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Innate Immunity-Based  
Immunotherapy of Cancer 

Kouji Maruyama et al.* 
Experimental Animal Facility,  

Shizuoka Cancer Center Research Institute, 
Japan  

1. Introduction 

The immune system protects against invading pathogens and transformed cells, including 
cancer. Mammalian immune system is divided into two major categories, i.e., innate and 
adaptive immunity. Innate immunity consists of cellular and biochemical defense 
mechanisms that respond in the early phase after harmful events, such as encounters with 
microbes or transformed cells. The cellular components of innate immunity include 
dendritic cells (DCs), macrophages and monocytes, polynuclear cells (e.g. neutrophils and 
mast cells), natural killer (NK) cells, ┛├ T cells and natural killer T (NKT) cells. Adaptive 
immunity consists of T and B lymphocytes and their humoral mediators, including 
cytokines and antibodies, and achieves excellent antigen specificity by somatic 
rearrangement of the antigen receptor genes of each lymphocyte lineage; T cell receptor for 
T lymphocytes and immunoglobulin for B lymphocytes, respectively. Furthermore, another 
excellent characteristic of adaptive immunity is a “memory system” to maintain antigen-
specific lymphocytes in a functionally quiescent or slowly cycling state for many years. The 
memory system enables host organisms to respond to the second and subsequent exposure 
to the same or related antigens in a more rapid and effective manner. 

Dr. William Coley, an American bone surgeon, is credited with pioneering work in the field 
of cancer immunotherapy. In the 1890s, he noted that patients with sarcoma who developed 
bacterial infections after surgery had visible regression of their cancer. At first, Dr. Coley 
injected live cultures of streptococcus to produce erysipelas in cancer patients and assessed 
their responses (Bickels et al., 2002; MacCarthy, 2006). He found that the antitumor effects 
depended upon the toxins of the bacteria, and eventually developed mixed toxins of a 
Gram-positive and -negative bacterium called Coley toxins (also called “mixed bacterial 
vaccines”). A compilation of Dr. Coley's clinical observations indicated that in certain tumor 

                                                 
*Hidee Ishii1, Sachiko Tai1, Jinyan Cheng2, Takatomo Satoh2, Sachiko Karaki2,  
Shingo Akimoto3 and Ken Yamaguchi4 

1Experimental Animal Facility, Shizuoka Cancer Center Research Institute, 
2Advanced Analysis Technology Department, Corporate R&D Center, Olympus Corporation, 
3Department of Pediatric Hematology and Oncology Research,  
National Medical Center for Children and Mothers Research Institute, 
4Shizuoka Cancer Center Hospital and Research Institute, Japan  

www.intechopen.com



 
Advancements in Tumor Immunotherapy and Cancer Vaccines 

 

108 

types, such as soft tissue sarcoma and lymphoma, the response is marked even by today’s 
standards (Tsung & Norton, 2006). Following the pioneering works by Dr. Coley and his 
daughter, Dr. Helen Coley Nauts, efforts to treat cancer based on the function of the 
immune system, i.e., immunotherapy, have continued. As with Coley’s toxins, the innate 
immune response against microbes could provoke anti-tumor effects as a secondary 
response. Although the exact molecular mechanisms of innate immune cells to recognize the 
components of microorganisms have not been fully understood, the substances such as 
bacteria-derived materials which evoke tumor immunity have been categorized as 
‘biological response modifier (BRM)’.  

In Japan, several original BRMs have been developed since 1950’s. Dr Chisato Maruyama 

noticed that there were few cancer patients in sanatoriums for tuberculosis or Hansen's 

disease, and he started research to apply extracts from Mycobacterium tuberculosis to cancer 

treatment. His preparation, named Specific Substance MARUYAMA (SSM, also called the 
“MARUYAMA vaccine”) うSuzuki et al., 1986a; Suzuki et al., 1986b; Sasaki et al., 1990え 

was composed of deproteinized extracts, and contained lipoarabinomannan, a kind of 

polysaccharide, as the main component. SSM received much attention from the public as a 

miracle drug for cancer treatment before being approved by the Ministry of Health and 

Welfare of Japan at that time. SSM has not been approved to date as a anti-neoplastic drug, 

but its related preparation, referred to as Z-100 or Ancer, has been approved since 1991 as a 

drug for radiotherapy associated leucopenia. Ttwo other BRM drugs, krestin (PS-K, 

polysaccharide-protein complexes extracted from basidiomycetes, Trametes versicolor) 

(Akiyama et al., 1977; Mizushima et al., 1982) and picibanil (OK-432, a lyophilized 

preparation of attenuated group A Streptococcus haemolyticus) (Kai et al., 1979; Kataoka et al., 

1979) were approved by the Ministry of Health and Welfare of Japan as anti-neoplastic 

drugs in 1975. Another example of Japanese BRMs is BCG-CWS, a cell wall skeleton 

preparation of Mycobacterium bovis bacillus Calmette-Guérin, a tuberculosis vaccine strain 

which is almost nonpathogenic yet retains the immunogenic properties of tuberculosis 

(Tsuji et al., 2000). BCG-CWS contains a peptidoglycan that is covalently linked to 

arabinogalactan and mycolic acids (Azuma et al., 1974). Although BCG-CWS has been 

clinically used for a long time (Hayashi et al., 2009; Kodama et al., 2009), it has not been 

approved by the Ministry of Health and Welfare of Japan.  

One of the characteristics of classical BRMs is that they are crude products which are not 
fully purified. Their multiple components seem to be important for the induction of efficient 
anti-tumor effects as seen with Coley toxins.  

2. Stimulators of innate immunity 

2.1 Toll-like receptors (TLRs) 

The cells of the innate immune system recognize infectious agents by receptors for 
characteristic components of pathogenic microorganisms. The structures of these 
components are highly conserved and are called pathogen-associated molecular patterns 
(PAMPs). The receptors for PAMPs, referred to as pattern recognition receptors (PRRs), are 
germline-encoded and highly conserved across species. The innate immune system detects 
various classes of pathogens and abnormal cells through PRRs, and serves as a first line of 
defense against microbes. 
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Toll, a gene involving to the establishment of dorsal-ventral pattern of Drosophila embryo 

(Hashimoto et al., 1988), other function in immune response against fungus in Drosophila 

adults (Lemaitre et al., 1996). In 1997, a cloning of human homologue of Drosophila Toll and 

its function as an antigen receptor was reported (Medzhitov et al., 1997). At present, 10 

molecules have been identified in humans and are referred to as Toll-like receptors (TLRs) 

(Takeda et al., 2003; Iwasaki & Medzhitov, 2004). The identification of TLRs in mammalian 

species could give us clues to understand the molecular basis for the early phase events of 

host defense against microbial infection. In addition, accumulating evidence has shed light 

on the broad range of their roles in various biological processes. The TLR family is one of the 

most extensively characterized families of PRRs, and is also regarded as the most rapidly 

growing research field in immunology.  

