 mg/dl /-5.4 
mg/dl (1/2 

copies) ; p=0.04 

(Talmud et al. 
2002a) 

APOA5 - 1131T > 
C 

rs662799 0.07 (C) W 1596(SA
PHIR) 

-3.5 mg/dl per 
copy; p=0.00038 

(Grallert et al. 
2007) 

APOA5 - 1131T > 
C 

rs662799 0.23–
0.30 (C)

C, Ma 2711 (C)
707 (M)

-2.3/- 5.4 mg/dl
1/2 copies; 
p<0.0001 

- 1.2 /- 8.1 mg/dl 
1/2 copies; 
p<0.0001

(Lai et al. 2003) 
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APOA5 - 1131T > C rs662799 0.34 (C) A 521 
HoCo 

-3.3 mg/dl per 
copy; p<0.001 

(Yamada et al. 
2007) 

APOA5 -3A > G rs651821 0.07 W 2056 (P) M; p=0.30; F; 
p=0.26 

(Klos et al. 
2006a) 

APOA5 -3A > G rs651821 0.18 (G) C 2711 
(GP) 

-2.3/-5.8 mg/dl 
1/2 copies ; 

p<0.0001 

(Lai et al. 2003) 

APOA5 -3A > G rs651821 0.34 (C) A 5207 
(Ho Co, 

P) 

-2.7 mg/dl per 
copy; p<0.001 

(Yamada et al. 
2007) 

APOA5 -3A > G rs651821 0.36 (G) A 2417 
(Ho Co)

-3.9 /- 7.0 mg/dl 
1/2 copies ; 

p<0.001 

(Yamada et al. 
2008) 

APOA5 S19W rs3135506 0.06 (W) UK 1660 (P) -1.9 /+1.2 mg/dl 
(1/2 copies); 

p=0.02 

(Talmud et al. 
2002a) 

APOA5 56C>G rs3135506 0.06 (G) W 2347 (P) -2.0 mg/dl for 
carriers; p=0.008 

(Lai et al. 2004) 

APOA5  rs2072560 0.16 (A) C 2711 
(GP) 

-1.9 /-3.9 mg/dl 
(1/2 copies) ; 

p=0.003 

(Lai et al. 2003) 

APOA5 IVS3+476
G>A 

rs2072560  Ma 707 (P) -0.4 /9.3 mg/dl 
(1/2 copies) ; 

p=0.004 

(Qi et al. 2007) 

APOA5 V153M rs3135507  W 2557 F:- 3.5 mg/dl for 
carriers; p<0.01 

(Hubacek 
2005) 

APOA5 +553 rs2075291 0.07 (T) A 5206 
HoCo 

-4.6 mg/dl per 
copy; p<0.001 

(Yamada et al. 
2007) 

APOA5 Gly185Cys rs2075291 0.08 (T) A 2417 
HoCo 

-5.0 /-11.2 mg/dl 
(1/2 copies); 

p<0.001 

(Yamada et al. 
2008) 

APOA5 1259T>C rs2266788 0.18 (C) C 
 

2711 
(GP) 

-2.3 /-3.1 mg/dl 
1/2 copies; 
p<0.0001 

(Lai et al. 2003) 

APOB  rs11902417 0.78 (G) E 17723 p= 3.7x10-7 (Waterworth 
et al. 2010) 

APOC3 C455T rs2854116 0.41 (C) In 1308 (P) -3.1/-5.4 mg/dl 
(1/2 copies) ; 

p<0.05 

(Lahiry et al. 
2007) 

APOC3 PvuIl rs618354 0.49 A F:291 
(GP) 

F: +0.1/-4.2 mg/dl 
1/2 copies;p=0.029

(Kamboh et al. 
1999) 

APOC3 Sst1 RFLP rs5128 0.09 (S2) W M:1219 
(P) 

M: -1.8 mg/dl for 
carriers; p=0.04. 

(Russo et al. 
2001) 

APOC3 3‘-utr/Sac I rs5128 0.09 (+) Hu 713 (P) -5.0 mg/dl for 
heteroz.;  
p=0.0014 

(Hegele et al. 
1995) 
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APOC3 3238C > G rs5128 0.07 (S2) W 906 (GP) +1.9 mg/dl for 
carriers; p=0.079 

(Corella et al. 
2002) 

APOE Cys112Arg rs429358 0.16 (A) N 3575 p=0.001 (Povel et al. 
2011) 

CETP G2708A rs12149545 0.30 (A) W 2683 GP 
556 Cvd

+1.9 mg/dl per 
copy; p<0.001 

(McCaskie et 
al. 2007) 

CETP G2708A rs12149545 0.31 (A) W 709 
(CVD) 

+1.5 /+3.5 mg/dl 
(1/2 copies) 

;p=0.0016 

(Klerkx et al. 
2003) 

CETP  rs3764261 0.14 (T) C 4192 +0.07 mg/dl; 
p=4.3x10-14 

(Liu et al. 
2011) 

CETP G971A rs4783961 0.49 (A) W 709 
(CVD) 

+1.2/+1.9 mg/dl 
(1/2 copies) ; 

p=0.09 

(Klerkx et al. 
2003) 

CETP C629A rs1800775 0.48 (A) W 7083 (P) +2.7 /+5.4 mg/dl 
(1/2 copies); 

p<0.001 

(Borggreve et 
al. 2005a) 

CETP C629A rs1800775 0.51 (A) W 847 M, 
873 F (P)

+4.2 mg/dl for 
homoz.; p<0.002 

(Bernstein et 
al. 2003) 

CETP C629A rs1800775 0.49 (A) W 5287 
(GP) 

+3 /+5 mg/dl 
(1/2 copies) ; p= 

2x10-29 

(Kathiresan et 
al. 2008) 

CETP C629A rs1800775 0.42 A A 4050 
(GP) 

+2.2/+3.4 mg/dl 
1/2 copies; 
p=3.28x10-9 

(Tai et al. 
2003b) 

CETP C629A rs1800775 0.48 (A) W 2683 GP
556 Cvd

+2.7 mg/dl per 
copy; p<0.001 

(McCaskie et 
al. 2007) 

CETP C629A rs1800775 0.40 (A) W 1214 
(CVD)

574 
(Co) 

CVD: 
+2.0/3.5mg/dl 
(1/2 copies) ; 

p=0.02 
Co: +3.3/6.1 
mg/dl (1/2 

copies) ; p=0.05 

(Blankenberg 
et al. 2004) 

CETP C629A rs1800775 0.44 (A) W 709 
(CVD) 

+0.8/3.9 mg/dl 
(1/2 copies) ; 

p<0.0001 

(Klerkx et al. 
2003) 

CETP C629A rs1800775 0.50 (A) W 309 (MI)
757 (Co)

+1.9/6.1 mg/dl 
(1/2 copies) ; 

p<0.0001 

(Eiriksdottir et 
al. 2001) 

CETP C629A rs1800775 0.48 (A) W 498 
(cvd) 

1107(Co)

+2.9/4.4 mg/dl 
(1/2 copies) ; 

p<0.001 

(Freeman et al. 
2003) 

CETP Taq1B rs708272 0.40 (B2)  13,677 
(Meta)

+1.2 /+3.8 mg/dl 
1/2 copies; 
p<0.0001 

(Boekholdt et 
al. 2005) 
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CETP Taq1B rs708272   >10,000 
(Meta)

+4.6 mg/dl for 
homoz.; p<0.00001

(Boekholdt & 
Thompson 

2003) 

CETP Taq1B rs708272 0.42 (B2) W 7083 (P) +2.7/5.0 mg/dl 
(1/2 copies) ; 

p<0.001 

(Borggreve et 
al. 2005b) 

CETP Taq1B rs708272 0.44 (B2) W 2916 (P) +2.5/4.7 mg/dl 
(1/2 copies) ; 

p<0.001 

(Ordovas et al. 
2000) 

CETP Taq1B rs708272 0.43 
0.26 (A)

