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Centro de Investigación de Tecnología de Vehículos, Universitat Politècnica de València  

Spain 

1. Introduction  

Trajectory planning for robots is a very important issue in those industrial activities which 

have been automated. The introduction of robots into industry seeks to upgrade not only 

the standards of quality but also productivity as the working time is increased and the 

useless or wasted time is reduced. Therefore, trajectory planning has an important role to 

play in achieving these objectives (the motion of robot arms will have an influence on the 

work done).  

Formally, the trajectory planning problem aims to find the force inputs (control 憲岫建岻) to 

move the actuators so that the robot follows a trajectory 圏岫建岻 that enables it to go from the 

initial configuration to the final one while avoiding obstacles. This is also known as the 

complete motion planning problem compared with the path planning problem in which the 

temporal evolution of motion is neglected. 

An important part of obtaining an efficient trajectory plan lies with both the interpolation 

function used to help obtain the trajectory and the robot actuators. Ultimately actuators will 

generate the robot motion, and it is very important for robot behavior to be smooth. 

Therefore, the trajectory planning algorithms should take into account the characteristics of 

the actuators without forgetting the interpolation functions which also have an impact on 

the resulting motion. As well as smooth robot motion, it is also necessary to monitor some 

working parameters to verify the efficiency of the process, because most of the time the user 

seeks to optimize certain objective functions. Among the most important working 

parameters and variables are the time required to get the trajectory done, the input torques, 

the energy consumed and the power transmitted. The kinematic properties of the robot´s 

links, such as the velocities, accelerations and jerks are also important. 

The trajectory algorithm should also not overlook the presence of possible obstacles in the 

workspace. Therefore it is very important to model both the workspace and the obstacles 

efficiently. The quality of the collision avoidance procedure will depend on this 

modelization. 
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2. A brief look at previous work 

Trajectory planning for industrial robots is a very important topic in the field of robotics and 
has attracted a great number of researchers so that there are at the moment a variety of 
methodologies for its resolution.  
By studying the work done by other researchers on this topic it is easy to deduce that the 

problem has mainly been tackled with two different approaches: direct and indirect 

methods. Some authors who have analyzed this topic using indirect methods are Saramago, 

2001; Valero et al., 2006; Gasparetto and Zanotto, 2007 ; du Plessis et al., 2003.  
Other authors, on the other hand, have implemented the direct method such as Chettibi et 
al, 2002; Macfarlane, 2003; Abdel-Malek et al. 2006. However, in these examples the 
obstacles have been neglected which is a drawback. 
Over the years, the algorithms have been improved and the study of the robotic system has 
become more and more realistic. One way of achieving that is to analyze the complete 
behavior of the robotic system, which in turn leads us to optimize some of the working 
parameters mentioned earlier by means of the appropriate objective functions. The most 
widely used optimization criteria can be classified as follows:  
1.  Minimum time required, which is bounded to productivity. 
2. Minimum jerk, which is bounded to the quality of work, accuracy and equipment 