TLRs are type I transmembrane proteins containing repeated leucine-rich motifs in their 

extracellular domains similar to such motifs in other PRRs, and have a conserved 

intracellular motif (i.e. TIR domain, which initiates signal transduction). The typical 

microbial ligands for TLRs are summarized in Table 1. The initial step of signal transduction 

from TLRs is mediated through several adaptor molecules, including myeloid 

differentiation factor 88 (MyD88), Toll receptor-associated activator of interferon (TRIF), 

MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP) and Toll receptor-associated 

molecule (TRAM), relayed to the inflammatory pathways involving NF-κB, Janus kinase 

(JNK)/p38 kinase and interferon regulatory factor (IRF) 3, 5 and 7. Finally, TLR signal 

transduction induces various transcripts, including cytokines such as tumor necrosis factor-

 (TNF-) and interferon (IFN)-inducible genes. 

TLR1/TLR2/TLR6 Bacterial lipoproteins and lipotechoic acid, fungal zymosan 

TLR3 Double stranded RNA 

TLR4 Lipopolysaccharide (LPS) from Gram-negative bacteria 

TLR5 Bacterial fragelin 

TLR7/TLR8 Single-stranded RNA 

TLR9 Unmethylated CpG motifs in DNA 

TLR10 Unknown 

Table 1. Typical ligands for human TLRs known as pathogen-associated molecular patterns 
(PAMPs) 

2.1.1 Roles of TLRs in tissue homeostasis 

In addition to their role in the host defense system, TLRs have been shown to be involved in 
various aspects of tissue homeostasis, including tissue repair and regeneration (van Noort & 
Bsibsi, 2009; Li et al., 2010). TLRs have also been reported to recognize various host-derived 
endogenous ligands, including cellular proteins such as heat shock proteins (Asea et al., 
2002; Dybdahl et al., 2002; Ohashi et al., 2000; Roelofs et al., 2006; Vabulas et al., 2001; 
Vabulas et al., 2002a; Vabulas et al., 2002b) and high mobility group box1 (HMGB1) (Park et 
al., 2004; Park et al., 2006), uric acid crystal うLiu-Bryan et al., 2005a; Liu-Bryan et al., 

2005bえ, surfactant protein A (Guillot et al., 2002), and products of the extracellular matrix, 

such as fibronectin (Okamura et al., 2001), heparan sulfate (Johnson et al., 2002), biglycan 
(Schaefer et al., 2005), fibrinogen (Smiley et al., 2001), oligosaccharides of hyaluronan and 
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degraded hyaluronan products (Termeer et al., 2002; Jiang et al., 2005). These endogenous 
ligands, referred to as damage-associated molecular patterns (DAMPs), are released from 
dead or dying cells in injured or inflamed tissues, and trigger the activation of TLRs, leading 
to “sterile inflammation” (inflammation at the site without microbes).  

TLRs have a cytoprotective role and prevent tissue injury under stress conditions in the lung 

and intestine. In bleomycin-induced lung injury, hyaluronan-TLR2/TLR4 interactions were 

shown to provide signals that initiate inflammatory responses, maintain epithelial cell 

integrity and promote recovery from acute lung injury (Jiang et al., 2005). In the dextran 

sulfate sodium-induced intestine injury model, TLR4 and MyD88 signaling have been 

shown to be required for optimal proliferation and protection against apoptosis in the 

injured intestine, and activation of TLRs by commensal microflora was shown to be critical 

for protection against gut injury and associated mortality (Rakoff-Nahoum et al., 2004; 

Fukata et al., 2006). The injury-promoting effects of TLR4 have been shown in hepatic, renal, 

cerebral, and cardiac ischemia-reperfusion experiments using TLR4-mutant or -deficient 

mice (Oyama et al., 2004; Tsung et al., 2005; Tang et al., 2007; Wu et al., 2007). Alcoholic liver 

injury has been shown to depend on TLR4 and LPS (Bjarnason et al., 1984; Adachi et al., 

1995; Uesugi et al., 2001). In the central nervous system, TLRs have been shown to 

coordinate the protective response to axonal and crush injury of the brain and spinal cord 

(Babcock et al., 2006; Kigerl et al., 2007; Kim et al., 2007). Thus, TLRs are thought to control 

inflammation after tissue injury in positive and negative manners. 

The involvement of TLRs in tissue/organ regeneration responses is exemplified by liver 
regeneration after partial hepatectomy (Seki et al., 2005). Regeneration responses consist of 
multiple biological functions, including cell proliferation, angiogenesis, reconstruction of 
extra cellular matrix, epithelialization. TLRs have been reported to regulate the 
compensatory proliferation of parenchymal cells after injury (Rakoff-Nahoum et al., 2004; 
Tsung et al., 2005; Pull et al., 2005; Campbell et al., 2006; Zhang & Schluesener, 2006), induce 
cyclooxygenases, chemokines, vascular endothelial growth factor (VEGF), and matrix 
metalloproteinases (Fukata et al., 2006; Rakoff-Nahoum et al., 2004; Pull et al., 2005), and 
activate mesenchymal stem cells (Pevsner-Fischer et al., 2007). Thus, TLRs are involved 
throughout the process of tissue repair and regeneration, indicating their critical role in 
tissue homeostasis. TLRs may have acquired dual roles in tissue homeostasis during the 
evolutionary process, i.e. to regulate inflammation and to promote regenerative processes. It 
seems reasonable that the same molecule mediates two important processes which 
sequentially take place at the same site; however, accumulating evidence has shown another 
aspect of TLR roles in carcinogenesis and cancer development. 

2.1.2 TLRs and cancer 

2.1.2.1 Anti-tumor effects induced by TLR signaling 

BRMs derived from biological materials have been used in cancer immunotherapy, 

however, the detailed molecular mechanisms evoking tumor immunity have been obscure. 