W 
B 

2056 
1943 (P)

p<0.01; 
p<0.02 

(Klos et al. 
2006b) 

CETP Taq1B rs708272 0.44 
0.27 (A)

W 
 

B 

8764 (P) +2.3/5.8 mg/dl 
(1/2 copies) ; 

p<0.001 
+3.8/9.8 mg/dl 

(1/2 copies) ; 
p<0.001 

(Nettleton et 
al. 2007) 

CETP Taq1B rs708272 0.41 (A) W 1503 (P) +2 /+5 mg/dl 
(1/2 copies) ; 

p<0.001 

(Sandhofer et 
al. 2008) 

CETP Taq1B rs708272 0.33 (A) A 4207 
(GP) 

+2.5/4.4 mg/dl 
(1/2 copies ; 
p=1.25x10-10 

(Tai et al. 
2003b) 

CETP Taq1B rs708272 0.40 (A) A 1729 
(GP) 

M: +1.2/3.5 mg/dl 
(1/2 copies); 

p=0.096 
F: +1.9/6.2 mg/dl 

(1/2 copies); 
p<0.001 

(Tsujita et al. 
2007) 

CETP Taq1B rs708272 0.42 (A) W 2683 GP 
556 CVd

+2.7 mg/dl per 
copy; p<0.001 

(McCaskie et 
al. 2007) 

CETP Taq1B rs708272 0.42 (A) W 2392 
cvd 827 

Co 

+1.7/3.6 mg/dl 
(1/2 copies) ; 

p<0.001 

(Whiting et al. 
2005) 

CETP Taq1B rs708272 0.40 (A) W 1464 
CVD 

+2.1/3.0 mg/dl 
(1/2 copies) ; 

p=0.003 

(Carlquist & 
Anderson 

2007) 

CETP Taq1B rs708272 0.41 (A) W 1200 CV
571 (Co)

+2.6 /+4.3 mg/dl 
(1/2 copies) ; 

p<0.02 

(Blankenberg 
et al. 2004) 

CETP Taq1B rs708272 0.44 (A) W 499 
CVD 

1105 Co

+2.1/3.6 mg/dl 
(1/2 copies) ; 

p<0.001 

(Freeman et al. 
2003) 

CETP +784CCC rs34145065 0.39 (A) W 709 
(CVD) 

+1.2/3.5 mg/dl 
(1/2 copies) ; 

p=0.0009 

(Klerkx et al. 
2003) 
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CETP A373P rs5880 0.05 (A) W 8467 P 
1636 CV

5.4 mg/dl for 
heteroz.; p<0.0001

(Agerholm-
Larsen et al. 

2000) 

CETP Ile405Val rs5882 >10,000 
(Meta)

+1.9 mg/dl for 
homoz. ; 

p<0.00001 

(Boekholdt & 
Thompson 

2003) 

CETP A + 
16G/Ex.14

rs61212082 0.32 (A) W 6421 (P) M: +1.5/2.3 mg/dl 
(1/2 copies); 

p=0.002 
F: +0.0/+2.3 
mg/dl (1/2 

copies); p=0.007 

(Isaacs et al. 
2007) 

CETP  rs61212082 0.30 (A) W 1208 
(CVD)

572 (Co)

+1.4 /+3.1 mg/dl 
(1/2 copies) ; 

p=0.08 
+0.3 /+8.4 mg/dl 

(1/2 copies); 
p=0.003 

(Blankenberg 
et al. 2004) 

CETP  rs61212082 0.30 (A) W 498 
(CVD)
1108 
(Co) 

+1.2 /+3.5 mg/dl 
(1/2 copies); 

p<0.05 
+1.5 /+1.5 mg/dl 

(1/2 copies); 
p<0.05

(Freeman et al. 
2003) 

CETP D442G rs2303790b 0.03 (A) A 3469
(He Ex)

+4.9 mg/dl for 
heteroz.; p<0.001

(Zhong et al. 
1996) 

CETP R451Q rs1800777 0.04 (A) W 8467 (P) 
1636 

(CVD) 

5.4 mg/dl for 
heterozygotes ; 

p<0.001 

(Agerholm-
Larsen et al. 

2000) 

CETP G + 
82A/Ex15

rs1800777 0.03 (A) W 1071 CV
532 Co

3.6 /5.2 mg/dl for 
heteroz.; 

p=0.06/0.07 

(Blankenberg 
et al. 2004) 

CETP 
 

rs12596776 0.90 (C)
EA 25,167

p=1.18E-05
(Dumitrescu et 

al. 2011) 

CETP 
 

rs9989419 0.39 (A)
EA 25,167

p=1.71E-53 
(Dumitrescu et 

al. 2011) 

LCAT Gly230Ar
g 

 W 156 low
160 high

Variant sig. only 
in low HDL group

(Miettinen et 
al. 1998) 

LCAT 608C/T rs5922 . A 203 
(CVD) 

Increase in HDL; 
p=0.015 

(Zhang et al. 
2003) 

LCAT  rs5922 A 150 Str 
122 Co

Lower HDL-C in 
heteroz.; p<0.05 

(Zhu et al. 
2006) 

LCAT P143L 
+511C>T

 A 190 
CVD 

209 (Co)

Association with 
low HDLC; p<0.01

(Zhang et al. 
2004) 

LCAT  rs2292318 0.12 (A) W 1442 
CVD,Co

Increases HDLC; 
p=2 x 10 -5 

(Pare et al. 
2007) 
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LDLR Exon 2 rs2228671  W 1543 (P) +3.8 mg/dl for 
carriers; p=0.0056

(Costanza et 
al. 2005) 

LDLR 1866C > T 
Asn591As

n 

rs688 = 
rs57911429

0.12 (T) A 2417 
(Ho Co)

+1.5 /+8.5 mg/dl 
(1/2 copies) ; 

p=0.0155 

(Yamada et al. 
2008) 

LDLR Exon 
12/HincII

rs688 = 
rs57911429

0.39 (+) Hu 713 (P) 2.3 / 4.3 mg/dl 
(1/2 copies) ; 

p=0.047 

(Hegele et al. 
1995) 

LDLR 2052T >C
 

rs5925 = 
rs57369606

0.17 (C) A 2417 
HoCo 

+1.2/+5.4 (1/2 
copies) ; p=0.043 

(Yamada et al. 
2008) 

LIPC T-710C rs1077834 0.22 (C) W 9121 (P) +3–4% per copy; 
p<0.001 

(Andersen et 
al. 2003) 

LIPC C-514Ta rs1800588 0.25 (T) Va >24,000 
(Meta)

+1.5 /+3.5 mg/dl 
(1/2 copies); 

p<0.001 

(Isaacs et al. 
2004) 

LIPC Pos.-480T rs1800588 0.21 (T)

0.53 (T)

W 

B 

8897 (P)

2909 (P)

W: +2.2/+3.8 

mg/dl (1/2 

copies); p<0.001 

B: +1.6/+4.0 

mg/dl (1/2 

copies); p<0.001 

(Nettleton et 

al. 2007) 

LIPC  rs1800588 0.21 (T) W 6239 (P) +1.3/+4.3 mg/dl 

(1/2 copies); 

p<0.001 

(Isaacs et al. 

2007) 

LIPC  rs1800588 0.38 (T) A 2170 (P) +2.3 /+2.7 mg/dl 

(1/2 copies); 

p=0.001 

(Tai et al. 

2003a) 

LIPC  rs1800588 0.21 (T) W 5287 

(GP) 

+1 /+4 mg/dl 

(1/2 copies) ; p=4x 

10 -10 

(Kathiresan et 

al. 2008) 

LIPC  rs1800588 0.25 (T) W 2773 

(GP) 

+1.5 mg/dl per 

copy; p=0.04 

(Talmud et al. 

2002b) 

LIPC  rs1800588 0.24 (T) W 3319 CV 

1385 Co

+1.0 /+3.8 mg/dl 

(1/2 copies); 

p=0.001 

(Whiting et al. 

