
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322405931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Genetic Factors Influencing the Risk and 
Clinical Outcome of Neuroblastoma 

Diana T. Lau and Lesley J. Ashton 
Children’s Cancer Institute Australia for Medical Research, 

Lowy Cancer Research Centre, UNSW, 
Australia 

1. Introduction 

Neuroblastoma is an embryonal malignancy of the sympathetic nervous system arising 

from neuroblasts. It is the most common solid tumor in children under the age of 5 and 

accounts for 8-10% of all childhood cancers (Brodeur & Maris, 2006). The disease occurs 

almost exclusively in infants and children below the age of 4, with median age of diagnosis 

approximately 17 months (Ries et al., 1999; London et al., 2005). Prognostic factors such as 

age at diagnosis, clinical stage, Shimada histology, amplification of MYCN, DNA ploidy, 

and molecular defects such as allelic loss of chromosome 1p and 11q in tumor cells are used 

for risk stratification and treatment assignment. The amplification of MYCN oncogene 

occurs in 20% to 25% of primary neuroblastomas and is consistently associated with poor 

outcome in neuroblastoma (Brodeur & Seeger, 1986). Although the overall 5-year survival of 

patients with neuroblastoma have improved considerably over the past decade, survival 

rates among children with high-risk neuroblastoma remains below 50%, despite marked 

intensification of chemotherapy (Baade et al., 2010). 

A particular hallmark of neuroblastoma is its clinical heterogeneity, where some patients 

experience spontaneous regression or differentiation of the tumor into benign 

ganglioneuroma, while others are affected by rapid and fatal tumor progression (Schwab et 

al., 2003). Although the disease is often diagnosed in the perinatal period, environmental or 

parental risk factors have not been identified consistently and the molecular basis of 

neuroblastoma development and progression is still poorly understood (Hamrick et al., 

2001; Urayama et al., 2007; Munzer et al., 2008). Recent advances in genome-wide studies 

have proven to be a useful prognostic tool for identifying genetic alleles or regions that may 

be used as risk markers for neuroblastoma development. In recent years, a number of 

genetic and genomic changes have been identified in neuroblastoma tumors that are 

relevant to clinical progression, allowing tumors to be classified into subsets with distinct 

clinical behavior. Genome-wide association studies (GWAS) have described genetic factors 

influencing the risk and clinical outcome of neuroblastoma such as rare mutations in the 

ALK gene for familial neuroblastoma, common single nucleotide polymorphisms (SNPs) at 

6p22 in FLJ22536 and FLJ44180, 2q35 in BARD1, 11p15.4 in LMO1, and copy number 

variation at 1q21.1 in NBPF23. Moreover, several regions with chromosomal alterations have 

been identified and many of these regions are speculated to harbor tumor suppressor genes. 
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However, no single genetic change has been found to be common to all neuroblastoma 

tumors suggesting a complex underlying genetics of neuroblastoma and that aberrant 

expression or regulation of multiple genes may work together to initiate the malignant 

transformation of undifferentiated neuroblasts. 

More recently, it has become apparent that the biology of neuroblastoma is determined not 

only by the tumor’s genetic profile but also the tumor epigenetic profile. Distinct CpG island 

methylation patterns have been suggested to characterize different clinical groups of 

neuroblastoma (Alaminos et al., 2004; Yang et al., 2004; Banelli et al., 2005b; Abe et al., 2007) . 

Indeed, several potential tumor suppressor genes such as CASP8 and RASSF1 have been 

identified to be frequently hypermethylated and silenced in neuroblastoma. Therefore, 

epigenetic biomarkers may be considered as a potential prognostic marker for predicting 

risk groups and response to therapy. 

This chapter reviews the genetic changes that are associated with the risk and outcome in 

neuroblastoma with particular focus on recently identified SNPs, copy number variations, 

genomic changes and epigenetic alterations that have been linked to the tumorigenesis and 

progression of neuroblastoma. Knowledge of the genetics of neuroblastoma offers 

opportunities to understand the underlying mechanisms for the heterogeneity of 

neuroblastoma and will facilitate the discovery of new therapeutic targets. 

2. Genetic alterations in neuroblastoma 

2.1 PHOX2B and ALK mutations in familial neuroblastoma 

Familial neuroblastoma accounts for approximately 1% of all cases and the disease appears 

to inherit in an autosomal dominant mode with incomplete penetrance (Maris et al., 2007). 

Some patients with neuroblastoma have been described with other congenital disorders of 

neural crest-derived cells, such as central congenital hypoventilation syndrome (CCHS) or 

Hirschsprung disease (Maris et al., 1997; Amiel et al., 2003). Hence, the co-existence of these 

disorders and neuroblastoma suggests a common underlying genetic cause. In CCHS, 

mutations in the paired-like homeobox 2B (PHOX2B) gene at chromosome 4p12 is 

commonly detected, which prompted researchers to examine mutations of PHOX2B in 

neuroblastoma (Weese-Mayer et al., 2005). PHOX2B encodes a transcription factor that 

regulates the development of the autonomic nervous system. Linkage studies of 

neuroblastoma cases have revealed several germline PHOX2B mutations found exclusively 

in patients with congenital abnormalities of the neural crest (Table 1) (Mosse et al., 2004; 

Trochet et al., 2004). Although only 6.4% of familial neuroblastoma cases have shown to 

harbor these mutations, PHOX2B was the first gene to be considered as a candidate gene 

for predisposition to familial neuroblastoma (Raabe et al., 2007). Analysis of PHOX2B 

mutations in sporadic neuroblastoma has also revealed several frameshift mutations 

(Table 1) (Limpt et al., 2004) and although these mutations occur in less than 3% in 

sporadic neuroblastomas, they suggest a role for PHOX2B in the oncogenesis of 

neuroblastoma. 

For cases that were not associated with other congenital disorders of neural crest 

development, several groups have independently discovered mutations of the anaplastic 

lymphoma kinase (ALK) gene in familial neuroblastoma as well as sporadic neuroblastoma 

(Caren et al., 2008; Chen et al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; Mosse 
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et al., 2008). Findings from these studies have shown that the frequency of somatic ALK 

mutations ranged from 4-8% in primary neuroblastoma tumors (Janoueix-Lerosey et al., 

2008; Mosse et al., 2008). 