During the past couple of decades, dozens of immunity-related molecules including PRRs 

have been identified, and their identifications greatly help us to understand the relationship 

between innate immunity and cancer. Among the above mentioned classical BRMs, the 

following TLRs have been shown to mediate their anti-tumor effects; TLR4 for Coley toxin 
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(Garay et al., 2007) and OK-432 (Hironaka et al., 2006; Okamoto et al., 2006), TLR2/TLR4 for 

BCG-CWS (Uehori et al., 2005), respectively. TLR agonists mediate anti-tumor activity by 

multiple mechanisms (Rakoff-Nahoum & Medzhitov, 2008). TLR agonists have been shown 

to directly kill both tumor cells and ancillary cells of the tumor microenvironment, such as 

vascular endothelium (Salaun et al., 2006; El Andaloussi et al., 2006; Haimovitz-Friedman et 

al., 1997; Nogueras et al., 2008). TLR activation may also lead to tumor regression directly or 

indirectly (TNF-mediated) by increasing vascular permeability (Garay et al., 2007), 

recruitment of leukocytes, activation of the tumor lytic activity of NK cells and cytotoxic T 

lymphocytes (CTL), and increasing the sensitivity of tumor cells to elimination mechanisms 

by effector molecules, such as TRAIL, TNF, and granzyme B/perforin (Smyth et al., 2006; 

Akazawa, 2007). 

In cancer patients with a growing tumor, immune tolerance between the host immune 

system and tumor may have already been established. Agonists of TLRs induce intrinsic 

innate immune responses against microbial infection, leading to adaptive immune 

responses also to microbial pathogens. At the same time, the triggered innate immune 

response may also act to break the established tolerance between host and tumor, and 

induce an adaptive immune response against the tumor, mainly through activated antigen-

presenting cell (APC) functions. Breaking the tolerance to tumor self-antigens is a property 

known as adjuvanticity. The mechanisms by which TLRs induce effective antitumor 

adaptive immune responses include the uptake, processing and presentation of tumor 

antigens, enhancement of survival, and induction of costimulatory molecules on 

professional APCs, induction of Th1 and CTL responses, and the inhibition of regulatory T 

cell activity (Garay et al., 2007; Smyth et al., 2006; Akazawa et al., 2007). 

2.1.2.2 Positive effects of TLRs in cancer development 

In the 19th century, Rudolf Virchow, one of the founding fathers of modern pathology, 
postulated a link between chronic inflammation and cancer (Kluwe et al., 2009). Chronic 
inflammatory diseases, including inflammatory bowel diseases, hepatitis and Helicobacter 
pyroli infection, have been shown to be associated with cancer development (Chen et al., 
2007). Although the detailed mechanisms of tumor-promoting effects by chronic 
inflammation are far from understood, TLRs are likely candidates as mediators of the effects 
of the innate immune system on carcinogenesis (Kluwe et al., 2009). 

The tumor-promoting effects of TLRs have been shown in studies using adoptively 
transferred tumor models. Lipopolysaccharide (LPS) enhanced tumor growth in a lung 
metastasis model of mouse mammary carcinoma cells (Pidgeon et al., 1999; Harmey et al., 
2002) and mouse colon cancer cells (Luo et al., 2004). Direct injection of Listeria 
monocytogenes, a Gram-positive facultative intracellular bacterium, promoted tumor growth 
in a subcutaneous tumor model of hepatocarcinoma cells (Huang et al., 2007). In a study 
using the mouse mammary tumor cell line and its highly antigenic subline D2F2/E2, which 
stably expresses human ErbB-2, Salmonella typhimurium flagellin, a TLR5 ligand, showed 
complicated effects in the subcutaneous tumor setting; flagellin inhibited tumor growth only 
in the D2F2/E2 cells when administered 8-10 days after tumor inoculation, but it accelerated 
tumor growth in both cell lines when administered at the time of inoculation (Sfondrini et 
al., 2006) suggesting that the status of interactions between the tumor and its 
microenvironment and/or host immune system are critical for the effects of flagellin. 
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Furthermore, the combination of falagellin and TLR9 agonist, CpG containing 
oligodeoxynucleotide (CpG ODN) administered 8-10 days after tumor inoculation, 
abrogated D2F2/E2 tumor growth.  

The involvement of TLR signaling in caricinogenesis has been shown in studies using TLR-
deficient or its signaling molecule-deficient mice (Fukata et al., 2007; Rakoff-Nahoum & 
Medzhitov, 2007; Naugler et al., 2007). TLR4-deficient mice were protected from colon 
tumorigenesis in an azoxymethan-induced chronic inflammation model, and TLR4 signaling 
was suggested to be involved in tumorigenesis via cyclooxygenase-2 (Cox-2) expression and 
prostaglandin (PG) E2 production, leading to the activation of EGFR signaling (Fukata et al., 
2007). MyD88 deficiency resulted in decreased colon tumor development in mice with 
heterozygous mutation of the adenomatous polyposis coli gene (spontaneous model), and 
also in an azoxymethane-induced colon tumor model (Rakoff-Nahoum & Medzhitov, 2007). 
Significant reduction of tumor formation was observed in MyD88 or interleukin (IL)-6 
deficient male but not female mice in a diethylnitrosamine-induced hepatocellular 
carcinoma model (Naugler et al., 2007).  

A wide range of human cancer cells have been shown to express various TLRs (Sato et al., 
2009). For example, nine TLRs are expressed in normal colon epithelial cells, and three TLRs 
(TLR2-4) are elevated in most colorectal cancer cell lines (Sfondrini et al., 2006). Four TLRs 
(TLR2-5) are expressed in both normal ovary epithelial cells and ovarian cancer cell lines 
(Zhou et al., 2009). The significance of the expression of multiple TLRs in a wide range of 
cancer cells is not fully understood; however, simultaneous activation of multiple TLR types 
might be able to enhance the biological response, as in the case of synergistic effects by 
combined TLR ligation reported for cytokine production in DCs (Whitmore et al., 2004; 
Roelofs et al., 2005; Warger et al., 2006; Gautier et al., 2005; Theiner et al., 2007; Zhu et al., 
2008; Krummen et al., 2010) and macrophages (Sato et al., 2000; Ouyang et al., 2007). It is 
possible that tumor cells express multiple TLRs to recognize various DAMPs in their 
microenvironment, and thereby enhance the biological process triggered by TLR activation 
to produce favorable conditions for growth and survival. Furthermore, ligation of TLRs in 
tumor cells has also been shown to increase the production of immunosuppressive 

cytokines, such as interleukin (IL)-10 and transforming growth factor (TGF)- (Sato et al., 
2009), suggesting that tumor cells also utilize the TLR functions to escape from the tumor 
immunosurveillance. 