2005) 

LIPC  rs1800588 0.51 (T) A 5207 

Ho Co 

+2.5 mg/dl per 

copy; p<0.001 

(Yamada et al. 

2007) 

LIPC  rs1800588 0.21 (T)

 

W 6412 

(CVD) 

+2.0–2.5 mg/dl 

per copy; p<0.001

(McCaskie et 

al. 2006) 

LIPC G -250A rs2070895 0.22 (A) W 9121 (P) +3–4% per copy; 

p<0.001 

(Andersen et 

al. 2003) 

LIPC  rs2070895  W 1543 (P) +1.5 mg/dl for 

carriers; p=0.020 

(Costanza et 

al. 2005) 

LIPC  rs2070895 0.32 (A) W 514 (P) M; p=0.001 (de Andrade 

et al. 2004) 
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LIPC  rs2070895 0.23 (A) W 5585 (P) +3.9/3.9 mg/dl 
(1/2 copies); 
p=8x10-10 

(Grarup et al. 
2008) 

LIPC  rs2070895 0.51 (A)
 

A 5213 
HoCo 

+2.7 mg/dl per 
copy; p<0.001 

(Yamada et al. 
2007) 

LIPC  rs2070895 0.39 (A) A 716 
HeEx 

+2.1 mg/dl for 
carriers; 
 p=0.026 

(Ko et al. 2004) 

LIPC  rs12594375 0.37 (A) A 2970 
(GP) 

p=0.00003 (Iijima et al. 
2008) 

LIPC  rs8023503 0.38 (T) A 2970 

(GP) 

p=0.0001 (Iijima et al. 

2008) 

LIPC +1075C rs3829462 0.05 (C) A 823 +8.0 mg/dl for 

heterozygotes; 

p<0.05 

(Fang & Liu 

2002) 

LIPC  rs4775041 0.29C EA 25,167 p=1.03E-16 (Dumitrescu et 

al. 2011) 

LIPC  rs261332 0.20 (A) EA 25,167 p=1.99E-13 (Dumitrescu et 

al. 2011) 

LPC  rs261334 0.20 (T) E 17723 p= 4.9×10-22 (Waterworth 

et al. 2010) 

LIPG -384A > C rs3813082 0.12 (C) A 541 (Co) +1.3/+10.2 mg/dl 

(1/2 copies) ; 

p=0.021 

(Hutter et al. 

2006) 

LIPG  rs3813082 0.12 (C) A 340 

(Kids) 

+0.7/+9.8 (1/2 

copies) ; 

 p=0.0086 

(Yamakawa-

Kobayashi et 

al. 2003) 

LIPG 584 C/T 

T111l 

rs2000813 0.32 (I) W 495 (GP) M: 1.2 /+2.7 

mg/dl (1/2 

copies) ; p=0.82 

F: 0.4 /+1.9 mg/dl 

(1/2 copies) ; 

p=0.09 

(Paradis et al. 

2003) 

LIPG  rs2000813 0.24 (T) A 541 (Co) +0.5/+6.1 mg/dl 

(1/2 copies) ; 

p=0.048 

(Hutter et al. 

2006) 

LIPG  rs2000813 0.30 (T) A 265 

CVD 

265 Co

+3.7 for carries; 

p=<0.02 
(Tang et al. 

2008) 

LIPG  rs2000813 0.29 (T) W 

90%

372 

(CVD) 

+1.6 /+6.0 mg/dl 

(1/2 copies) ; 

p=0.035 

(Ma et al. 

2003) 

LIPG C+42T/ln

5 

rs2276269 0.44 (T) W 594 

(HDL) 

Decreases HDLC; 

p=0.007 

(Mank-

Seymour et al. 

2004) 
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LIPG T+2864C/l
n8 

rs6507931 0.42 (C) W 594 
(HDL) 

Decreases HDLC; 
p=0.004 

(Mank-
Seymour et al. 

2004) 

LIPG 2237G > A rs3744841 0.36 (A) A 340 
(Kids) 

4.0 mg/dl /-4.3 
mg/dl (1/2 

copies) ; p=0.011 

(Yamakawa-
Kobayashi et 

al. 2003) 

LPL D9N; 
Asp9Asn

rs1801177  – 5067 
(Meta)

-3.1 mg/dl for 
heteroz.; p=0.002

(Wittrup et al. 
1999) 

LPL Gly188Glu   – 10,434 
(Meta)

- 9.7 mg/dl for 
heteroz.; p<0.001

(Wittrup et al. 
1999) 

LPL N291S rs268  – 14,912 
(Meta)

-4.6 mg/dl for 
heteroz.; p<0.001

(Wittrup et al. 
1999) 

LPL HindIll; 
Int8 

rs320 0.30 (H) W 520 (P) +5.5 mg/dl in H –
H- vs. H+H+; 

p=0.025 

(Senti et al. 
2001) 

LPL HindIll; 
Int8 

rs320 0.26 
(H1) 

W 1361 (P) M: +3.5 mg/dl for 
heteroz. ; p=0.0018
F : +4.2 mg/dl for 
heteroz. ; p=0.0212

(Holmer et al. 
2000) 

LPL HindIll; 
Int8 

rs320 0.32 (H) W 906 (GP) +1.9 mg/dl; 
p=0.003 

(Corella et al. 
2002) 

LPL HindIll; 
Int8 

rs320  A 550 
(NGT)

465 
(DM) 

NGT: +3.0 mg/dl 
for carriers; p<0.05

DM: +1.0 mg/dl 
for carriers; p<0.05

(Radha et al. 
2006) 

LPL HindIll; 
Int8 

rs320 0.27-
0.31 

NHW
, H 

615(W); 
579(H)

p=0.005 (Ahn et al. 
1993) 

LPL  rs326 0.44 B 1943 (P) M; p=0.013; 
F; p=0.004 

(Klos et al. 
2006a) 

LPL S447X 
Ser447Ter

rs328   4388 
(Meta)

+1.5 mg/dl for 
heteroz.; p<0.001

(Wittrup et al. 
1999) 

LPL S447X 
Ser447Ter

rs328 0.10 (G) W 8968 (P) +2.8 /+4.0 mg/dl 
(1/2 copies); 

p<0.001 

(Nettleton et 
al. 2007) 

LPL S447X 
Ser447Ter

rs328 0.07 (G) B 2677 (P) +3.1 /+12.6 mg/dl 
(1/2 copies); 

p<0.001 

 

LPL S447X rs328 0.11 (X) A 4058 (P) +3.1 mg/dl; 
p<0.001 

(Lee et al. 
2004) 

LPL  rs328  W 1543 (P) +2.7 mg/dl; 
p=0.0017 

(Costanza et 
al. 2005) 

LPL  rs328   25,167 P=5.6E-22 (Dumitrescu et 
al. 2011) 

LPL  rs328 0.09 (G) W 5287 
(GP) 

+3 /+5 mg/dl 
(1/2 copies); p=3 x 

10-12 

(Kathiresan et 
al. 2008) 
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LPL  rs325 0.89 (T) E 17723 p= 7.8×10-25 (Waterworth 
et al. 2010) 

MLXIP
L 

 rs17145738 0.12 (T) EA 25,167 p=1.64E-05 (Dumitrescu et 
al. 2011) 

PON1 Q192R rs662 = 
rs60480675

0.30 (G) W 1232 (P)
 

W: +0.1 /+2.3 
mg/dl (1/2 

copies) ; p=0.041 

(Srinivasan et 
al. 2004) 

PON1 Gln192Ar
g 

rs662 = 
rs60480675

0.67 B 554 -5.4 /- 6.7 mg/dl 
(1/2 copies) ; 

p=0.008 

“ 

PON1  rs662 = 
rs60480675

0.29 (R) Hu 738 (P) -3.1 mg/dl /- 3.1 
mg/dl (1/2 

copies) ; p=0.001 

(Hegele et al. 
1995) 