 

Gene Chromosome 
location 

Gene function Genetic variations^ References 
 

PHOX2B 4p12 Regulator of 
autonomic nervous 
system development

R110L, R141G, G299T, 
G216fs*88, A241fs*64, 
G239fs*82 

(Limpt et al., 2004; 
Mosse et al., 2004; 
Trochet et al., 2004) 

ALK 2q23 Encodes for tyrosine 
kinase 

R1275Q, F1275L, F1174L, 
F1174I, F1174C, F1174V, 
F1245C, F1245L, F1245V, 
F1245I, D1091N, A1234T, 
G1128A, I1171N, I1250T, 
K1062M, M1166R, R1192P, 
T1087I, T1151M, Y1278S 

(Chen et al., 2008; 
George et al., 2008; 
Janoueix-Lerosey et 
al., 2008; Mosse et al., 
2008) 

FLJ22536 
FLJ44180 

6p22 Unknown rs693940, rs4712653, rs9295536 (Maris et al., 2008) 

BARD1 2q35 Interacts with BRCA1 rs6435862, rs3768716, 
rs17487792, rs6712055, 
rs7587476, rs6715570 

(Capasso et al., 2009) 

LMO1 11q15.4 Transcriptional 
regulator 

rs110419, rs4758051, 
rs10840002, rs204938 

(Wang et al., 2011) 

DUSP12 1q23.3 Encodes for  Ser/Thr 
and Tyr protein 
phosphatases 

rs1027702ϕ (Nguyễn et al., 2011) 

DDX4 5q11.2 Putative RNA 
helicases 

rs2619046ϕ (Nguyễn et al., 2011) 

IL31RA 5q11.2 Encodes for type I  
cytokine receptor 
family protein 

rs10055201ϕ (Nguyễn et al., 2011) 

HSD17B12 11q11.2  rs11037575ϕ (Nguyễn et al., 2011) 

NBF23 1q21.1 Unknown CNV (Diskin et al., 2009) 

^Only missense mutations are listed. ϕMost significant SNP identified. 
 

Table 1. A summary of significant SNPs and CNV at each described predisposition locus 
identified by GWAS. 

The ALK gene maps to chromosome 2p23, which also contains MYCN, the well-known 

oncogene in neuroblastoma. The protein product of ALK is a tyrosine kinase, an enzyme that 

regulates the activity of other proteins through phosphorylation. ALK plays a critical role in 

controlling cell proliferation, differentiation and survival in normal cells, especially in the 

development of the brain and the autonomic nervous system (Wellmann et al., 1997; The 

NCBI handbook, 2002). In many human cancers, ALK functions as an oncogene by the 

activation of ALK signaling to form oncogenic fusion proteins through chromosomal 
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translocation events (Mosse et al., 2009). More than 20 ALK mutations have been identified 

in neuroblastoma patients and cell lines (Table 1), including F1174L, F1174S, F1245C and 

R1275Q which are located in the conserved regions of the kinase domain and have been 

shown to activate ALK signaling, suggesting their functional importance for the regulation 

of kinase activity (Chen et al., 2008; Janoueix-Lerosey et al., 2008; Mosse et al., 2008; 

Martinsson et al., 2011). ALK mutations tend to be associated with advanced stage 

neuroblastoma. In particular, F1174L mutations have been observed to occur at a higher 

frequency in MYCN-amplified tumors, and be associated with poorer outcome, suggesting 

an interactive role between both aberrations (De Brouwer et al., 2010). Other genetic defects 

such as amplification and overexpression of the ALK gene have been found to correlate with 

unfavorable features, such as metastatic tumors and poor outcome in neuroblastoma (Caren 

et al., 2008; Janoueix-Lerosey et al., 2008; Passoni et al., 2009). In addition, the expression 

levels of ALK and PHOX2B were directly correlated in neuroblastoma cell lines (Bachetti et 

al., 2010). Hence, ALK has been identified as a novel target gene of PHOX2B, indicating that 

these two genes are jointly involved in the tumorigenesis of neuroblastoma (Bachetti et al., 

2010). Since mutations of ALK and PHOX2B account for the majority of familial 

neuroblastoma cases, patients with a family history of neuroblastoma are routinely  

offered genetic counseling and testing for ALK and PHOX2B mutations 

(www.ncbi.nlm.nih.gov/sites/GeneTests). 

2.2 Genetic variations in sporadic neuroblastoma 

The vast majority of neuroblastoma tumors develop sporadically without family history of 

the disease (Capasso & Diskin, 2010). Genetic variation appears to play a central role in 

determining neuroblastoma susceptibility with most cases likely to arise from the 

interaction between multiple genetic variants (Maris et al., 2007). The use of high-density 

SNP genotyping arrays in GWAS has proven to be a powerful tool in identifying genetic 

determinants of complex disease. The first report that identified common genetic variants 

predisposing to neuroblastoma came from a GWAS using blood samples from nearly 2000 

neuroblastoma patients and more than 4000 healthy control subjects of European descent 

(Maris et al., 2008). In this study, over half a million  SNPs were genotyped and 3 common 

SNPs within the FLJ22536 and FLJ44180 genes at chromosome 6p22.3 were identified to be 

associated with the predisposition of sporadic neuroblastoma (Table 1). Investigations also 

showed that patients that were homozygous for these high-risk alleles were more likely to 

develop a clinically aggressive form of neuroblastoma, including metastatic neuroblastoma, 

MYCN amplification, and subsequently relapse. Although the function of FLJ22536 and 

FLJ44180 in the tumorigenesis of neuroblastoma is not yet known, these findings suggest 

that common variants of these two genes may have a distinctive role in the etiology of more 

aggressive forms of neuroblastoma; a hypothesis examined in subsequent GWAS limited to 

patients with high-risk neuroblastoma (Capasso et al., 2009). These investigators not only 

replicated the findings of candidate SNPs at 6p22, a further 6 SNPs within the BRCA1-

associated RING domain 1 (BARD1) gene at 2q35 were found to be associated with 

aggressive neuroblastoma (Table 1). BARD1 has been previously implicated to have a role in 

several types of cancers, including breast cancer. The BARD1 protein heterodimerizes with 

BRCA1 protein and the formation of a stable complex between these proteins is thought to 

be important for the tumor suppressor function of BRCA1 (Capasso et al., 2009). However, 
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further studies are required to characterize the biological consequences of genetic variations 

in the BARD1 gene which may lead to the identification of potential therapeutic target for 

high-risk neuroblastoma. 

A further GWAS examining over 2000 patients with neuroblastoma and 6000 control 

subjects of European ancestry reported that common genetic variants within the LMO1 gene 

at 11p15.4 were significantly associated with the risk of neuroblastoma (Table 1) (Wang et 

al., 2011). LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogs (LMO2, 

LMO3 and LMO4) have each been implicated in other cancers (Curtis & McCormack, 2010; 

Wang et al., 2011). Similar to those observed for the 6p22 and BARD1 loci, the risk alleles of 

LMO1 were also found to be associated with high-risk neuroblastoma and decreased 

survival. In particular, the LMO1 SNP, rs110419, displayed the strongest association with the 

aggressive form of the disease. Moreover, presence of the rs110419 variant allele and copy 

number gains of LMO1 were associated with increased expression of LMO1 in 

neuroblastoma cell lines and primary tumors, suggesting a gain-of-function role of these 

genetic defects in the tumorigenesis of neuroblastoma (Wang et al., 2011). 