2.1.3 TLRs as target molecules for drug development 

In simple terms, TLR signaling pathway can be facilitated by agonistic agents to enhance the 
immune response, and inhibited by antagonistic agents to attenuate a hyper-immune 
reaction. The former can be applied to diseases including cancer and infectious diseases, and 
the latter to autoimmune diseases, excessive inflammation, and bacteria-induced 
pathological conditions, such as sepsis. TLR ligands and their related compounds which can 
bind to TLRs directly are the primary candidates as therapeutic agent. Most of the TLR-
targeting drugs under development are agonistic agents, and a few antagonists for TLR4 
seems to be developed as therapeutics for sepsis, such as Eritoran (Eisai Co. Ltd, Tokyo, 
Japan) (Rossignol et al., 2004). These drugs include various types of compounds, including 
single and double-stranded RNA, CpG ODN, small compounds, etc., but agonistic agents 
could be roughly divided into two categories in terms of their usage; an immunomodulatory 
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agent and an adjuvant for vaccination. Agonists of TLRs produce their therapeutic efficacy 
via stimulation of APCs of innate immunity, such as DCs and macrophages, as an initial 
step, and then their activation/maturation trigger secondary immune responses, including 
the activation of effector cells of both innate and adaptive immunity, such as NK and T cells; 
therefore, TLR activation is an indirect stimulus of adaptive immunity. Antigens in vaccines 
are incorporated by APCs at first, and then presented to T lymphocytes to evoke specific 
adaptive immune responses. TLR agonists could be one of the best candidates for a vaccine 
adjuvant, because they are well characterized, and their extensive scientific backgrounds 
make it possible to produce novel compounds with favorable properties, such as less 
toxicity, stronger immunostimulatory effects, and longer half life. In the TLR-targeting 
drugs under development, more than half of compounds seem to be targeting TLR9 
(Krishnan et al., 2009; Romagne, 2007), and the reasons for that could be their chemical 
nature (ready to synthesize and handle) and the economic benefit of DNA and its 
derivatives in addition to their features as strong inducers of Th1 immune responses. 

2.1.4 TLR-targeting drugs for cancer 

Here, the most advanced two examples of TLR-targeting drug development will be 

discussed; i.e. agonists for TLR9 and TLR7. A group, so-called antiviral TLRs, including 

TLR3 and TLR7-9 are predominantly localized intracellularly to endosomal membranes, and 

recognize nucleic acids and related compounds (Table 1). 

2.1.4.1 TLR9 agonists: CpG ODN 

TLR9 detects the unmethylated CpG dinucleotides prevalent in bacterial and viral DNA but 

not in vertebrate genomes (Krieg, 2007). TLR9 has been shown to have the narrowest 

expression profile among all the TLRs; among resting immune cells, B cells and 

plasmacytoid DCs (pDCs) seem to exclusively express TLR9 (Iwasaki & Medzhitov, 2004). 

pDCs are extremely important cells in host defense as they produce most of the type I IFN 

that is made in response to viral infection and that is essential to control viral replication and 

to promote the development of an immune response to eradicate infected cells and prevent 

recurrence (Liu, 2005). One of the most notable features of TLR9 activation is that strong Th1 

responses are triggered. In synthetic CpG ODN used in vivo applications, including animal 

experiments and clinical trials, native phosphodiester backbones are replaced partially or 

fully with phosphorothioate backbones to improve stability. 

In animal experiments, significant anti-tumor effects of TLR9 agonists have been 

demonstrated in a variety of settings; not only in monotherapy (Lonsdorf et al., 2003; Baines 

& Celis, 2003), but also in combination therapy with monoclonal antibody therapy 

(Buhtoiarov et al., 2006; Daftarian et al., 2004; Davila et al., 2003; Dercamp et al., 2005; 

Guiducci et al., 2005; Vicari et al., 2002; Wooldridge et al., 1997), cytokines, chemokines and 

related factors (Chaudhry et al., 2006; Ishii et al., 2003; Merad et al., 2002; Okano et al., 2005), 

TLR3 and TLR5 ligands (Sfondrini et al., 2006; Whitmore et al., 2004), EGFR-related 

signaling and angiogenesis inhibition (Damiano et al., 2006), radiotherapy (Mason et al., 

2005), surgery (Ohashi et al., 2006; Weigel et al., 2003), cryotherapy (den Brok et al., 2006), 

and chemotherapy (Balsari et al., 2004; Pratesi et al., 2005; Taieb et al., 2006; van der Most et 

al., 2006; H. Wang et al. 2006; X.S. Wang et al., 2005; Weigel et al., 2003). TLR9 has been 

thought to be the only TLR for which a systemically administered specific agonist has 
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shown substantial evidence of anti-tumor activity in human clinical trials (reviewed in 

Krieg, 2007). CPG 7909 (also called PF-3512676), a CpG ODN with a fully modified 

phosphorothioate backbone, has been thought to be one of the most promising drug 

candidates for cancer therapy. 

Unfortunately, it has been announced that the sponsor pharmaceutical company made the 

decision to terminate phase III clinical trials of CPG 7907. In these phase III clinical trials, the 

efficacy of CPG 7909 had been tested in combination with gemcitabine/cisplatin or 

paclitaxel/carboplatin in patients with advanced non-small-cell lung cancer. 

2.1.4.2 TLR7 agonists: Imiquimod 

TLR7 recognizes single-stranded RNA, and acts as a potent activator of innate immune 

responses to viral infections (Diebold et al., 2004; Heil et al., 2004). Other than the natural 

ligands, several distinct classes of low-molecular-weight compounds have been shown to 

effectively and selectively activate this receptor (Hemmi et al., 2002; Lee et al., 2003). 