PON1  rs662 = 
rs60480675

0.36 (R) W-
Bra 

261 
CVD, 

Co 

M: +1.5 /+2.7 
mg/dl (1/2 

copies) ; p=0.035 

(Rios et al. 
2007) 

PON1 C -107T rs705379 0.48 (C) W 710 
(CVD) 

-3.1/- 2.3 mg/dl 
(1/2 copies) ; 

p=0.006 

(Blatter Garin 
et al. 2006) 

PON1 Leu55M rs85456 0.20 (T) MA 741 p=0.02 (Chang et al. 
2010) 

SCARB
1 

Exon 8 
C>T 

rs5888 0.44 (T) W 865 (P)
 

+1.9/2.7 mg/dl 
1/2 copies;p=0.006

(Morabia et al. 
2004) 

SCARB
1 

C1050T rs5888 0.49 (T) W 546 
(CVD) 

+2.3 /+1.9 mg/dl 
(1/2 copies); 

p=0.03 

(Boekholdt et 
al. 2006) 

Table 1. Genetic Polymorphisms Associated With HDL-C. MAF=Minor Allele Frequency; 
Ethn.: A=Asians; AA=African Americans; Am=Amish; A-I=Asian Indian; B=Blacks; 
C=Chinese; CH=Caribbean Hispanics; In=Inuit; Ma= Malays; N=Netherlands; NHW=Non-
Hispanic Whites; H=Hispanics; Hu=Hutteries; Tu=Turks; UK=United Kingdom; W-
Bra=Caucasian Brazilians; W= Whites; Va=Various; Non-DM C0=Non diabetic control 
subjects; MI=Myocardial infarction; NGT=Normal glucose tolerance; DM= Diabetes 
mellitus; Ho Sta= Hospital staff; HBP= Hypertensive patients; He Ex=Health examination; 
Cor Ang=coronary angiography; hyperCH=hypercholesterolemia patients; CVD= 
Cardiovascular Disease; Co=Controls; Ho Co=Hospital based controls; GP=General 
Population; Meta= Meta Analysis; P=Population based; M= Males; F= females; + =increase; 
- = decrease; n.s.=not significant; see text for full gene names. Adapted from Boes et al. 
(2009) with permission from Elsevier. 

2.1 Genetic variation in enzymes involved in lipid metabolism and HDL-C levels  

Perhaps, the most notable gene in the HDL-C synthesis and metabolism pathways, whose 

variants have been consistently associated with HDL-C, is the cholesterol ester transfer 

protein (CETP), which is a key plasma protein that mediates the transfer of esterfied 

cholesterol from HDL to APOB containing particles in exchange for TG. Although complete 

loss of CETP function is rare and can yield HDL-C levels up to five times higher than 

normal (Klos and Kullo, 2007), three common polymorphisms (Table 1: TaqIB (rs708272); -
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629C>A (rs1800775); Ile405Val (rs5882)) can all modestly inhibit CETP activity and have 

been consistently associated with higher HDL-C levels (Bernstein et al., 2003; Blankenberg et 

al., 2004; Boekholdt et al., 2005; Boekholdt and Thompson, 2003; Borggreve et al., 2005; 

Eiriksdottir et al., 2001; Freeman et al., 2003; Kathiresan et al., 2008a; Klerkx et al., 2003; Tai 

et al., 2003b; Thompson et al., 2008). The CETP gene is located on chromosome 16 (16q21).  

Lipoprotein lipase (LPL) is an enzyme involved in lipolysis of TG-containing lipoproteins 
such as VLDL and chlyomicrons (Miller and Zhan, 2004), which generate free fatty acids 
(FFA) that can be taken up by the liver, muscle and adipose tissues (Kwan et al., 2007). Thus, 
LPL affects LDL levels directly (see Section 3.2) may only affect HDL-C levels indirectly 
(Lewis and Rader, 2005). The human LPL gene is located on chromosome 8 (8p22). Several 
LPL SNPs have been associated with HDL-C (Table 1) (Ahn et al., 1993; Corella et al., 2002; 
Holmer et al., 2000; Klos and Kullo, 2007; Klos et al., 2006; Komurcu-Bayrak et al., 2007; Lee 
et al., 2004; Nettleton et al., 2007; Senti et al., 2001; Wittrup et al., 1999); however, many of 
them are in strong linkage disequilibrium with each other (e.g., rs320, rs326, rs13702, 
rs10105606) (Boes et al., 2009; Heid et al., 2008).  
Hepatic lipase (HL; LIPC) is a glycoprotein that is synthesized by liver cells (hepatocytes) 
and catalyzes the hydrolysis of TG and phospholipids (Miller et al., 2003). For example, after 
hydrolysis of TG by LPL, VLDL particles are reduced to IDL particles and can be further 
hydrolyzed by HL/LIPC to LDL or taken up by the liver (Kwan et al., 2007). The human 
HL/LIPC gene is located on chromosome 15 (15q21). Several HL/LIPC SNPs have been 
associated with HDL-C levels (Table 1) (Andersen et al., 2003; Costanza et al., 2005; de 
Andrade et al., 2004; Fang and Liu, 2002; Grarup et al., 2008; Iijima et al., 2008; Isaacs et al., 
2007; Kathiresan et al., 2008b; Ko et al., 2004; McCaskie et al., 2006; Nettleton et al., 2007; Tai 
et al., 2003a; Talmud et al., 2002b; Whiting et al., 2005; Yamada et al., 2007). However, the 
most consistent associations have been observed for rs1800588 and rs2070895 and, several 
SNPs in the promoter region are in strong LD (Boes et al., 2009).  
Endothelial lipase (EL; LIPG) is an enzyme expressed in endothelial cells that, in the 
presence of HL/LIPC, metabolizes larger (HDL3) to smaller (HDL2) HDL-C particles and 
increases the catabolism of APOA-I (see Section 2.3) (Jaye and Krawiec, 2004). EL/LIPG 
plays a role in the dyslipidemia component and, possibly, the yet to be established, 
proinflammatrory component of MetSyn (Lamarche and Paradis, 2007) (see Section 5.0). The 
human EL/LIPG gene is located on chromosome 18 (18q21.1). Several polymorphisms in 
EL/LPIG have been associated with HDL-C levels (Table 1) (Hutter et al., 2006; Ma et al., 
2003; Mank-Seymour et al., 2004; Paradis et al., 2003; Tang et al., 2008; Yamakawa-
Kobayashi et al., 2003). However, most of these SNPs have not been as well studied as those 
in CETP, LPL and EL; and, only the nonsynonymous SNP, rs2000813, has been consistently 
associated with HDL-C levels in African-American populations (Hutter et al., 2006; Tang et 
al., 2008; Yamakawa-Kobayashi et al., 2003).  
In the presence of cofactor, APOA-I (see Section 2.3), lecithin-cholesteryl acyltransferase 
(LCAT), catalyzes the esterification of free cholesterol and, can metabolize larger HDL-C 
particles to smaller HDL-C particles (Klos and Kullo, 2007; Miller and Zhan, 2004). The 
human LCAT is located on chromosome 16 (16q22.1). Although mutations leading to 
complete loss of LCAT and marked (5-10%) reduction in HDL-C levels are rare and can 
cause cornea opacifications (fish eye disease) and renal disease (Garg and Simha, 2007), 
several common polymorphisms in LCAT have been associated, albeit inconsistently, with 
much more modest changes in HDL-C levels (Table 1) (Boekholdt et al., 2006; Miettinen et 
al., 1998; Pare et al., 2007; Zhang et al., 2004; Zhu et al., 2006).  
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Parroxanonase 1 (PON1), inhibits the oxidation of LDL (Mackness et al., 1991) and, 
therefore, may only indirectly affect antioxidant properties of HDL-C. The human PON1 
gene is located on chromosome 7 (7q21.3). Several SNPs in PON1 have been associated 
with HDL-C levels, most notably, two nonsynonymous SNPs, rs662 and rs3202100, which 
are in strong LD, but results are inconsistent across studies (Table 1) (Blatter Garin et al., 
2006; Hegele et al., 1995; Manresa et al., 2006; Rios et al., 2007; van Aalst-Cohen et al., 
2005).  