More recently, a novel gene-centric approach examined the combined effect of all SNPs 

within 10 kilobases of 15,885 target genes (Nguyễn et al., 2011). This method correctly 

identified three genes previously reported to be associated with high-risk neuroblastoma 

(FLJ22536, BARD1 and LMO1). When the analyses were enriched for low-risk 

neuroblastoma cases, SNPs within four novel genes, dual specificity phosphatase 12 

(DUSP12), DEAD box polypeptide 4 isoform (DDX4), interleukin 31 receptor A precursor 

(IL31RA) and hydroxysteroid (17-beta) dehydrogenase 12 (HSD17B12) were identified as 

being associated with the less aggressive form of neuroblastoma. These susceptibility loci 

were successfully replicated in two independent cohorts highlighting the importance of 

robust phenotypic data and the use of alternative methods that focus on individual genes, 

instead of individual SNPs in GWAS. 

Copy number variation (CNV) is another form of genetic variation that has been linked to 

cancer susceptibility. CNVs are structural variants that comprise of copy number change 

involving a DNA fragment that is at least one kilobases long (Freeman et al., 2006). Previous 

investigations identified a deletion CNV at chromosome 1q21.1 that was highly associated 

with neuroblastoma (Diskin et al., 2009). Sequencing of this region found a previously 

unknown transcript with high sequence similarity to several neuroblastoma breakpoint 

family (NBPF) genes and this novel transcript was termed NBPF23 (Diskin et al., 2009). The 

expression level of NBPF23 was directly correlated with CNV and NBPF23 was shown to 

preferentially express in normal fetal brain and fetal sympathetic tissues, implicating its role 

in early tumorigenesis of neuroblastoma (Diskin et al., 2009). 

2.3 Genomic changes in neuroblastoma 

Over the last two decades, many chromosomal and molecular anomalies have been 
identified in patients with neuroblastoma and the biological and clinical relevance of these 
genetic changes have been reported. In order to establish reliable genetic markers, several 
reported molecular defects have been evaluated by the International Neuroblastoma Risk 
Group (INRG) in a cohort of 8800 neuroblastoma patients to determine their value as a 
prognostic marker, and some of these markers have been incorporated into risk assessment 
strategies (Ambros et al., 2009; Cohn et al., 2009). 
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2.3.1 MYCN amplification and chromosome alterations 

The most important of these biologic markers is MYCN, an oncogene that is amplified in 

approximately 20-25% of all neuroblastoma cases and is more common in patients with 

advanced-stage disease (Brodeur & Seeger, 1986). The process of amplification usually 

results in 50 to 400 copies of the gene per cell, with correspondingly high levels of MYCN 

protein expression (Seeger et al., 1988). Patients with amplification of MYCN tend to have 

rapid tumor progression and poor prognosis, even in the presence of other favorable factors 

such as low-stage neuroblastoma. Amplification of MYCN is often associated with other 

chromosomal aberrations such as the deletion of chromosome 1p, which was identified in 

25-35% of all neuroblastoma cases (Attiyeh et al., 2005; White et al., 2005). Studies have 

shown that the addition of an intact human chromosome 1p to a 1p-deleted neuroblastoma 

cell line can induce cellular differentiation and/or death (Bader et al., 1991), suggesting that 

the 1p chromosome region harbors tumor suppressor genes (TSGs) or genes that are likely 

to control neuroblast differentiation. While only a few candidate TSGs have been identified 

in this region (Okawa et al., 2008), deletion of the 1p region has been associated with 

unfavorable clinical outcome, independent of age and stage (Caron et al., 1996b) and most 

1p-deletions have been found in the 1p36 area of the chromosome; a region showing loss of 

heterozygosity (LOH) in 20-40% of neuroblastoma tumors (Caren et al., 2007). 
Another common chromosomal aberration is the deletion of 11q identified in more than half 
of all neuroblastoma cases, has found to be highly associated with chromosome 3p LOH 
(George et al., 2007). As 11q deletions were inversely correlated to MYCN amplification, this 
aberration represents a powerful biomarker of poor outcome in cases without MYCN 
amplification (Attiyeh et al., 2005). Hence, 11q status has recently been included as a 
criterion in the INRG classification system (Cohn et al., 2009). To a lesser extent, other allelic 
losses of chromosome segments 3p, 4p, 9p, and 14q have been shown to have varying 
degrees of prognostic importance (Fong et al., 1992; Caron et al., 1996a; Ejeskar et al., 1998; 
Vandesompele et al., 1998). 
The partial gain of chromosome 17q has been observed in more than 70% of primary 
neuroblastoma tumors, indicating that a 17q gain is one of the most frequent genetic 
abnormalities observed in neuroblastoma (Plantaz et al., 1997; George et al., 2007). 
Unbalanced 17q gain is associated with MYCN amplification, loss of 1p, and adverse 
outcome (Bown et al., 1999). Although this feature may be useful for treatment stratification, 
the underlying molecular mechanisms conferring the adverse phenotype of neuroblastoma 
are still unclear. 
While recent genome-wide approaches have provided a comprehensive overview of genetic 

alterations present in neuroblastoma, segmental chromosomal aberrations have also been 

reported to be associated with clinically aggressive disease and high-risk of relapse 

(Janoueix-Lerosey et al., 2009; Schleiermacher et al., 2010). In contrast, neuroblastoma 

patients with whole chromosomal gains or losses have shown better survival and 

association with favorable clinical disease stage (Lastowska et al., 2001). These findings 

place a greater emphasis on overall genomic pattern rather than individual conventional 

markers for inclusion in future treatment stratification system for neuroblastoma.  

2.3.2 DNA content 

DNA content or ploidy and structural abnormalities, such as chromosomal deletions or 

gains, have been extensively studied in neuroblastoma. A strong correlation has been found 
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between increased chromosome number in neuroblastoma cells (diploid versus 

hyperdiploid) and response to therapy, especially in children less than 1 year of age (Look et 

al., 1991). While patients with favorable neuroblastoma tend to have a hyperdiploid or near-

triploid DNA content (Kaneko et al., 1987), the majority of neuroblastoma cell lines and 

advanced primary tumors from older patients have either a near-diploid or near-tetraploid 

DNA content (Maris & Matthay, 1999). Diploid or tetraploid tumors in older patients 

usually have several structural rearrangements, including amplification, deletion, and 

unbalanced translocations, while hyperdiploid and triploid tumors in infants generally have 

whole chromosome gains without structural rearrangements (Kaneko et al., 1987; Maris & 

Matthay, 1999). These observations are consistent with the findings mentioned earlier that 

segmental chromosome defects confer a more aggressive phenotype than those with whole 

chromosome gains or losses. 