Imiquimod (also called Aldara, R-837, and S-28463), a member of the imidazoquinoline 

family, has antiviral activity in guinea pigs infected with herpes simplex virus (Harrison et 

al., 1988), and against arbovirus and cytomegalovirus (Akira & Hemmi, 2003). The first 

report on the anti-tumor activity of imiquimod was published in 1992, using subcutaneous 

tumor models of mouse colon carcinoma and mouse sarcoma and a lung metastasis model 

of mouse Lewis lung carcinoma (Sidky et al., 1992); however, the mechanism of imiquimod 

action as TLR agonist was totally unknown at that time. Subsequently, anti-tumor effects of 

imiquimod have been shown to be mediated by the induction of cytokines, including IFN- 
and IL-12 (Hemmi et al., 2002), the enhancement of the activation of tumor antigen-specific 

CTLs in vaccination studies (Prins et al., 2006; Rechtsteiner et al., 2005), and the activation of 

a myeloid DC subset with cytotoxic activity (Stary et al., 2007). Because of the intracellular 

localization of TLR7, small molecules such as imiquimod might have an advantage in terms 

of cellular uptake (Schön & Schön, 2008). 

Imiquimod is a success story of TLR-targeting drugs. A topical cream formulation of 
imiquimod has been approved to treat actinic keratosis and external genital warts, and its 

additional indication for the treatment of superficial basal cell carcinoma was approved by 
the United States Food and Drug Administration in 2004. At present, 20 clinical oncology 

trials with imiquimod are ongoing (Maruyama et al., 2011). In these clinical trials, new target 

cancers are included such as basal cell carcinoma of different types/stages, melanoma, 
cancers of the breast, ovary, uterine cervix, and lung, glioblastoma, neuroblastoma, 

rhabdomyosarcoma, and osteogenic sarcoma. In addition, imiquimod is used as a vaccine 
adjuvant in 10 out of 20 trials. Vaccines in these clinical trials include DC-based vaccines, 

peptides or proteins of tumor associated antigens, human papilloma virus related DNA 
vaccines (Maruyama et al., 2011). Thus, imiquimod has already been established as a 

therapeutic product, and is under development as a vaccine adjuvant.  

2.1.5 Perspectives: TLRs as double-edged swords in cancer therapy 

TLRs have dual important roles in mammals; host defense from infection and maintaining 

tissue homeostasis by regulating inflammatory and tissue repair responses to damage. 

Antitumor effects of TLR agonists, including classical BRMs, depend on the former role of 
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TLRs in the immune systems. TLRs initiate innate immune responses, bridge the response 

from innate to adaptive immunity, and lead to the elimination of transformed cancer cells; 

however, cancer cells themselves utilize the latter role of TLRs in tissue homeostasis for their 

growth and survival by means of a variety of strategies; suppression of host immune 

responses by the production of various immunosuppressive factors, promotion of cell 

growth and angiogenesis, induction of cytoprotective and anti-apoptotic factors. These 

findings suggest that TLR signaling acts as a double-edged sword in cancer therapy. 

Administration routes and doses may be critical issues to develop TLR-targeting drugs for 

cancer treatment. Systemic administration of TLR agonists may include the risks of 

promoting growth and survival of tumor. On the other hand, local application, especially 

transcutaneous or intradermal administration could be a promising modality to lower the 

risks. In addition, the dose of the TLR agonist may be an important issue. It has been 

suggested that exceptionally high doses of TLR agonists appear to have an antitumor effect, 

whereas low doses of TLR agonists promote tumor growth (Kluwe et al., 2009). It is critical 

to know how we can dominantly use the unilateral antitumor edge of the TLR sword. 

Furthermore, another point to be tested in clinical studies may be the combinatorial usage of 

agonists for different types of TLRs, such as TLR4 agonist plus TLR9 agonist, as tested in 

animal experiments. As mentioned above, the mixed nature of classical BRMs seems to 

contribute to efficient antitumor effects. The evidence on the role of TLRs in tissue 

homeostasis has been obtained mainly from the studies focused on TLR2 and TLR4. For a 

better understanding of the role of TLRs in tissue homeostasis, carcinogenesis, and tumor 

progression, more research data on other types of TLR are necessary.  

2.2 Fms-like tyrosine kinase 3 ligand (FL) 

2.2.1 Cloning of FL as a ligand for fms-like tyrosine kinase-3 (Flt3-R) 

FL is a transmembrane or soluble protein and is expressed by a variety of cells including 

hematopoietic and bone marrow stromal cells. In synergy with other cytokines and growth 

factors, FL stimulates proliferation and development of a wide range of hematopoietic cells 

including stem cells, myeloid and lymphoid progenitor cells, DCs and NK cells (Drexler & 

Quentmeier, 2004; Lyman & Jacobsen, 1998). FL was cloned as a ligand for Flt3-R, a tyrosine 

kinase receptor belongs to the class III receptor tyrosine kinase family structurally related to 

macrophage colony-stimulating factor receptor (c-fms) and to mast stem cell factor (also 

known as steel factor, stem cell factor, and c-kit ligand) receptor (c-kit) (Matthews et al., 

1991; Rosnet et al., 1991a; Rosnet et al., 1991b). Lyman et al. isolated a murine Flt3L cDNA 

by screening an expression library with a fusion protein consisting of the extra cellular 

domain of the Flt3-R (Lyman et al., 1993). Hannum et al. purified FL from conditioned 

medium of a murine thymic stromal cell line using an affinity column made with Flt3-R 

extracellular domain (Hannum et al., 1994). Subsequently, a human counterpart of a murine 

FL was cloned using a mouse cDNA as a probe (Hannum et al., 1994; Lyman et al., 1994b). 

The mouse and human FL proteins are 72% identical at the amino acid level with a greater 

homology in the extracellular region than in the cytoplasmic domain.  

Multiple isoforms of FL have been reported for mouse and human; the first one is a 

transmebrane protein which is a predominant isoform in human (Hannum et al., 1994; 

Lyman et al., 1993; Lyman et al., 1994b), and is converted to biologically active soluble form 
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by proteolytic cleavage (Lyman et al., 1993). The second biologically active isoform, the most 

abundantly found in mouse (Lyman et al., 1995b), is a membrane bound form which lacks a 

normal transmembrane structure but has a hydrophobic amino acid stretch in N-terminus 

(Hannum et al., 1994; Lyman et al., 1995a). The third isoform identified in mouse and 

human is a soluble form generated by alternative splicing (Lyman et al., 1995a, Lyman et al., 

1995b). 

2.2.2 Biological activity of FL 

It is known that FL is interactive between different species, mouse and human FL can be 

fully active on cells expressing either the mouse or human Flt3-R (Lyman et al., 1994a). 