2.2 Genetic variation in receptors and transporters and HDL-C levels 

Scavenger receptor class B, type 1 (SCARB1; SR-B1), which is highly expressed in liver 
and steroidogenic tissues (testes, ovaries, adrenal) (Cao et al., 1997), has been shown to 
participate in the uptake of HDL in animals by transferring cholesterol from the HDL-C 
particle and releasing the lipid-depleted HDL particle into the circulation (Acton et al., 
1996; Miller et al., 2003). The human SCARB1 gene is located on chromosome 12 
(12q24.31). Only a few studies have examined potential associations between SCARB1 
polymorphisms and HDL-C levels (Table 1) (Boekholdt et al., 2006; Costanza et al., 2005; 
Hsu et al., 2003; Morabia et al., 2004; Osgood et al., 2003; Roberts et al., 2007). The most 
well studied polymorphism has been rs5888; however, the association with rs5888 and 
HDL-C levels was only significant among Caucasian (White, W) males in one study 
(Morabia et al., 2004), Amish females (Roberts et al., 2007) and Caucasian CVD patients 
(Boekholdt et al., 2006).  
The LDL receptor (LDLR) and LDLR-related protein participate in the uptake of LDL and 

chylomicron remnants by hepatocytes (Kwan et al., 2007) and, therefore, may only indirectly 

affect HDL-C levels. The human LDLR is located on chromosome 19 (19p13.2). Although 

some common polymorphisms in LDLR have been associated with HDL-C levels (Table 1: 

(Costanza et al., 2005; Hegele et al., 1995; Yamada et al., 2008), their impact is likely greater 

on LDL-C levels (see Section 3.1).  
The ATP-binding cassette transporter A1 (ABCA1), which is highly expressed in the liver, 
steroidogenic tissues and macrophages, plays a key role in ‘reverse cholesterol transport’ 
by mediating the efflux of cholesterol and phospholipids from macrophages to the 
nascent lipid-free, APOA-1 HDL particle (Cavelier et al., 2006; Miller et al., 2003). The 
human ABCA1 gene is located on chromosome 9 (9q31.1). Due to its functional 
importance, genetic variants in this gene have been well investigated but many of them 
are quite rare including the homozygous deletion that leads to Tangier’s disease that is 
characterized by very low HDL-C levels (~5 mg/dl), orange colored tonsils, peripheral 
neuropathy and, sometimes, premature CHD (Garg and Simha, 2007). Several common 
polymorphisms have been fairly consistently associated with more modest changes in 
HDL-C levels but different variants appear to drive this association in different ethnic 
groups (Table 1) (Clee et al., 2001; Costanza et al., 2005; Frikke-Schmidt et al., 2004; 
Hodoglugil et al., 2005; Kathiresan et al., 2008b; Klos et al., 2006; Porchay et al., 2006; 
Shioji et al., 2004b; Whiting et al., 2005).  

2.3 Genetic variation in apolipoproteins and HDL-C levels  

Apolipoprotein A-1 (APOA1; APOA-I) is a ligand required for HDL-C binding to its 

receptors including SCARB1 and ABCA1 and, is an important cofactor in ‘reverse 

cholesterol transport’ (Miller et al., 2003; Remaley et al., 2001; Rigotti et al., 1997). The 
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human APOA1 gene is located on chromosome 11 (11q23-24). APOA-I is a major constituent 

of HDL particles and deletions leading to complete APOA-I deficiency are rare but lead to 

HDL deficiency (HDL-C <10 mg/dl) and sometimes CHD (Garg and Simha, 2007). Several 

common polymorphisms in APOA-I have been associated with more modest reductions in 

HDL-C but results across studies are inconsistent (Table 1) (Brown et al., 2006; Kamboh et 

al., 1999b; Larson et al., 2002; Shioji et al., 2004a). 

Apolipoprotein A-4 (APOA4; APOA-IV) is a potent activator of LCAT and modulates the 

activation of LPL and transfer of cholestryl esters from HDL to LDL (Kwan et al., 2007). 

The human APOA4 gene is located on chromosome 11 near APOA1 (11q23) and is part of 

what is known as the APOA1/C3/A4/A5 gene cluster. Polymorphisms in APOA4 have 

not been as well studied; however, the nonsynonymous SNP, rs5110 (Gln360His), has 

recently been associated with reduced HDL-C levels in Brazilian elderly (Ota et al., 2011) 

and coronary artery calcification (CAC) progression, a marker of subclinical 

atherosclerosis, in patients with Type I Diabetes Mellitus (T1DM) (Kretowski et al., 2006). 

The rs675 polymorphism has been associated with reduced HDL-C levels in females with 

T2DM (Qi et al., 2007).  

Apolipoprotein A-5 (APOA5; APOA-V) is located predominantly on TG-rich chylomicrons 

and VLDL and activates LPL (Hubacek, 2005). The human APOA5 gene is located on 

chromosome 11 (11q23) in the APOA1/C3/A4/A5 gene cluster. Several APOA5 SNPs have 

been associated with reduced HDL-C levels; and, perhaps, the most well studied and 

consistent associations have been observed for rs651821 and rs662799 (Table 1) (Grallert et 

al., 2007; Hubacek, 2005; Klos et al., 2006; Lai et al., 2003; Qi et al., 2007; Talmud et al., 2002a; 

Yamada et al., 2008; Yamada et al., 2007).  

Apolipoprotein C-3 (APOC3; APOC-III) is an inhibitor of LPL and is transferred to HDL 

during the hydrolysis of TG-rich lipoproteins (Kwan et al., 2007; Miller and Zhan, 2004). The 

human APOC3 gene is located on chromosome 11 (11q23) in the APOA1/C3/A4/A5 gene 

cluster. Although several APOC3 SNPs have been identified and investigated, associations 

between these SNPs and HDL-C levels have been quite inconsistent (Table 1) (Arai and 

Hirose, 2004; Brown et al., 2006; Corella et al., 2002; Hegele et al., 1995; Kamboh et al., 1999a; 

Lahiry et al., 2007; Pallaud et al., 2001; Qi et al., 2007; Russo et al., 2001).  

Chylomicron remnants, VLDL and IDL particles are rich in apolipoprotein E (APOE) and 

APOE is a critical ligand for binding to hepatic receptors that remove these particles from 

the circulation (Kwan et al., 2007). Mutations in APOE are well known to modify LDL-C 

levels; however, their independent influence on HDL-C levels remains controversial 

(Sviridov and Nestel, 2007). Nevertheless, associations between APOE SNPs and HDL-C 

levels in large scale studies have been fairly consistent (Costanza et al., 2005; Frikke-Schmidt 

et al., 2000; Gronroos et al., 2008; Kataoka et al., 1996; Srinivasan et al., 1999; Volcik et al., 

2006; Wilson et al., 1994; Wu et al., 2007). 