3. DNA methylation and cancer 

Cancer development is an intricate multistep process that involves the malfunction of proto-

oncogenes, tumor suppressor genes (TSGs), and other key cellular genes essential for cell 

differentiation, progression and genome integrity. Malfunction or inactivation of these genes 

is thought to be predominantly caused by genetic events such as DNA mutations and 

chromosomal deletions. Until recently, epigenetic alterations were recognized as an 

alternative mechanism associated with inappropriate gene silencing. Epigenetic changes are 

heritable alterations in the expression of genes that occur without changing the nucleotide 

gene sequence of DNA (Das & Singal, 2004). The most well characterized epigenetic event in 

the mammalian genome is DNA methylation; an essential process that regulates gene 

transcription and normal cell development. DNA methylation silences gene expression 

through the addition of methyl groups to cytosine residues within CpG-rich dinucleotides 

present in the promoter region of genes, where transcription is initiated. Although CpG sites 

are relatively uncommon in most of the human genome, CpG-rich sequences occurs at a 

much higher frequency proximal to gene promoter regions and are known as CpG islands 

(CGIs) and these islands are mostly free of methylation in normal cells (Jones & Baylin, 

2002). 

In recent years, a growing number of cancer-related genes have been identified to harbor 

dense methylation in normally unmethylated promoter CGI (Jones & Baylin, 2002). 

Hypermethylation of the promoter region is often associated with transcriptional silencing 

of downstream genes such as tumor suppressor genes (Esteller & Herman, 2002). Indeed, 

many genes implicated in pathways controlling growth, genomic stability and cell survival 

have been reported to be silenced by promoter hypermethylation. In cancer, gene silencing 

through methylation occurs at least as frequently as mutations or deletions (Baylin, 2005), 

while a global decrease in methylated CpG content or hypomethylation is rather uncommon 

(Kulis & Esteller, 2010). Nevertheless, changes in methylation patterns may lead to 

chromosomal instability, activation of endogenous parasitic sequences, loss of imprinting, 

inappropriate expression, aneuploidy, and mutations (Esteller & Herman, 2002). Thus, 

aberrant methylation is recognized as an important component of tumorigenesis and 

methylation changes in multiple genes may represent the characteristics of different tumors 

or tumor subtypes with unique biological and clinical features. Hence, methylation is 
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considered a promising biomarker for diagnostic and prognostic stratification of cancer 

patients. 

3.1 DNA methylation in neuroblastoma 

Although MYCN amplification is a strong prognostic marker that identifies a subgroup of 

patients at high risk of tumor progression and intensive therapy, the majority of metastatic 

neuroblastomas do not show amplification of this oncogene and these patients can also 

present with aggressive forms of neuroblastoma (Ambros et al., 2009). Therefore, 

identification of additional predictive biomarkers is needed for better stratification of patient 

risk groups and therapeutic regimens. 

In the past decade, a growing list of aberrantly methylated genes including those involved 

in apoptosis, cell-cycle regulation, differentiation and development has been described in 

neuroblastoma (Table 2). This list is likely to expand as large scale methods for the detection 

of methylation continue to improve. Despite the current lack of evidence supporting the role 

of global hypomethylation in neuroblastoma, methylation studies have provided clues for 

the molecular basis of neuroblastoma and the search for epigenetic signatures that could be 

associated with defined clinical and biological parameters in neuroblastoma continues. A 

list of methylation studies and their findings are presented in Table 3. Several studies have 

found distinct promoter methylation patterns that were able to characterize different clinical 

groups in neuroblastoma (Abe et al., 2005; Banelli et al., 2005b). The latest findings 

describing the role of methylation in uncultured or primary neuroblastoma tumors are 

discussed below.  

3.1.1 Tumor suppressor genes 

Inactivation of TSGs is a critical step in cancer development. Functional loss of TSGs is 

usually mediated by oncogenic mutations or chromosomal deletions. In recent years, CGI 

hypermethylation has been recognized as an alternative mechanism for TSG inactivation 

and several potential TSGs has been described to be frequently hypermethylated and down-

regulated in neuroblastoma. 

Allelic losses of chromosome 3p21.3 are frequently detected in many cancers. Several 

candidate tumor-suppressor genes have been identified in this region, including RASSF1 

(Ras-association domain family 1). This gene encodes for an anaphase inhibitor that 

prevents cell proliferation by negatively regulating cell-cycle progression through the 

inhibition of cyclin D1 protein (Nguyễn et al., 2011). Loss or altered expression of RASSF1 

has been associated with the tumorigenesis of other cancers, suggesting the tumor 

suppressor function of this gene (Burbee et al., 2001). RASSF1 is consistently methylated in 

primary neuroblastoma tumors and is frequently inactivated by promoter hypermethylation 

resulting in loss of expression (Harada et al., 2002; Michalowski et al., 2008). Silencing of 

RASSF1 has been postulated to contribute to aberrations of RAS signal pathways observed 

in neuroblastomas (Tanaka et al., 1998). Furthermore, several investigators have reported 

methylation of RASSF1 to be associated with unfavorable features. For example, 

neuroblastoma patients with older age (>1 year) have been shown to have higher levels of 

RASSF1 methylation (Harada et al., 2002; Yang et al., 2004), while  complete methylation of 

RASSF1 has been found to be more prevalent in patients with MYCN amplification than 
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Gene Gene function 

Methylation 
frequency (%), 

(no. of samples) 

References 

APAF1 Proapoptotic gene 28% (23/82) (Grau et al., 2010) 

CASP8 
Apoptotic gene, potential 
TSG 

56% (24/42) 
60% (21/35) 
38% (17/45) 

(Hoebeeck et al., 2009) 
(Lazcoz et al., 2006) 
(Michalowski et al., 2008) 

HOXA9 Development regulator 39% (57/145)ǂ (Alaminos et al., 2004) 

PYCARD Induces apoptosis 31% (45/145)ǂ (Alaminos et al., 2004) 

RASSF1 Anaphase inhibitor 

71% (30/42) 
52% (14/27) 
70% (39/56) 
83% (34/41) 
93% (42/45) 
84% (26/31) 
55% (37/67) 
94% (64/68) 

(Hoebeeck et al., 2009) 
(Harada et al., 2002) 
(Yang et al., 2004) 
(Lazcoz et al., 2006) 
(Michalowski et al., 2008) 
(Banelli et al., 2005b) 
(Astuti et al., 2001) 
(Misawa et al., 2009) 

SFN 
Inhibits cell-cycle 
progression 

100% (31/31) (Banelli et al., 2005b) 

TIMP3 
Inhibitor of tissue metallo-
proteases, matrix 
remodeling, tissue invasion 

51% (23/45) (Michalowski et al., 2008) 

THBS1 Angiogenesis inhibitor 
55% (31/56) 
64% (24/38) 

(Yang et al., 2004) 
(Gonzalez-Gomez et al., 2003) 

TNRSF10C 
Anti-apoptotic decoy 
receptors 

11% (5/45) 
21% (6/28) 

(Michalowski et al., 2008) 
(van Noesel et al., 2002) 

TNRSF10D 
Anti-apoptotic decoy 
receptors 

25% (11/45) 
25% (7/28) 
42% (13/31) 

(Michalowski et al., 2008) 
(van Noesel et al., 2002) 
(Banelli et al., 2005b) 

ZMYND10 
Cell-cycle regulation, 
potential TSG 

15% (6/42) 
8% (3/41) 
34% (15/45) 
41% (20/49) 

(Hoebeeck et al., 2009) 
(Lazcoz et al., 2006) 
(Michalowski et al., 2008) 
(Agathanggelou et al., 2003) 

ǂIncluded 27 relapse samples corresponding to the same patients from whom primary tumors were also 
available. 