Although physiological importance for the ubiquitous expression is not clear, FL is widely 

expressed in murine and human tissues, the transcripts have been detected almost every 

tissue tested (Hannum et al., 1994; Lyman et al., 1994b; Lyman et al., 1995a). In contrast to 

FL, its receptor Flt3-R seems to have a relatively limited expression profile. Flt3-R expression 

in hematopoietic system appear predominantly restricted to the progenitor/stem cell 

compartment (Drexler et al., 2004). 

FL stimulates proliferation and development of a wide range of hematopoietic cells 

including hematopoietic stem cells, myeloid and lymphoid progenitor cells (reviewed in 

Drexler et al., 2004). In this section, effects of in vivo administered FL on DCs and NK cells 

will be discussed. 

2.2.2.1 Effects of FL on DC development 

DCs express CD45 and arise from BM progenitor cells; evidence suggests that DCs are 

derived from myeloid and lymphoid progenitor cells (Caux et al., 1995; Peters et al., 1996). 

Early studies of mouse in vivo experiments identified that FL as a cytokine that could affect 

DC proliferation (Maraskovsky et al., 1996; Pulendran et al., 1999). In vivo administration of 

FL in mouse results in a dramatic increase in the number of myeloid- and lymphoid-derived 

functional DC in BM, spleen, thymus, peripheral blood, and other tissues indicating an 

absolute increase in functionally mature DC (Maraskovsky et al., 1996). In contrast, 

polyethylene glycol-modified granulocyte-macrophage colony-stimulating factor (GM-CSF) 

into mice only expands the myeloid-related DC subset (Pulendran et al., 1999).  

In human, two distinct classes of blood DC subsets, CD11c+ immature DCs and CD11c- 

pDCs with different morphologies, phenotypes, and functional properties, have been 

identified (Liu, 2001). Blood CD11c+ DCs are considered to be myeloid derived, whereas 

pDCs, also known as type 1 interferon-producing cells as mentioned in section 5.1, are 

considered to be lymphoid related (Liu, 2001). Administration of FL to healthy volunteers 

significantly expands the number of circulating CD11c+ and CD11c- DC subsets and DC 

precursors (Maraskovsky, 2000).  

2.2.2.2 Effects of FL on NK cells 

FL administered to mice increased number of NK cells (Brasel et al., 1996; Shaw et al., 1998). 

Brasel et al. reported that daily subcutaneous injection of recombinant FL (10 g) for 10 days 

resulted in 2.5-fold increase in NK cell absolute number in spleen (Brasel et al., 1996). Shaw 

et al. also showed daily intraperitoneal administration of recombinant FL resulted in 
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increase in the absolute number of CD3¯ NK1.1+ NK cell especially in spleen and liver (Shaw 

et al., 1998). Similar effect of FL on NK expansion was reported by He et al. using 

intravenous injection of a plasmid expression vector for FL cDNA encoding extra cellular 

domain (He et al., 2000). These in vivo effects of FL on NK expansion was supported by the 

evidence obtained from mice lacking FL in which a marked deficiency of NK cells in the 

spleen was noted (McKenna et al., 2000). The ability of FL to expand NK cells in vivo has 

been confirmed by subsequent studies (Guimond et al., 2010; Péron et al., 1998; Smith et  

al., 2001). 

In contrast to the mouse findings in vivo, few are available on the effect of FL on human NK 

cells in vivo. In a phase I clinical trial, FL was subcutaneously injected into cancer patients 

including Hodgkin disease, non-Hodgikin lymphoma, or advanced-stage breast cancer after 

autologous hematopoietic cell transplantation (Chen et al., 2005). Injection of FL was safe 

and well tolerated and significantly increased blood DC subsets without affecting other 

mature cell lineages including NK cells (Chen et al., 2005). According to the findings 

obtained, the activity of FL alone to induce cellular expansion is higher in DCs than that in 

NK cells. It appears necessary to combine FL with other cytokines to induce effective NK 

cell expansion in vivo especially in human. 

2.2.3 Anti-tumor effects evoked by FL 

The finding that FL administration resulted in dramatic expansion of DCs led to the studies 

to test anti-tumor effect of FL. Early study demonstrated that FL alone induced the 

regression of methylcholanthrene (MCA)-induced fibrosarcoma (Lynch et al., 1997). 

Subsequently, anti-tumor effect of systemically administered FL has been demonstrated in a 

lot of syngeneic murine tumor models of melanoma, lymphoma (Esche et al., 1998), Lewis 

lung carcinoma (Chakravarty et al., 1999), liver metastasis (Péron et al., 1998), mesothelioma 

(Fernandez et al., 1999), breast cancer (Chen et al., 1997), prostate cancer (Ciavarra et al., 

2000). The anti-tumor effect of FL has been shown also in rat syngeneic colon cancer model 

(Favre-Felix et al., 2000) and xenograft model of human ovarian cancer (Silver et al., 2000). In 

these tumor models, NK cells seem to have a critical role in the anti-tumor effect induced by 

FL administration, because depletion of NK cells resulted in abrogation of anti-tumor effect 

(Fernandez et al., 1999; Péron et al., 1998; Silver et al., 2000). However, the anti-tumor effects 

induced by FL have also been shown to be T-cell mediated in several mouse models (Chen 

et al., 1997; Lynch et al., 1997). Fernandez et al. reported that in mice with MHC class I-

negative tumors, adoptively transferred- or FL-expanded DCs promoted NK cell-dependent 

anti-tumor effects (Fernandez et al., 1999). Kelly et al. demonstrated that primary rejection of 

MHC-class I negative-CD70 expressing RMA-S tumor cells by NK cells efficiently evoked 

the subsequent development of tumor-specific cytotoxic and T helper type 1 responses to 

the parental MHC class I-sufficient RMA tumor cells (Kelly et al., 2002). Activated NK cells 

can facilitate adaptive immune responses via induction of DC maturation by secretion of 

cytokines and a cell-cell contact (Walzer et al., 2005). These findings suggest that interaction 

between NK cells and DCs induces not only anti-tumor effects by NK cells, but also 

adaptive anti-tumor immunity. 

At present, limited information are available on clinical studies using FL administration. 