maintenance. 
3. Minimum energy consumed or minimum actuator effort, both linked to savings. 
4. Hybrid criteria, e.g. minimum time and energy. 
The early algorithms that solved the trajectory planning problem tried to minimize the time 
needed for performing the task (see Bobrow et al., 1985; Shin et al., 1985; Chen et al., 1989). 
In those studies, the authors impose smooth trajectories to be followed, such as spline 
functions.  
Another way of tackling the trajectory planning problem was based on searching for jerk-
optimal trajectories. Jerks are essential for working with precision and without vibrations. 
They also affects the control system and the wearing of joints and bars. Jerk constraints were 
introduced by Kyriakopoulos (see Kyriakopoulos et al.,1988). Later, Constantinescou 
introduces (Constantinescu et all, 2000) a method for determining smooth and time-optimal 
path-constrained trajectories for robotic manipulators imposing limits on the actuator jerks. 
Another different approach to solving the trajectory planning problem is based on 
minimizing the torque and the energy consumed instead of the execution time or the jerk. 
An early example is seen in Garg et al., 1992. Similarly, Hirakawa and Kawamura searched 
for the minimum energy consumed (Hirakawa et al., 1996). In Field and Stepanenko, 1996, 
the authors plan minimum energy consumption trajectories for robotic manipulators. In 
Saramago and Steffen, 2000, the authors considered not only the minimum time but also the 
minimum mechanical energy of the actuators. They built a multi-objective function and the 
results obtained depended on the associated weighting factor. The subject of energy 
minimization continues to be of interest in the field of robotics and automated 
manufacturing processes ( Cho et al., 2006 ). 
Later, new approaches appear for solving the trajectory planning problem. The idea of using 
a weighted objective function to optimize the operating parameters of the robot arises 
(Chettibi et al., 2004). Gasparetto and Zanotto also use a weighted objective function (see 
Gasparetto and Zanotto, 2010). In this chapter we will introduce an indirect method which 
has been called the “sequential algorithm”. 
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In this chapter we will describe two algorithms for solving the collision-free trajectory 
planning for industrial robots that we have developed. We have called them “sequential” 
and “simultaneous” algorithms. The first is an indirect method while the second is a direct 
one. The “sequential” algorithm considers the main properties of the actuators (torque, 
power, jerk and energy consumed). The “simultaneous” algorithm analyzes what is the best 
interpolation function to be used to generate the trajectory considering a simple actuator 
(only the torque required). The chapter content is based on the previous work done by the 
authors (see Valero et al., 2006, and Rubio et al., 2007). Specifically, the two approaches to 
solving the trajectory planning problem are explained. 

3. Robot modelling 

The robot model used henceforth is the wire model corresponding to the PUMA 560 robot 
shown in Fig. 1. The robot involves rigid links that are joined by the corresponding 
kinematic joints (revolution).The robot has F degrees of freedom and each robot´s 
configuration C j can be unequivocally set using the Cartesian coordinates of N points, 

which are called significant points. These points, defined as α ji (x j3(i-1)+1 ,x j3(i-1)+2 , x j3(i-1)+3, 
i=1..F, j=number of configuration) are chosen systematically. Therefore, ultimately, every 
configuration will be expressed in Cartesian coordinates by means of the significant points, 

i.e. C j= C j (α ji), which represent the specifics of the robot under study. It is important to 
point out that they do not constitute an independent set of coordinates. Besides the 
significant points, some other points p jk, called interesting points, will be used to improve 
the efficiency of the algorithms, the coordinates of which are obtained from the significant 
points and the geometric characteristics of the robot.  
 

 

Fig. 1. Model of robot PUMA 560. Significant and Interesting Points (mobile base) 
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The PUMA 560 robot can be modelled with a movable base or a fixed base. The mobile-

based robot is shown in Fig. 1 with the seven significant points used (α1, α2, α3, α4, α5 , α6 

and α7 ), together with another five interesting points p jk. As a result of this, the 
configuration C j is determined by twenty-one variables corresponding to the coordinates of 
the significant points. These variables are connected through fourteen constraint equations 
relative to the geometric characteristics of the robot (length of links, geometric constraints 
and range of motion). See Rubio et al, 2009 for more details. It must be noted that any other 
industrial robot can be modelled in this way by just selecting and choosing appropriately 
those significant points that best describe it.  
This property is very important as far as the effectiveness of the algorithm is concerned.  

4. Workspace modelling 

The workspace is modelled as a rectangular prism with its edges parallel to the axes of the 
Cartesian reference system. The work environment is defined by the obstacles bound to 
produce collisions when the robot moves within the workspace. The obstacles are 
considered static, i.e. their positions do not vary over time and they are represented by 
means of unions of patterned obstacles. 
The fact of working with patterned obstacles introduces two fundamental advantages: 
1. It allows the modelling of any generic obstacle so that collisions with the robot´s links 

can be avoided. 
2.  It permits working with a reduced number of patterned obstacles in order to model a 

complex geometric environment so that its use is efficient. It means that a small number 
of constraints are introduced into the optimization problem when obtaining collision-
free adjacent configurations.  