Table 2. Genes commonly silenced by promoter methylation in primary neuroblastoma 
tumors. 
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Gene(s) examined Detection 
method 

Sample 
size 

Findings Reference 

PTEN, MGMT, PRDM2, 
hMLH1, CD44, THBS1, 
GSTP1, CFTR, 
TNFRSF10A, ZMYND10, 

RASSF5, RAR, CASP8, 
PYCARD, APAF1, RB1, 
EMP3, CCND2, RASSF1, 
SYK 

MSP 82 Hypermethylation of CASP8, PYCARD 
and THBS1 were associated with MYCN 
amplification and poor EFS and OS. 
Combined analysis of hypermethylation 
of apoptotic genes (CASP8, PYCARD 
and APAF1) was suggested as a good 
prognostic indicator of NB progression.

(Grau et al., 2010) 

SFN Pyro-
sequencing 
& MSP 

122 A methylation threshold of 85% for the 
SFN gene distinguished NB patients 
with progressive disease from those 
with favorable outcome. 

(Banelli et al., 
2010) 

ROBO1, PRMD2, TP73, 
DCC, CDH1, ZMYND10, 
PTEN, CASP8, RASSF1, 
CD44 

MSP 42 
 

Hypermethylation of CASP8 and CDH1 
was associated with poor EFS. Meta-
analysis of 115 NB tumors 
demonstrated that CASP8 methylation 
and MYCN amplification are correlated.

(Hoebeeck et al., 
2009) 

RASSF1 MSP 68 Hypermethylation of RASSF1 was 
found in 94% of NB tumors and 25% in 
matched serum samples. Serum 
methylation of RASSF1 was associated 
with age at diagnosis (≥1 year), stage 4 
NB and MYCN amplification. 

(Misawa et al., 
2009) 

TIMP3, CASP8, 
ZMYND10, TNFRSF10C, 
TNFRSF10D, CDKN2B, 

RAR, DAPK1, FHIT, NF2, 
CDKN2A, CDKN2A, APC, 
RB1, SMARCB1, NF2, 
CFLAR, CDH1, MGMT 

MSP 45 & 17 
relapse

Methylation of RASSF1, TIMP3, CASP8, 
ZMYND10 was detected at diagnosis as 
well as relapse and were associated with 
unfavorable stage. 

(Michalowski et 
al., 2008) 

HIC1, PYCARD, 
TNFRSF10D, ZMYND10, 
TNFRSF10A, CDH1, 
SCGB3A1, RARRES1, 
IRF7, CDH13, EDNRB, 
MGMT, BRCA1, RB1, P27, 
DKK3, VHL, SLC16A1, 
PTEN 

MSP 70 TNFRSF10D, CASP8 and SCGB3A1 
were associated with high-risk NB and 
poor outcome. 

(Yang et al., 2007) 

RASSF1, RASSF5, 
ZMYND10, CASP8 

MSP 41 A correlation was found between the 
methylation levels of RASSF1 and 
CASP8. No association was detected 
between methylation and known 
prognostic factors. 

(Lazcoz et al., 
2006) 

PCDHB gene family, 
PCDHA gene family, 
MST1, MST1P9, 
DKFZp451I127, FBLN7, 
ZBTB22, CYP26C1 

MS-RDA 
& MSP 

145 Multiple CGIs were simultaneously 
methylated in patients with poor 
prognosis, conforming to the concept of 
CpG island methylator phenotype 
(CIMP). Almost all cases with MYCN 
amplification exhibited CIMP. 

(Abe et al., 2005) 
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Gene(s) examined Detection 
method 

Sample 
size 

Findings Reference 

SFN, RASSF1, CDKN2A, 
CDH1, CASP8, 
TNFRSF10D, RARβ, 
TNFRSF10A, MGMT, 
TAp73, ∆Np73 

MSP, 
COBRA & 
direct 
sequencing

31 Methylation of SFN, RASSF1 and 
intragenic segment of CASP8 was 
different between MYCN amplified and 
non-amplified NB tumors. 
Hypermethylation of TNRSF10D was 
associated with reduced overall 
survival. 

(Banelli et al., 
2005b) 

TNFRSF10A, PYCARD, 

RAR, SYK, PRDM2, 
FOLH1, CDKN2A, 
CCND2, LMX1A, HOXA9 

MSP 118 & 
27 
relapse

Hypermethylation of HOXA9 was 
associated with poor survival in patients 
<1 year of age and with no amplification 
of MYCN. 

(Alaminos et al., 
2004) 

SPARC, TIMP3, THBS1, 
DAPK1, TP73, FAS, 
CDKN2A, CDKN1A 

RASSF1, RAR2, CASP8 

MSP 56 Hypermethylation of RASSF1 was 
associated with age >1 year, high-risk 
NB and poor survival. No association 
between THBS1 methylation and 
prognostic factors or survival was 
observed. 

(Yang et al., 2004) 

ZMYND10, RASSF1 MSP & 
COBRA 

49 Methylation of ZMYND10 was detected 
in 41% of primary NB tumors. No 
correlation was found between 
methylation of RASSF1 and ZMYND10.

(Agathanggelou et 
al., 2003) 

MGMT, DAPK1, 
CDKN2A, THBS1, TIMP3, 
TP73, CDKN2A, RB1, 
CASP8, TP53, GSTP1 

MSP 38 A high frequency of methylation 
(64%) was detected in THBS1, while 
all other genes have intermediate or 
low methylation frequency (0-30%). 

(Gonzalez-Gomez 
et al., 2003) 

TNFRSF10A, TNFRSF10B, 
TNFRSF10C, TNFRSF10D

MSP 28 Hypermethylation was observed for 

TNFRSF10C and TNFRSF10D, while 

TNFRSF10A and TNFRSF10B were 

frequently expressed in NB tumors with 

no methylation was observed. 

(van Noesel et al., 
2002) 

CDKN2A, MGMT, GSTP1, 
RASSF1, APC, DAPK1, 

RAR2, CDH1, CDH13 

MSP 27 Methylation of RASSF1 had the highest 

frequency (52%) when compared to 

other genes (<6%). Hypermethylation of 

RASSF1 was associated with age >1 

year. 

(Harada et al., 
2002) 

RASSF1, CASP8 MSP & 
COBRA 

67 RASSF1 was methylated in the 

majority of primary NB tumors and 

RASSF1 promoter methylation is was 

associated with transcriptional 

silencing of RASSF1 in NB cell lines. 

Methylation of RASSF1 and CASP8 

was found to be correlated. 