Marroquin et al. reported that FL administration resulted in a 19-fold increase in DC 
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number in the peripheral blood of patients with melanoma and renal cancer, however, DC 

generated in vivo appeared only partially activated. This partial activation might account 

for the lack of enhanced immune responses to melanoma antigens and absence of clinical 

response in the patients even in combination with antigen immunization (Marroquin et al., 

2002). Rini et al. reported that administration of FL either alone or in combination with 

interleukin-2 (IL-2), although capable of inducing expansion of circulating myeloid and 

plasmacytoid DCs in patients with metastatic renal cell carcinoma, lacks significant clinical 

activity (Rini et al., 2002). The above mentioned report by Chen et al. showed that FL 

administration significantly increased the frequency and absolute number of myeloid DCs, 

plasmacytoid DCs, and monocytes in the patients with Hodgkin disease, non-Hodgikin 

lymphoma, or advanced-stage breast cancer after autologous hematopoietic cell 

transplantation (Chen et al., 2005). In the clinical studies mentioned here, expected clinical 

responses were not obtained. 

The clinical application of DCs for cancer vaccines, however, has been moderately successful 

(Rosenberg et al., 2004). In the clinical procedure to prepare DC vaccines, monocytes 

harvested from cancer patients by leukocyte apheresis are cultured in the presence of 

cytokines to generate DCs. The generated DCs are matured in vitro, treated with tumor 

antigens such as peptides and tumor lysates, and then injected into patients. The course to 

prepare DC vaccines needs a lot of times, efforts, and costs. If the in vivo expansion of DCs 

by FL could be induced effectively and appropriately, it is possible that there is no need to 

generate DC vaccines ex vivo. Furthermore, ability to expand NK cells is another important 

point in the clinical application of FL. In the clinical trial mentioned above (Chen et al., 

2005), administration of FL to cancer patients did not result in apparent expansion of NK 

cells. Combination of FL with other cytokines like IL-15 may be the promising strategy to 

expand human NK cells in vivo (Yu et al., 1998). 

2.3 Alpha-galactosylceramide (-GalCer) 

2.3.1 Isolation, identification, and synthesis of -GalCer 

Glycosphingolipid compounds, named agelasphins, were isolated from an extract of the 

Okinawan marine sponge, Agelas mauritianus, by Kirin Pharmaceuticals, and some of them 

were found to possess anti-tumor activity in mice (Natori et al., 1994; Tsuji, 2006). Because of 

the low contents of agelasphins in the marine sponge, and the difficulty of their scale-up 

synthesis, the structure of agelasphins was modified, and a novel compound, α-GalCer (also 

called KRN7000) was synthesized (Kobayashi et al., 1995). This glycolipid was shown to 

bind non-classical MHC molecule CD1d of human and mice (Gansert et al., 2003; Taniguchi 

& Nakayama, 2000), and activate natural killer T (NKT) cells of both species in vitro and in 

vivo when it is presented on CD1d molecule (Brossay et al., 1998; Burdin et al., 1998; 

Kawano et al., 1998; Spada et al., 1998) . To date,-GalCer has been the most extensively 

studied ligand for CD1d molecules and stimulant for NKT cells. 

2.3.2 NKT cells 

NKT cells are a unique subpopulation of T cells which play important role in regulating 
immune responses by bridging innate and adaptive immune systems. The term ‘NKT cells’ 
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was first used in 1995 (Makino et al., 1995) to define a subset of mouse T cells that share 
some characteristics with NK cells, particularly expression of the NK1.1 marker (Nkrp1c or 
CD161c). At present, the term NKT cells is well accepted and broadly applied to mice, 
humans, and other species (Godfrey et al., 2004). NKT cells express an antigen-specific T cell 
receptor (TCR), but unlike with conventional T cells that detect peptide antigens presented by 
MHC molecules, NKT cells recognize lipid antigens presented by CD1d molecule. NKT cells 
have been shown to involve wide spectrum of disorders including infectious diseases caused 
by bacteria, parasites, and virus, autoimmunity, and cancer (Terabe & Berzofsky, 2008).  

Accumulating several lines of evidences which obtained from the late 80’s to 90’s had been 
integrated into the establishment of novel immune cell lineage ‘NKT cells’ (Bendelac et al., 
1997; Bendelac et al., 2007; Godfrey et al., 2004; Godfrey et al., 2010; Macdonald., 2007; 
Taniguchi et al., 2003; Terabe. & Berzofsky, 2008). However, an ambiguous definition of 
NKT cells has caused confusion in our understanding of their biological roles. At present, it 
has been proposed to classify NKT cells into two types (Godfrey et al., 2010). 

Type I NKT cells, also called invariant NKT cells or iNKT cells, are defined by their 
expression of the canonical invariant TCRα chain of Vα14Jα18 in mouse (Vα24Jα18 in 

human) with a limited number of TCR chains of V8, V7, and V2 in mouse (V11 in 
human). Type I NKT cells are detected with α-GalCer-loaded CD1d tetramers, however, 
other CD1d restricted T cells exist (Godfrey et al., 2004; Godfrey et al., 2010; Terabe & 
Berzofsky, 2007). On stimulation with α-GalCer, type I NKT cells produce a large amount of 

TH1 (IFN-) and Th2 (IL-4 and IL-13) cytokines. Although type I NKT cells have NK-like 
cytolytic activity, they are considered to be regulators of immune responses because they 
rapidly produce large amount of both Th1 and Th2 cytokines in autoimmune diseases, 
infectious diseases, and cancer. Another subset of CD1d-restricted NKT cells which does not 
respond to α-GalCer, seems to recognize a range of hydrophobic antigens including 
sulfatide (Jahng et al., 2004), lysophosphatidylcholine (Chang et al., 2008), and small 
aromatic (non-lipid) molecules (Van Rhijn et al., 2004). This NKT subset, called ‘type II NKT 
cells’, is present in humans and mice, and has been shown to be more heterogeneous than 

type I in both TCR and TCR chain usage (Godfrey et al., 2004; Godfrey et al., 2010; Terabe 
& Berzofsky, 2007; Terabe & Berzofsky, 2008). In this chapter, the findings on type I NKT 
cells and their ligands will be discussed hereafter. 