2.4 GWAS and HDL-C Levels  

Results from genomewide association studies (GWAS) have confirmed associations between 

polymorphisms in viable candidate genes including CETP, LPL, HL/LIPIC, EL/LIPG, 

ABCA1, LCAT and the APOA1/C3/A4/A5 gene cluster and HDL-C levels (Boes et al., 

2009). GWAS have also identified several novel putative loci, which are discussed in detail 

in a recent review (Teslovich et al., 2010). 
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3. Genetic variants in lipid metabolism and LDL-C levels 

3.1 Genetic variation in enzymes, receptors and transporters and LDL-C levels  

LDL-C is a widely accepted risk factor for atherosclerotic cardiovascular diseases. The most 
marketed drugs for lowering LDL-C are statins, which inhibit hydroxy-3-methylglutaryl 
coenzyme A reductase (HMGCR), the rate limiting enzyme in cholesterol synthesis that is 
normally suppressed (Endo, 1992). The human HMGCR gene is located on chromosome 5 
(5q13.3-14). Only a few common HMGCR polymorphisms have been associated with LDL-C 
levels including rs3846662, which was identified through GWAS (Table 2) (Burkhardt et al., 
2008; Hiura et al., 2010; Polisecki et al., 2008; Teslovich et al., 2010). 
As mentioned above, the LDL receptor (LDLR) regulates the uptake of LDL and chylomicron 
remnants by hepatocytes (Kwan et al., 2007) and, the human LDLR gene is located on 
chromosome 19 (19p13.2). Familial (or monogenic) hypercholesterolemia (FH: OMIM No. 
143890), which is due to mutations in LDLR occurring at a frequency of approximately 1 in 500 
(heterozygotes) to 1 in 1,000,000 (homozygotes), is one of the most common inherited 
metabolic diseases and results in a reduced number of LDL receptors and, in heterozygotes, a 
2- to 3-fold increase in LDL–C levels and, in homozygotes, complete loss of LDLR function and 
a greater than 5-fold increase in LDL-C (Garg and Simha, 2007). A few common 
polymorphisms in LDLR have been identified and associated with more modest changes in 
LDL-C levels, most notably, rs6511720, which was highly significantly associated with LDL-C 
in a recent meta analysis (Table 2) (Teslovich et al., 2010; Willer et al., 2008).  
ATP-binding cassette transporters G5 and G8 (ABCG5/8) regulate the efflux of cholesterol 
back into the intestinal lumen and, in hepatocytes, the efflux of cholesterol into bile (Graf et 
al., 2003). The human ABCG5/8 gene cluster is located on chromosome 2 (2p21). A rare 
autosomal recessive mutation in ABCG5/8 leads to sitosterolemia characterized by 
xanthomas, premature atherosclerosis and other features (Berge et al., 2000). Only a couple 
of common variants in ABCG5/8 have been associated with LDL-C levels and a recent 
meta-analysis failed to find associations between ABCG5/G8 polymorphisms including, 
ABCG8 rs6544718, and plasma lipid levels (Table 2) (Jakulj et al., 2010; Teslovich et al., 2010) 

3.2 Genetic variation in lipoproteins and LDL-C levels  

Apolipoprotein B (APOB; main isoform: ApoB-100) is responsible for the recognition and 
uptake of LDL by LDLR, which clears approximately 60-80% of the LDL in ‘normal’ 
individuals with the remaining taken up by LRP or SCARB1 (Kwan et al., 2007). The human 
APOB gene is located on chromosome 2 (2p23-24). Familial defective APOB (FDB: OMIM 
No. 144010) is an autosomal codominant disorder due to mutations in APOB that are a bit 
more rare than FH mutations at approximately 1 in 500 to 1 in 700 resulting in lower LDL-C 
levels than in FH patients (Garg and Simha, 2007). Common polymorphisms have also been 
identified and associated with more modest changes in LDL-C (Table 2) (Haas et al., 2011; 
Teslovich et al., 2010; Waterworth et al., 2010; Willer et al., 2008). 
As mentioned above, APOE is a critical ligand for binding chylomicron remnants, VLDL 
and IDL particles to hepatic receptors to remove these particles from the circulation (Kwan 
et al., 2007). The human APOE gene is located on chromosome 19 (19q13.2). The structural 
APOE gene is polymorphic with three common alleles, designated as ε2, ε3 and ε4 which 
encode for E2, E3 and E4 proteins, respectively. Although several APOE polymorphisms 
have been identified, the APOE ε4 allele has been the most consistently associated with 
CHD and LDL-C levels (Table 2) (Anoop et al., 2010; Chang et al., 2010; Eichner et al., 2002; 
Teslovich et al., 2010; Willer et al., 2008).  
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Gene Polym. rs Number MAF Ethn. Sample
Size

Results (Effect 
Size, p-value)

Reference 

ABCG8  rs4299376 0.30 (G) E 95,454 
(Meta)

+2.75 mg/dl;
p=2x10-8

(Teslovich et 
al. 2010) 

ABCG8 A632V rs6544718 Va 982 p=0.02 (Jakuljl et al. 
2010) 

APOB  rs562338 0.18 (A) Va 10,849 +4.89 mg/dl;
p=3.6 X 10-12

(Willer et al. 
2008) 

APOB  rs754523 0.28 (A) Va 6,542 +2.78 mg/dl;
p=1.3 X10-6

(Willer et al. 
2008) 

APOB  rs693 0.42 (G) Va 3,222 +2.44 mg/dl; 
p=0.0034

(Willer et al. 
2008) 

APOB Thr98Ile rs1367117 0.30 (A) E 95,454 
(Meta)

+4.05 mg/dl;
p=4x10-114

(Teslovich et 
al. 2010) 

APOB  rs7575840 0.28 (T) F 5054 0.131
p= 3.88x10 -9

(Haas et al. 
2011) 

APOB  rs515135 0.19 (A) Va 982 p=2.4X10-20 Waterworth 
et al. (2010) 

APOE  rs4420638 0.17 (G) E 95,454 
(Meta)

+7.14 mg/dl;
p=9x10-147

(Teslovich et 
al. 2010) 

APOE Arg176
Cys 

rs7412 0.06 (T) N-HB 683 -22.52mg/dl;
p< 0.0001

(Chang et al. 
2010) 

APOE Cys130
Arg

rs429358 0.076 (T) M-A 739 10.54mg/dl;
p< 0.0001

(Chang et al. 
2010) 

APOC1  rs4420638 0.82 (A) Va 10,806 +6.61 mg/dl;
p = 4.9 X10-24

(Willer et al. 
2008) 

APOE/
C1/C4 

 rs10402271 0.67 (T) Va 6,519 +2.62 mg/dl; p 
=1.5 X 10-5

(Willer et al. 
2008) 

LDLR  rs6511720 0.11 (T) E 95,454 
(Meta)

-6.99 mg/dl; 
p=4x10-117

(Teslovich et 
al. 2010) 

LDLR  rs6511720 0.90 (T) Va 7,442 +9.17 mg/dl; p 
=3.3 X 10-19

(Willer et al. 
2008) 

PCSK9  rs11206510 0.81 (C) Va 10,805 +3.04 mg/dl; 
p=5.4 X 10-7

(Willer et al. 
2008) 

PCSK9  rs2479409 0.30 (G) E 95,454 
(Meta)

+2.01mg/dl; 
p= 2x10-28

(Teslovich et 
al. 2010) 

PCSK9 A443T
Ala443Thr

rs28362263 0.06 (A) B 1750 95.5 vs. 106.9 
mg/dl;p<0.001

(Huang et 
al. 2009) 

PCSK9 C679X rs28362286 B 1750 81.5 vs. 106.9 
mg/dl;p<0.001 

(Huang et 
al. 2009) 

PCSK9 E670G rs505151 0.11 (G) W 691 P=0.001 (Chen et al. 
2005) 

PCSK9  rs11206510 0.81 (T) EA 21,986 
(Meta)

p=1.44E-05 (Dumitrescu 
et al. 2011) 

SORT1  rs629301 0.22 (G) E 95,454 
(Meta)

-5.65 mg/dl; 
p=1 x 10-170

(Teslovich et 
al. 2010) 

Table 2. Genetic Polymorphisms Associated with LDL-C. See Table 1 legend.  
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3.3 Genetic variation in proteases and LDL-C levels  

Proprotein convertase subtilisin-like kexin type 9 (PCSK9) is a serine protease that degrades 
hepatic LDLR in endosomes (Maxwell et al., 2005). The human PCSK9 gene is located on 
chromosome 1 (1p32.3). A mutation in PCSK9 results in an autosomal dominant form of 
hypercholesterolemia (OMIM No. 607786) with clinical features similar to FH patients (Garg 
and Simha, 2007). Over 50 variants in PCSK9 have been shown to affect circulating levels of 
cholesterol; however, most of these are relatively rare (see Davignon et al., 2010) for a 
complete list). The number of common polymorphisms in PCSK9 is substantially less with 
only a few SNPs having been associated with changes in LDL-C levels (Table 2) (Chen et al., 
2005; Evans and Beil, 2006; Huang et al., 2009; Teslovich et al., 2010; Willer et al., 2008).  