The patterned obstacles have a geometry based on simple three-dimensional figures, 
particularly spheres, rectangular prisms and cylinders. Any obstacle present in the 
workspace could be represented as a combination of these geometric figures.  
The definition of a patterned obstacle is made in the following way: 

• Spherical obstacle SOi, is defined when the position of its centre and its radius are 
known. It is characterized by means of   

- Centre of Sphere i: ( ), ,SO SO SO SO
i xi yi zic c c c=  

- Radius of Sphere i: SO
ir  

Therefore ( ),SO SO
i i iSO c r= . See Fig. 2 

 

 

Fig. 2. Generic Spherical obstacle SOi 
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i
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i
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• Cylindrical obstacle COk, is defined when the coordinates of the centres of its bases and 
its radius are known. It is characterized by means of 

- Centre of base 1 for cylinder k: ( )1 1 1 1, ,CO CO CO CO
k xk yk zkc c c c=  

- Centre of base 2 for cylinder k: ( )2 2 2 2, ,CO CO CO CO
k xk yk zkc c c c=  

- Radius of cylinder k: CO
kr  

Therefore ( )1 2, ,CO CO CO
k k k kCO c c r= . See Fig. 3 

 

 

Fig. 3. Generic Cylindrical obstacle COk 

• Prismatic obstacle POl, is defined when four points located in the vertices of the 
rectangular prism are known so that vectors that are perpendicular to each other can be 
drawn up. It is characterized by means of 

- Point a of  prism l: ( ), ,PO PO PO PO
l xl yl zla a a a=  

- Point q1 of prism l: ( )1 1 1 1, ,PO PO PO PO
l xl yl zlq q q q=  

- Point q2 of prism l: ( )2 2 2 2, ,PO PO PO PO
l xl yl zlq q q q=  

- Point q3 of prism l: ( )3 3 3 3, ,PO PO PO PO
l xl yl zlq q q q=  

Therefore ( )1 2 3, , ,PO PO PO PO
l l l l lPO a q q q= . See Fig. 4 

 

 

 

Fig. 4. Generic Prismatic obstacle POl 

5. Discretizing the workspace 

With the purpose of working with a limited number of configurations, the generation of a 
discrete workspace that represents the possible positions of the end-effector of the robot is 
considered. To do this, a rectangular prism with its edges parallel to the axes of the 
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PO

lq1
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lq2
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Cartesian reference system is created and whose opposite vertices correspond to the 
positions of the end-effector of the robot in the initial and final configurations from which 
the connecting path is calculated. The set of positions that the end-effector of the robot can 
adopt within the prism is restricted to a finite number of points resulting from the 
discretization of the prism according to the following increases: 

 

ff fii i
ny nynx nx nz nz

x y z

x y z
N N N

α αα α α α−− −
Δ = Δ = Δ =  (1) 

Where the values of Δx , Δy and Δz are calculated from the values of the number of intervals 
Nx , N y and N z in which the prism is discretized, and those increments should be smaller than 
the smallest dimension of the obstacle modelled in the workspace. Points (αnxf, αnyf, αnxf) and 
(αnxi, αnyi, αnzi ) correspond to the coordinates of the end-effector of the robot for the initial and 
final configurations. Fig. 6 demonstrates the way in which the prism that gives rise to the set of 
nodes that the end-effector of the PUMA 560 robot with a mobile base can adopt is discretized. 
 

 

Fig. 5. Rectangular prism with edges parallel to the axes of the Cartesian reference system 

6. Obstacle avoidance 

By controlling the distance from the different patterned obstacles to the cylinders that cover 
the robot links, collision avoidance between the robot and the obstacles is possible. 
Distances are constraints in the optimization problem. They serve to calculate collision-free 
adjacent configurations (for adjacent configuration see Section 7).   

6.1 Calculation of distances 

Each robot´s link is modelled as a cylinder and it is characterized as ( )1 2, ,RC RC RC
i i i iRC c c r=  (see 

section 4). The application of the procedure to calculate distances between link i of the robot 

and the patterned obstacle j (which may be a cylinder, sphere or a prism), can give rise to 

three different cases to prevent collisions:  

A) Cylinder-Sphere 

See Fig. 6. Here we compute the distance between a line segment (cylinder) to a point 
(centre of the sphere). Let AB be a line segment specified by the endpoints A and B. Given an 
arbitrary point C, the problem is to determine the point P on AB closest to C. Then we 
calculate the distance between these two points. 
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Projecting C onto the extended line through AB provides the solution. If the projection point 
P lies within the segment, then P itself is the correct answer. 
If P lies outside the segment, then the segment endpoint closest to C is instead the closest 
point (A or B).  