(Astuti et al., 2001) 

Abbreviation: MSP = methylation specific PCR; COBRA = combined bisulfite restriction analysis; MS-
RDA = methylation-sensitive representational difference analysis; EFS = event-free survival; OS = 
overall survival; CGI = CpG island; NB=neuroblastoma. 

Table 3. A summary of findings from methylation studies in primary neuroblastoma 
tumors. 
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those without (Banelli et al., 2005b).  However, associations between RASSF1 methylation 

and clinical outcome of neuroblastoma have been variable. One study found significant 

association between RASSF1 methylation and high-risk neuroblastoma as well as poor 

survival (Yang et al., 2004), while other studies were unable to detect  any associations 

(Harada et al., 2002; Wong et al., 2004; Lazcoz et al., 2006). Nevertheless, when the combined 

methylation levels of both RASSF1 and TNFRSF10D are considered, their clinical association 

with reduced overall survival and progressive tumors becomes more apparent (Banelli et al., 

2005b). Similarly, methylation patterns in RASSF1 and CASP8 have been reported to be 

correlated, although the clinical significance of this association is yet to be established 

(Astuti et al., 2001; Lazcoz et al., 2006). More recently, a study examining the level of 

promoter hypermethylation of RASSF1 in serum DNA samples of patients with 

neuroblastoma found increased levels of RASSF1 hypermethylation associated with older 

age, stage 4 disease, and MYCN amplification (Misawa et al., 2009). These promising 

findings indicate that screening for methylation status of RASSF1 and other genes in patient 

serum at diagnosis may be further developed for use as a non-surgical prognostic predictor 

of neuroblastoma outcome. 

ZMYND10 (zinc finger, MYND-type containing 10, also known as BLU) is another candidate 

tumor suppressor gene residing in the 3q21 region, and is thought to regulate entry into the 

cell cycle. Overexpression of ZMYND10 has been shown to inhibit cell growth in 

neuroblastoma, while methylation of the ZMYND10 promoter has been correlated with 

reduce ZMYND10 gene expression in neuroblastoma cell lines (Agathanggelou et al., 2003) 

and hypermethylation of ZMYND10 has been reported in a broad spectrum of tumors 

including neuroblastoma (Agathanggelou et al., 2003; Qiu et al., 2004). Methylation of 

ZMYND10 has been shown to be associated with clinical stage, with stages 1, 2, and 4S 

showing significantly less methylation than stages 3 and 4 (Michalowski et al., 2008). An 

association between ZMYND10 methylation and MYCN amplification has also been 

reported but the underlying mechanism for this is yet to be determined (Hoebeeck et al., 

2009). Although ZMYND10 is located immediately upstream of RASSF1, no correlation has 

been found between the methylation levels of these two genes in neuroblastoma, suggesting 

that methylation or inactivation of ZMYND10 is an independent event and does not result 

from a common deleted region (Agathanggelou et al., 2003). 

3.1.2 Apoptosis-related genes 

Neuroblastoma has the highest rate of spontaneous regression among other malignant 
tumors (Hero et al., 2008). The molecular basis of spontaneous regression is often explained 
by the ability of neuroblastoma cells to differentiate into ganglion cells or to delay activation 
of apoptosis (Oue et al., 1996). Apoptosis is a process of programmed cell death dependent 
on the coordinated control of multiple highly conserved genes that leads to cell disruption. 
Alterations in the apoptosis pathway have been implicated in several aspects of tumor cell 
growth. Indeed, the level of expression in molecules involved in apoptosis has been shown 
to be a prognostic factor in patients with neuroblastoma (Islam et al., 2000; Casciano et al., 
2004; Takita et al., 2004). 
Methylation of the pro-apoptotic gene PYCARD (PYD and CARD domain-containing 
protein, also known as TMS1), has been reported in patients with advanced stage 
neuroblastoma, while no evidence of hypermethylation of PYCARD was found in patients 
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with spontaneous regression (Alaminos et al., 2004; Grau et al., 2010). PYCARD induces 
apoptosis, and inhibits tumor cell survival. Hence its silencing via methylation could confer 
a growth advantage for tumor cells allowing escape from the apoptotic process (Banelli et 
al., 2005a). The absence of PYCARD expression driven by methylation has been 
demonstrated in other cancers (Martinez et al., 2007; Zhang et al., 2007). 
Similar to the PYCARD gene, hypermethylation of the APAF1 (apoptotic peptidase 
activating factor 1) gene has been reported to be associated with poorer prognosis in 
neuroblastoma patients (Grau et al., 2010). This gene has been described as a pro-apoptotic 
gene and a putative TSG in MYCN amplified neuroblastoma (Teitz et al., 2002). APAF1 is a 
cytoplasmic protein that initiates apoptosis through activation of caspase-9 (Hausmann et 
al., 2000). Hence, silenced expression of APAF1 through hypermethylation could dampen 
the initiation of the caspase cascade, thereby reducing the apoptotic activity of the gene. 
The CASP8 (caspase-8) gene is located at chromosome band 2q33, a region associated with 
LOH in neuroblastomas and several other tumor types (van Noesel & Versteeg, 2004). This 
gene encodes for cysteine protease, a key enzyme at the top of the apoptotic cascade and is 
activated in programmed cell death. Down-regulation of CASP8 is one of the most well-
known apoptotic defects in neuroblastoma. Indeed, it has been shown that the loss of CASP8 
expression was highly correlated with the amplification of MYCN (Teitz et al., 2000). 
Hypermethylation of CASP8 has frequently been reported in neuroblastoma and the 
aberrant methylation of this gene is often associated with MYCN amplification (Teitz et al., 
2000; Casciano et al., 2004; Hoebeeck et al., 2009). However, structural analysis of CASP8 has 
revealed that the region showing differential methylation patterns between MYCN-
amplified and non-amplified tumors was an intragenic sequence between exons 2 and 3 in 
the CASP8 gene which lacked promoter activity (Banelli et al., 2002). Although subsequent 
studies have identified a CASP8 promoter, the effect of DNA methylation in the promoter 
region of CASP8 has not been shown to have a direct impact on gene expression (Banelli et 
al., 2002; Banelli et al., 2005a). Nonetheless, neuroblastoma cell lines treated with 
demethylation agent 5-aza-2’ deoxcytidine (5-AZA) activates CASP8 expression, suggesting 
that demethylation of a trans-acting factor or gene controls the activity of CASP8 (van 
Noesel, 2004). 
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a member of the tumor 

necrosis factor (TNF) family of ligands capable of initiating apoptosis in a variety of cancer 

cells but not in most normal cells (van Noesel et al., 2002). Apoptotic signaling of TRAIL is 

induced by interacting with its death receptors (DRs) encoded by TNFRSF10A and 

TNFRSF10B genes. However, two anti-apoptotic decoy receptors (DcRs) encoded by 

TNFRSF10C and TNFRSF10D genes, compete with death receptors for binding to TRAIL 

and prevent normal cells from TRAIL-mediated apoptosis (van Noesel et al., 2002). Hence, 

the balanced expression of all four receptors is required to prevent TRAIL-induced 

apoptosis in normal cells.  