2.3.3 Anti-tumor effects of-GalCer 

Originally, a mother compound of α-GalCer, agelasphins, was selected from several 
glycosphingolipids extracted from marine sponge depending on their anti-tumor effects in 
mouse tumor models (Natori et al., 1994). Anti-tumor effect caused by α-GalCer injection has 
been shown in mouse tumor models (Kobayashi et al., 1995; Motoki et al., 1995; Morita et al., 
1995). Subsequently, protective roles of NKT cells stimulated by α-GalCer were confirmed by 
liver and lung metastasis models in mice using B16 melanoma cells and Lewis lung carcinoma 
cells, respectively (Kawano et al., 1998). A complete inhibition of B16 melanoma metastasis in 
the liver was observed when α-GalCer-pulsed DCs were injected 7 days after transfer of tumor 
cells to mice where metastatic nodules were already formed (Toura et al., 1999). In addition, 
long-term administration of α-GalCer inhibited primary tumor formation in the tumor models 
of MCA-induced sarcoma, mammary carcinomas in Her-2/neu transgenic mice, and 
spontaneous sarcomas in p53 deficient mice (Hayakawa et al., 2003).  
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Anti-tumor effects of α-GalCer depend on the production of IFN from activated type I 

NKT cells (Terabe & Berzofsky, 2007). Crowe et al. showed that IFN- production by NKT 
cells was essential for protection against tumor, and perforin production by effector cells, 
but not NKT cells, was also critical in MCA-induced sarcoma models (Crowe et al., 2002). 
Smyth et al. reported that both NK cells and NKT cells were essential and collaborate in host 
protection from MCA-induced sarcoma (Smyth et al., 2001), and sequential production of 

IFN- by NKT cells and NK cells was essential for the antimetastatic effect of α-GalCer in 
B16 melanoma metastasis models (Smyth et al., 2002).  

In addition to the essential role of IFN-, IL-12 was shown to be critical for the anti-tumor 

effect of NKT cells. Kitamura et al. demonstrated that production of IFN- by NKT cells in 
response to α-GalCer required IL-12 produced by DCs and direct contact between NKT cells 
and DCs through CD40-CD40 ligand interactions (Kitamura et al., 1999). Hayakawa et al. 
showed that both CD28-CD80/CD86 and CD40-CD40 ligand costimulatory pathways are 

essential for α-GalCer-induced IFN- production by NKT cells (Hayakawa et al., 2001). 
Furthermore, administration of α-GalCer induced not only innate immune response, but 
also adaptive immune response. A single dose of α-GalCer rapidly stimulated the full 
maturation of DCs in NKTcell-dependent manner, and this maturation accounted for the 
induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered antigen 
(Fujii et al., 2003).  

Taken together, anti-tumor effects of α-GalCer are thought to be evoked by the following 
sequential processes; α-GalCer presented on CD1d of DCs is recognized by NKT cells, and 
up-regulates CD40 ligand on NKT cells. Activated DCs by CD40 and CD28 costimulatory 

pathways produce IL-12, and activate NKT cells by IL-12. IFN-produced by fully activated 
NKT cells trigger DC maturation, activation and recruitment of NK cells, Th1 CD4+ and 
CD8+ T cell leading to direct anti-tumor effects. 

2.3.4 Clinical trials using -GalCer in cancer patients 

At present, a number of clinical trials of α-GalCer have been conducted in multiple 
institutes, and their results have been published since 2002. Early study of phase I clinical 
trial in which α-GalCer was injected intravenously reported that α-GalCer was well 
tolerated in cancer patients over a wide range of doses (Giaccone et al., 2002). Phase I studies 
of α-GalCer-pulsed DCs have been conducted in patients with various solid tumors and 
myeloma (Chang et al., 2005; Dhodapkar et al., 2004; Ishikawa et al., 2005; Nieda et al., 2004; 
Okai et al., 2002; Uchida et al., 2008). However, none of these clinical trials reported 
significant efficacy against tumors.  

Recently, the research team of Chiba University in Japan reported the summary of their 
clinical trials (Motohashi et al., 2011). The research team has been well known by their 
pioneering works on α-GalCer, and has been conducted multiple clinical trials with 
enthusiasm (Ishikawa et al., 2005; Kunii et al., 2009; Kurosaki et al., 2011; Motohashi et al., 
2006; Motohashi et al., 2009; Uchida et al., 2008; Yamasaki et al., 2011). The team conducted 
the α-GalCer-NKT cell-based clinical trials in patients with non-small cell lung cancer and 
head and neck squamous cell carcinoma (Motohashi et al., 2011). Alpha-GalCer-pulsed 
APCs seemed to produce better clinical outcomes in the patients with head and neck 
squamous cell carcinoma than in those with non-small cell lung cancer. The cells were 
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injected into nasal submucosa of patients with head and neck squamous cell carcinoma, 
whereas intravenous injection was performed in the non-small cell lung cancer patients. 
Furthermore, the anti-tumor effect of α-GalCer-pulsed APCs seemed to be augmented by 
the combined adoptive transfer of α-GalCer-activated NKT cells. Thus, clinical efficacy of α-
GalCer-based immunotherapy may depend on the tumor type and treatment settings. 
Further efforts are necessary to develop an effective treatment modality. 

3. Conclusion 

In cancer patients with a growing tumor, immune tolerance between the host immune 
system and tumor may have already been established. Agents mentioned in this chapter 
induce inherent innate immune responses intrinsically against microbial infection. The anti-
tumor effect via activation of innate immune system may depend on the action to break the 
established tolerance between host and tumor leading to adaptive immune responses 
(Figure.1). In other words, the activation of innate immune system acts like as a ‘reset  

 

Fig. 1. In the cancer patients with a growing tumor, immune tolerance between host 
immune system and tumor may have already been established. Stimulants of innate 
immunity such as biological response modifiers (BRMs) or ligands for toll-like receptors 
induce inherent innate immune responses intrinsically against microbial infection. The anti-
tumor effect via activation of innate immune system may depend on the action to break the 
established tolerance between host and tumor leading to adaptive immune responses. 
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button’ in cancer patients to restart the immune responses. Administration of cytokines such 
as FL which induce expansion of immune cells can potentiate subsequent immune 
responses, and it may be the ideal pretreatment for cancer patients with 
immunosuppressive status. With regards to TLRs agonist, FL, and α-GalCer, the efforts to 
develop them as vaccine adjuvant have already been started. At present, the efficacy of a 
prophylactic vaccination against human papillomavirus has been established in the 
prevention of cervical cancer. Although tough and long-lasting works and huge research 
fund are required to perform clinical trials, one of the most promising immunotherapeutic 
modalities for cancer may be cancer prevention. Above mentioned three agents may be 
excellent vaccine adjuvants to enhance tumor immunity in cancer prevention. Further 
research efforts are required to establish more effective immunotherapy which will also 
achieve a better quality of life for cancer patients. 
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