3.4 GWAS and LDL-C Levels  

GWAS have confirmed associations between polymorphisms in viable candidate genes 
including APOB, APOE, LDLR and PCSK9, and have identified novel SNPs associated with 
LDL-C levels with strong biological plausibility including an inhibitor of lipase (ANGPTL3), 
see Section 4.1 and a transcription factor activating triglyceride synthesis (MLXIPL) see 
Section 4.2 (Teslovich et al., 2010).  

4. Genetic variants in lipid metabolism and TG levels 

Plasma triglycerides (TG) integrate multiple TG-rich lipoprotein particles, predominantly, 
intestinally synthesized chylomicrons in the postprandial state and hepatically synthesized 
VLDL in the fasted state. Therefore, not surprisingly, there is considerable overlap between 
genetic variants associated with HDL-C and LDL-C levels as well as TG levels. For example, 
the Global Lipids Genetics Consortium (GLGC) found that 15 of the 32 loci associated with TG 
levels were also jointly associated with HDL-C levels, explaining 9.6% of the total variation in 
plasma TG, which corresponded to 25–30% of the total genetic contribution to TG variability 
(Teslovich et al., 2010). However, the joint associations reported do not appear additionally 
adjusted for the other lipid phenotype. Furthermore, certain loci appear to be more strongly 
associated with one lipid phenotype over the other while others have similar effect sizes; and, 
genetic heterogeneity between loci clearly exists between major ethnic groups.   

4.1 Genetic variation in aolipoproteins and TG levels  

As mentioned above (see Section 3.2), APOB is the backbone of atherogenic lipoproteins and 
is located on chromosome 2 (2p23-24). A rare monogenic autosomal recessive disorder 
called homozygous hypobetalipoproteinemia and rare autosomal codominant disorder 
called familial hypobetalipoproteinaemia (HHBL and FHBL, respectively: OMIM No. 
107730), characterized by very low (<5th percentile of age- and sex-specific values) of 
plasma TG (and LDL-C) levels, which are caused by rare mutations in APOB (Burnett and 
Hooper, 2008; Di et al., 2009). Although common APOB polymorphisms have primarily 
been associated with LDL-C levels (Benn, 2009), GWAS has revealed that a common SNP in 
APOB, rs1042034, is associated with TG (Johansen and Hegele, 2011; Teslovich et al., 2010). 
Common polymorphisms in the APOA1/C3/A4/A5 gene cluster, located on chromosome 
11 (11q23), have been associated with HDL-C levels (see Section 2.3) as well as TG levels 
(Teslovich et al., 2010; Willer et al., 2008). A SNP in the APOE gene, rs439401, has also been 
shown to be strongly associated with TG levels in a recent GWAS meta analyses (Johansen 
and Hegele, 2011; Teslovich et al., 2010). 
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z Polym. rs Number MAF Ethn.
Sample 

Size
Results (Effect 
Size, p-value)

Reference 

ANGPTL3 rs2131925 0.32 (G) E 96,598 
(Meta)

-4.94mg/dl; 
p=9x10-43

(Teslovich et 
al. 2010) 

ANGPTL3 rs1748195 0.70 (G) Va 9,559 7.12 mg/dl; 
p=5.4x10-8

(Willer et al. 
2008) 

APOA5 rs964184 0.13 (G) E 96,598 
(Meta)

+16.95mg/dl; 
p=7x10-240

(Teslovich et 
al. 2010) 

APOA5/A
4/C3/A1 

rs12286037 0.94 (C) Va 9,738 25.82 mg/dl; 
p=1.6x10-22

(Willer et al. 
2008) 

APOA5 rs662799 0.05 (A) Va 3,248 16.88 mg/dl 
p=2.7x10-10

(Willer et al. 
2008) 

APOA5/A
4/C3/A1 

rs2000571 0.17 (G) Va 3,209 6.93 mg/dl; 
p=8.7x10-5

(Willer et al. 
2008) 

APOA5/A
4/C3/A1 

rs486394 0.28 (A) Va 3,597 1.50 mg/dl; 
p=0.0073

(Willer et al. 
2008) 

APOE rs439401 0.40 (C) C 4.192 p=2.2×10-5 (Liu et al. 2011) 
APOE rs439401 0.64 (C) Va Meta p=5.5x10-30 Johansen et al. 

(2010) 
LIPC/HL rs4775041 0.67 (G) Va 8,462 3.62 mg/dl; 

p=2.9x10-5

(Willer et al. 
2008) 

LIPC/HL rs261342 0.22 (G) Va Meta p=2.0x10-13 Johansen et al. 
(2010) 

LPL rs12678919 0.12 (G) E 96,598
(Meta)

-13.64 mg/dl
p=2x10-115

(Teslovich et 
al. 2010) 

LPL rs10503669 0.90 (A) Va 9,711 11.57 mg/dl; 
p=1.6x10-14

(Willer et al. 
2008) 

LPL rs2197089 0.58 (A) Va 3,202 3.38 mg/dl; 
p=0.0029

(Willer et al. 
2008) 

LPL rs6586891 0.66 (A) Va 3,622 4.60 mg/dl; 
p=5x10-4

(Willer et al. 
2008) 

LPL S447X rs328 0.90 (C) EA 24,258 p=4.16E-30 (Dumitrescu 
et al. 2011) 

LPL S447X rs328 0.10 (X) Va 43,242 -0.15 (-0.12- -
0.19) mmol/l

(Sagoo et al. 
2008) 

LPL D9N rs1801177 0.03 (N) Va 21,040 0.14 (0.08-0.20) 
mmol/l

(Sagoo et al. 
2008) 

LPL N291S rs368 0.03 (S) Va 27,204 0.19 (0.12-0.26)
mmol/l

(Sagoo et al. 
2008) 

LPL rs326 0.18 (G) C 4,192 p=2.3×10-6 (Liu et al. 2011) 
LRP1 rs11613352 0.23 (T) E 96,598

(Meta)
-2.70 mg/dl 

p=4x10-10

(Teslovich et 
al. 2010) 

MLXIPL rs17145738 0.12 (T) E 96,598
(Meta)

-9.32 mg/dl 
p=6x10-58

(Teslovich et 
al. 2010) 

MLXIPL rs17145738 0.84 (T) Va 9,741 8.21 mg/dl; 
p=5x10-8

(Willer et al. 
2008) 

MLXIPL rs7811265 0.81 (A) Va Meta 7.91 mg/dl
p=9.0×10-59

(Johansen et 
al. 2011) 

Table 3. Genetic Polymorphisms Associated With TG Levels. See Table 1 legend. 
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Angiopoietin-like 3 protein (ANGPTL3) inhibits LPL catalytic activity but this process is 
reversible (Shan et al., 2009; Shimizugawa et al., 2002). A monogenic autosomal recessive 
disorder called familial combined hypolipidemia (FCH: OMIM No. 605019), characterized 
by very low TG levels, is genetically complex and poorly understood; however, mutations in 
ANGPTL3 are believed to play a role. Common polymorphisms in ANGPTL3, most notably, 
rs2131925, have been associated with more modest changes in TG levels (Johansen and 
Hegele, 2011; Keebler et al., 2009; Lanktree et al., 2009; Teslovich et al., 2010; Willer et al., 
2008). Sequencing individuals in the Dallas Heart Study has identified several additional 
nonsynonymous ANGPTL3 variants affecting TG levels (Musunuru et al., 2010); however, 
these SNPs require further investigation in other populations.  