Methylation of the death receptors, TNFRSF10A and B, has not been detected in primary 

neuroblastoma tissue and these receptors are frequently expressed (van Noesel et al., 2002). 

However, DcR proteins encoded by the TNFRSF10C and D genes are silenced by promoter 

methylation in a variety of tumors including neuroblastoma (van Noesel et al., 2002; Banelli 

et al., 2005b). Methylation of TNFRSF10D has been shown to be associated with reduced 

overall survival in neuroblastoma patients independent of MYCN amplification, suggesting 

that aberrant methylation of TNFRSF10D may be a potential prognostic biomarker for 
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unfavorable outcome (Banelli et al., 2005b; Yagyu et al., 2008). In addition, the strong 

correlation between methylation of TNFRSF10D in sera and in neuroblastoma tumors, 

further supports the possibility of using serum measures of gene methylation as prognostic 

markers for clinical outcome in neuroblastoma (Yagyu et al., 2008). However, the biological 

significance of TNFRSF10D in carcinogenesis remains unclear. 

3.1.3 Cell cycle, signal transduction and other genes 

THBS1 (thrombospondin-1, also known as TSP-1), is a well-known inhibitor of angiogenesis 
and altered expression of THBS1 is thought to contribute to neo-vascularization and 
metastasis in human cancer (Roberts, 1996). Studies have shown that THBS1 promoter is 
frequently methylated and silenced in neuroblastoma (Gonzalez-Gomez et al., 2003; Yang et 
al., 2003). However, there has been an absence of any association detected between 
methylation of THBS1 and clinical features such as MYCN amplification, deletion of 1p in 
neuroblastoma, and tumor type (Yang et al., 2003) 
The SFN (stratifin, also known as 14.3.3δ) gene is directly regulated by p53 and is thought to 

function as a G2/M phase cell-cycle regulator by inhibiting cell-cycle progression, causing 

cells to leave the stem-cell compartment and undergo differentiation (Hermeking, 2003). 

Inactivation of SFN has been shown to be involved in tumor development in a variety of 

malignant tumors (Hermeking, 2003) with demethylation of the SFN promoter significantly 

increasing the expression of this gene in neuroblastoma (Banelli et al., 2010). SFN has been 

found to be fully methylated in MYCN-amplified neuroblastoma and partially methylated 

in non-amplified tumors (Banelli et al., 2005b). More recently, quantitative pyrosequencing 

analysis has identified that a methylation threshold level of 85% for the SFN gene 

distinguishes neuroblastoma patients presenting with progressive disease from those with a 

more favorable outcome, independent of other prognostic markers (Banelli et al., 2010). 
The HOXA9 (homeobox A9) gene encodes a sequence-specific transcription factor which is 
part of a developmental regulatory system that provides cells with specific positional 
identities on the anterior-posterior axis of an organism (The NCBI handbook, 2002). 
Dysregulated expression of HOXA9 has been described in several malignancies including 
non-small-cell lung cancer (Calvo et al., 2000) and breast cancer (Gilbert et al., 2010). 
Neuroblastoma cell lines treated with demethylating agents have been reported to display 
increased levels of HOXA9 gene expression (Margetts et al., 2008). Comprehensive 
methylation profiling of a large series of neuroblastoma tumors has shown that promoter 
hypermethylation of HOXA9 is associated with poorer survival of patients aged ≥1 year and 
patients without MYCN-amplification (Alaminos et al., 2004). Currently, no clinical or 
pathologic prognostic markers have been identified for these two groups of patients. Hence, 
HOXA9 methylation may be a useful biomarker that can predict the clinical outcome of 
these subgroups. 

3.1.4 MYCN and methylation 

As mentioned earlier, numerous reports have demonstrated that hypermethylation of 
certain tumor-related genes such as CASP8, RASSF1, and ZMYND10 is most evident in 
MYCN-amplified neuroblastomas. Although these observations may have occurred by 
chance, there may be additional mechanisms driving the methylation of certain genes in 
tumors with MYCN-amplification. MYCN encodes for a transcription factor that binds to 
recognition sites such as E-box promoter sequence of target genes to activate the 
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transcriptional activity of the associated genes. c-MYC, a functional homolog of MYCN, does 
not appear to bind to recognition sequences that include a methylated CpG, resulting in 
transcriptional repression and MYCN could interact in a similar manner (Prendergast & Ziff, 
1991). Another possible explanation is that epigenetic alterations may have a specific role in 
more aggressive subtypes of neuroblastoma. This hypothesis is supported by observations 
from a genome-wide screen of neuroblastoma tumor samples where the methylation of 
multiple CGIs of particular genes were dependent upon each other and this phenotype was 
significantly associated with poor survival and MYCN amplification (Abe et al., 2005). These 
findings indicate that some genes may become methylated in a coordinated manner, 
suggesting a “CpG islands methylator phenotype” (CIMP) which was originally recognized 
in colorectal cancer (Abe et al., 2005). Recent evidence supporting the presence of CIMP in 
neuroblastoma comes from a genome-wide DNA methylation analysis of neuroblastoma 
tumors identifying large-scale blocks of contiguously hypermethylated CGIs, with a highly 
biased distribution towards the telomeric or terminal regions of the chromosome (Buckley et 
al., 2011). The aberrant methylation of multiple genes giving rise to distinctive 
neuroblastoma tumors or tumor subtypes may explain the biologically and clinically 
variable features observed in neuroblastoma. Furthermore, clustering of methylation data 
from neuroblastoma cell lines distinguished those with MYCN amplification from others 
(Alaminos et al., 2004). Therefore, it is possible that both MYCN amplification and CIMP 
contribute to a more aggressive type of neuroblastoma and the detection of methylation of 
certain genes in the aggressive type of neuroblastoma coincided with MYCN amplification. 
Taken together, the molecular mechanism for MYCN and methylation is still unclear and 
warrants further studies. 

3.2 Considerations for future methylation analysis 

While there have been many reports demonstrating gene inactivation driven by DNA 

methylation in neuroblastoma, the frequency of methylation varies considerably between 

different studies. The observed variation is likely to reflect the genetic heterogeneity of 

neuroblastoma, where primary tumors are comprised of multiple cell types such as the S-

type (substrate adherent), N-type (neuroblastic), and I-type (stem) cells; with each type of 

cell having a distinct methylation and gene expression profile (Alaminos et al., 2004). Hence, 

inherent variability may not reflect the real differences in hypermethylation profiles of 

primary tumors but distinct cell types. Moreover, neuroblastoma is a cancer of the 

developing neural crest in which several of the cell types are pluripotent and have the 

capacity to differentiate into other neurolastoma cell types. Thus, differences that are seen in 

hypermethylation profiles in a particular neuroblastoma cell may reflect changes in 

methylation of a normal differentiating cell rather than development of a cancer phenotype 

(Ross & Spengler, 2004). Future studies may benefit from incorporating 

immunocytochemical studies to identify the proportion of each cell type and evaluate the 

level of methylation to the particular cell type accordingly. The use of different techniques 

for detecting DNA methylation presents another source of variation. Hence, standardized 

methods and scoring systems should be established for more comparable results between 

laboratories. 

Over the past decade, an increasing number of genes are discovered to be epigenetically 
silenced in tumors. Methylation analysis is rapidly progressing from the study of a single or 
few genes into that of the high-throughput determination of the methylation status of 
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thousands of CGIs by microarray analysis. Similar limitations of GWAS also apply to the 
genome-wide search for epigenetic markers. The large number of comparisons performed 
increases the error. Therefore, adjustment for multiple-testing should be considered such as 
the use of false discovery rate for the identification of as many true associations as possible 
while minimizing the overall proportion of false-positive tests (Foley et al., 2009). 
Whether a candidate gene or genomic approach is used, studies should aim to identify 
genes with promoter CGI hypermethylation that results in subsequent gene silencing. 
Although demethylating agents are commonly used in studies to identify genes that are 
reactivated, using demethylating agents alone is not a definite proof that the gene has 
methylation-associated silencing since gene expression can be indirectly induced through 
other transcriptional factors that are epigenetically controlled. A more effective plan of 
investigation might be to first identify genes with CGI hypermethylation, then test for the 
functionality of methylation using demethylating agents. When treating cell lines with 
demethylating agents, it is important to include a control cell line with low or no 
methylation and assess the level of candidate gene expression pre- and post- treatment. 
Change in expression in the control cell line indicates that other transcriptional activators 
were methylated and that expression is not due to methylation-induced silencing of the 
gene. In addition, it is also possible that candidate TSGs that are unmethylated but 
upregulated by demethylating agents may be indirect markers for downstream 
epigenetically inactivated TSGs. 
Although methylated promoter CGIs generally disable the transcription of the correlated 
gene, other concomitant epigenetic events such as changes in histone proteins may affect 
DNA organization and gene expression. Changes in chromatin structure also influence gene 
expression as genes are inactivated when the chromatin is condensed and expressed when 
the chromatin is in an open configuration (Rodenhiser & Mann, 2006). These dynamic 
chromatin states are controlled by histone modifications, involving the histone deacetylase 
(HDACs) family of enzymes in this reversible epigenetic process. Active promoter regions 
normally have unmethylated DNA and high levels of acetylated histones, while inactive 
regions of chromatin contain methylated DNA and deacetylated histones. Therefore, a full 
evaluation of promoter DNA hypermethylation, histone modification and quantitative gene 
expression will help to decipher the entire epigenome. The International Human Epigenome 
Project (IHEP), is an international collaboration that aims to identify, catalogue and interpret 
genome-wide DNA methylation patterns of all human genes in all major tissues. This 
project will provide high-resolution reference epigenome maps to the research community 
(The American Association for Cancer Research Human Epigenome Task Force; The 
European Union Network of Excellence Scientific Advisory Board, 2008). These maps will 
integrate the various epigenetic layers of detailed DNA methylation, histone modification, 
nucleosome occupancy and expression patterns of coding and non-coding RNA in different 
normal and disease cell types which will be a rich source of information for the study of 
tumorigenesis and for the identification of cancer-specific methylation biomarkers. 

4. Future directions: Clinical implications of DNA methylation in 
neuroblastoma 

In the next few years, an increasing number of novel biomarkers for neuroblastoma will 
continue to be identified through epigenomic profiling. This approach will not only help 
further understand the molecular mechanisms governing neuroblastoma, the clinical 
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relevance of these novel biomarkers will also serve to stratify tumor types, identify 
prognostic groups, predict therapeutic response and assess the risk of relapse. As DNA 
methylation patterns are relatively easy to detect and specific to tumor types, specific 
methylation patterns may be useful in the clinical setting. In addition, studies have 
accurately detected aberrant methylation of particular genes in biological fluids such as 
serum, sputum, or urine which will allow early diagnosis of cancer without the need for 
invasive surgery. However, the sensitivity and specificity of DNA methylation markers in 
cancer diagnosis depends on tumor type, the gene studied, the type of body fluid used, and 
the technique involved. Therefore, DNA methylation detection methods need to become 
more standardized to facilitate sensitive, accurate and reproducible results in the clinical 
setting. To date, studies examining the relationship between DNA methylation and 
individual treatment response in neuroblastoma are limited. Moreover, the DNA 
methylation profiling may also be useful in the continued assessment of patients throughout 
treatment. 
Unlike genetic alterations, DNA methylation can be reversed to restore the function of key 
control pathways in malignant and premalignant cells by treatment with demethylating 
agents. DNA methylation inhibitors such as azacitidine and decitabine can induce 
functional re-expression of aberrantly silenced genes in cancer, causing growth arrest and 
apoptosis in tumor cells (Jones & Baylin, 2002). More recently, several inhibitors of 
chromatin-modifying enzymes, including histone deacetylase (HDAC) inhibitors and DNA 
methyltransferase (DNMT) inhibitors have now been approved by US Food and Drug 
Association (FDA) and are being used in clinical practice with good prognosis for tumor 
regression. For example, DNMT inhibitors such as 5-azacytidine (Vidaza®) and decitabine 
(Dacogen™) have been approved for the treatment of myelodysplastic syndrome and 
leukemia (Mack, 2006). However, the treatment of solid tumors with DNMT inhibitors 
showed response rates of less than 10% and is considerably less successful than the 
treatment of leukemias (Goffin & Eisenhauer, 2002). Recently, decitabine was used in a 
phase I clinical trial as an anticancer drug for children with solid tumor and neuroblastoma 
(George et al., 2010). Although patients had tolerable toxicity to low-dose decitabine in 
combination with doxorubicin/cyclophosphamide, doses of decitabine capable of 
producing clinically relevant biologic effects were not well tolerated with this combination. 
Therefore, further studies are required to examine the efficacy of HDAC and DNMT 
inhibitors in combination with current treatment protocols to identify best treatment options 
for neuroblastoma. 

5. Conclusion 

It is clear that both genetic and epigenetic changes play a crucial role in the tumorigenesis of 
neuroblastoma. The genetic heterogeneity of neuroblastoma suggests that the initiation and 
progression of this disease requires multiple interacting genetic factors including genetic 
variants in susceptibility loci, copy number variations, amplification of oncogenes, deletion 
of tumor suppressor genes, and other genetic mechanisms such as DNA methylation. These 
genetic events may act alternatively or synergistically in the multistep process of 
carcinogenesis. With recent technological advances in whole-genome microarrays, both 
genetic and epigenetic screens should be undertaken to enumerate the full spectrum of 
alterations in the human cancer genome to facilitate the identification of novel biomarkers 
for the most efficient grouping of neuroblastoma. More importantly, it will direct future 
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efforts towards new therapeutic approaches that will target specific molecular alterations in 
the tumor cell. 
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