4.2 Genetic variation in enzymes and transcription factors and TG levels 

As mentioned above (see Section 2.1), LPL is an enzyme that hydrolyzes TG-rich particles in 
peripheral tissues (muscle, macrophages, adipose) generating FFA and glycerol for energy 
metabolism and storage (Goldberg, 1996). More than 100 mutations in LPL have been 
identified (Murthy et al., 1996); however, only a few common nonsynonymous SNPs have 
been consistently associated with TG levels including rs1801177, rs328 and rs268 (Mailly et 
al., 1995; Rip et al., 2006; Sagoo et al., 2008; Teslovich et al., 2010; Willer et al., 2008). Two 
SNPs, rs1801177 and rs328, have also been consistently associated with CHD; however, 
there is fairly strong LD between these SNPs, at least in Caucasians (Sagoo et al., 2008).  
MLX interacting protein like (MLXIPL) locus encodes a transcription factor of the 
Myc/Max/Mad superfamily which activates, in a glucose-dependent manner, carbohydrate 
response element binding protein (CREBP) that is expressed in lipogenic tissues 
coordinating the subsequent activation of lipogenic enzymes such as fatty acid synthase 
(FAS) to convert dietary carbohydrate to TG (Iizuka and Horikawa, 2008). The human 
MLXIPL gene is located on chromosome 7 (7q11.23). Although initially identified through 
GWAS, the rs1745738 polymorphism has been replicated in other studies (Johansen and 
Hegele, 2011; Teslovich et al., 2010; Wang et al., 2008; Willer et al., 2008). 

5. Genetic variants in dyslipidemia and the Metabolic Syndrome (MetSyn) 

As mentioned in the Introduction (see Section 1.0), MetSyn is a clustering of traits including 
dyslipidemia as well as obesity, hypertension and insulin resistance/dysglycemia. 
Undoubtedly, there is complex interplay between genetic determinants of each of these 
traits and ‘environmental’ factors including those related to lifestyle (diet, exercise, sleep) 
and those related to toxin exposure. Due to space limitations, we focus only on the genetic 
determinants of dyslipidemia that overlap with MetSyn defined as a single, unifying trait 
and refer the reader to other reviews for genetic determinants of the other traits involved in 
MetSyn (Joy et al., 2008; Monda et al., 2010; Pollex and Hegele, 2006; Sharma and McNeill, 
2006) and their interactions with lifestyle factors (Adamo and Tesson, 2008; Garaulet et al., 
2009; Ordovas and Shen, 2008; Phillips et al., 2008) and toxins (Andreassi, 2009).  
Lipoprotein related genes with common SNPs associated with MetSyn (as defined by NCEP 
ATP III and AHA/NHLBI criteria) and HDL-C, LDL-C or TG levels include APOA5 and 
APOC3 (Table 4) (Grallert et al., 2007; Joy et al., 2008; Miller et al., 2007; Pollex et al., 2006; 
Pollex and Hegele, 2006; Yamada et al., 2008). Enzymes involved in lipid metabolism with 
genetic polymorphisms that have also been associated with MetSyn (using the NCEP ATPIII 
criteria) appear limited to the nonsynonymous SNP in LPL, rs328 (Table 4) (Joy et al., 2008; 
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Komurcu-Bayrak et al., 2007). Several SNPs in the LDLR have been associated with MetSyn 
(using AHA/NHLBI criteria) and LDL-C or HDL-C (Joy et al., 2008; Yamada et al., 2008).  
 

Gene Polymorphism
rs 

Number
Ethn.

Sample 
Size

Results
(p-value)

Reference
Comments  
(definition) 

APOA5 -1131T→C J 1788 p< 0.0009 (Yamada 
et al. 2007)

NCEP ATP 
III 

APOA5 c.56C→G C 3124 p=0.026 (Grallert et 
al. 2007) 

NCEP ATP 
III 

APOA5 -3A→G J 2417 p< 0.0001 (Yamada 
et al. 2008)

AHA/NHLBI 

APOC3 -455T→C O-C 515 p=0.029* (Miller et 
al. 2007) 
(Pollex et 
al. 2006) 

*Women only 
NCEP ATP 

III 

LDLR 2052TmC J 2417 p=0.0005 (Yamada 
et al. 2008)

AHA/NHLBI 

LPL S447X Tu 1586 p=0.04 (Komurcu-
Bayrak et 
al. 2007) 

NCEP ATP 
III 

LPL rs295 Va 1407 OR= 0.7;
p=2.1 x 10-3

(Grassi et 
al. 2011) 

NCEP ATPIII 
 

Table 4. Genetic Polymorphisms in Lipid Metabolism Associated with MetSyn. See Table 1 
legend. WHO= World Health Organization; NCEP ATP III=National Cholesterol Education 
Program Adult Treatment Panel III, IDF=International Diabetes Federation; 
AHA=American Heart Association; NHLBI=National Heart, Lung, and Blood institute. 

6. Genetic variants in dyslipidemia and MetSyn: Future directions 

Given the polygenic nature and multi-level complexity of Dyslipidemia and MetSyn, a 
better understanding of the genetic determinants of each intermediate (lower level) 
phenotype as well as the collective integration of these traits as unifying syndromes 
(higher/hierarchical level) is needed, which will require more elegant statistical modeling 
methods and, perhaps, a paradigm shift in the way in which we think about dissecting 
genetic and environmental factors in complex traits. As stated throughout this chapter, there 
is considerable overlap between genetic variants associated with HDL-C, LDL-C and TG 
levels as well MetSyn as a unifying trait. As a result, there is great need to understand not 
only the aggregate effects of multiple variants in each of these genes but to also understand 
how the effects of variation in one gene are modified in the presence of other genes. 
Aggregate effects of multiple variants in genes affecting dyslipidemia and MetSyn related 
traits have included calculation of ‘risk scores’, which simply add the number of ‘risk alleles’ 
in a weighted or unweighted manner. For example, unweighted risk scores were 
constructed by summing the number of ‘TG-raising’ alleles at 32 loci and placed in ‘risk 
bins’ (categories) to show that higher risk scores were significantly associated with patients 
with hypertriglyceridemia (HTG) compared to controls (Johansen and Hegele, 2011; 
Teslovich et al., 2010). Increasing genotype risk scores comprised by summing risk alleles in 
9 common SNPs were associated with decreasing HDL-C levels (Kathiresan et al., 2008a). 
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We have used the multivariate statistical framework of structural equation modeling (SEM) 

to evaluate multiple genetic determinants of MetSyn and aggregate effects of individual 

genes by modeling MetSyn as a second-order factor together with multiple putative 

candidate genes represented by latent constructs, which we mathematically defined by 

multiple SNPs in each gene (Nock et al., 2009b). Using this approach with the Framingham 

Heart Study (Offspring Cohort, Exam 7; Affymetrix 50k Human Gene Panel) data, we found 

that the CETP gene had a very strong association with the Dyslipidemia factor but little 

effect on MetSyn directly. Furthermore, we found that the effects of the CSMD1 gene 

diminished when modeled simultaneously with six other candidate genes, most notably 

CETP and STARD13. Work to identify the genetic determinants of ‘Syndrome Z’, modeled 

as a higher-order, unifying syndrome defined by 5 first-order factors (dyslipidemia, insulin 

resistance, obesity, hypertension, sleep disturbance) (Nock et al., 2009a) using the latent 

gene construct SEM approach is underway.  

The use of other forms of ‘causal modeling’ (edge/node; integrative genetics) has been 

proposed (Lusis et al., 2008), particularly, to improve our understanding of differential 

effects by gender as well as to better understand how maternal nutrition and epigenetics 

affect MetSyn. Furthermore, a complex model for the genetic determinants of MetSyn 

associated phenotypes was recently proposed and, using gene enrichment analysis and 

protein-protein interaction network approaches, the retinoid X receptor and farnesoid X 

receptor (FXR) were identified as key players in MetSyn given their multiple interactions 

with metabolism, cell proliferation and oxidative stress (Sookoian and Pirola, 2011). 

However, more elegant kinetic models may be required to understand the true influence of 

genetic variants on Dsylipidemia and MetSyn given the presence of multiple feedback loops 

and reversible reactions (Bakker et al., 2010; Gutierrez-Cirlos et al., 2011). 
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