B) Cylinder-Cylinder 

See Fig. 6. Here we compute the distance between two line segments. The problem of 
determining the closest points between two line segments S1 (P1Q1) and S2 (P2Q2) (and 
therefore the distance) is more complicated than computing the closest points of the lines L1 
and L2 of which the segments are a part. Only when the closest points of L1 and L2 happen to 
lie on the segments does the method for closest points between lines apply. For the case in 
which the closest points between L1 and L2 lie outside one or both segments, a common 
misconception is that it is sufficient to clamp the outside points to the nearest segment 
endpoint. It can be shown that if just one of the closest points between the lines is outside its 
corresponding segment, that point can be clamped to the appropriate endpoint of the 
segment and the point on the other segment closest to the endpoint is computed. 
If both points are outside their respective segments, the same clamping procedure must be 
repeated twice.  

C) Cylinder-Prism 

See Fig. 6. The prismatic surfaces are divided into triangles. In this case we compute the 
distance between a line segment and a triangle. The closest pair of points between a line 
segment PQ and a triangle is not necessarily unique. When the line segment is parallel to the 
plane of the triangle, there may be an infinite number of equally close pairs. However, 
regardless of whether the segment is parallel to the plane or not, it is always possible to 
locate a point such that the minimum distance falls either between the end point of the 
segment and the interior of the triangle or between the segment and an edge of the triangle. 
Thus, the closest pair of points (and therefore the distance) can be found by computing the 
closest pairs of points between the following entities: 
- Segment PQ and triangle edge AB. 
- Segment PQ and triangle edge BC. 
- Segment PQ and triangle edge CA. 
- Segment endpoint P and plane of triangle (when P projects inside ABC) 
- Segment endpoint Q and plane of triangle (when Q projects inside ABC). 
The number of tests required to calculate the distance can be reduced in some cases.  
 

A) 
Cylinder-Sphere 

 
 
 
 
 
 
 

B) 
Cylinder-Cylinder 

 
 
 
 
 
 
 
 

C) 
Cylinder-Prism 

Fig. 6. Three different cases to calculate distances (and prevent collisions) 
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7. Obtaining adjacent configurations  

The discrete configuration space is obtained by means of generating adjacent configurations. 
Given a feasible configuration C k, it is said that a new configuration C p is adjacent to the 
first if it is also feasible (i.e. it fulfils the characteristics associated to the robot modelling and 
avoids collisions with the obstacles), and in addition the following three properties are 
fulfilled: 
1. The position of the end-effector that corresponds to a node of the discrete workspace is 

at a distance of one unit with respect to the position of the end-effector of configuration 
C k. That means that at least one of the following conditions has to be fulfilled: 

 p p pk k k
nx nx ny ny nz nzx y zα α α α α α− = Δ − = Δ − = Δ  (2) 

n being the subscript corresponding to the significant point associated to the end-effector 
of the robot. For PUMA 560 with mobility in the base, n=7, as can be seen in Fig. 1. 
What we obtain is a sequence of configurations that is contained in the path, so that by 
using interpolation we can obtain a collision-free and continuous path. 

2. Verification of the absence of obstacles between adjacent configurations C k and C p. 
Since the algorithm works in a discrete space it is necessary to verify that there are no 
obstacles between adjacent configurations, for which the following condition is set out: 

 ( )2pk
i i jmin rα α ≤ ⋅


 (3) 

where rj is the characteristic dimension of the smallest patterned obstacle. This 
condition is necessary to guarantee that the distance for each link between two adjacent 
configurations is less than the characteristic dimension of the smallest patterned 
obstacle. 

3. Configuration C p must be such that it minimizes the following objective function: 

 ( ) ( ) ( )( )
22 2

1

n
p f p f p f p f

xi xi yi yi zi zi
i

C C α α α α α α
=

− = − + − + −  (4) 

n being the number of significant points of the robot. This third property facilitates the 
final configuration to be reached even for redundant robots, i.e. the robot´s end-effector 
should not be part, at the final node, of a configuration different from the desired one. 
On the other hand, this property has an influence on the configurations generated, 
facilitating the configurations in the neighbourhoods at the end so that they are 
compatible with the end. 

An optimization procedure is set by using a sequential quadratic programming method 
(SQP). This method serves to minimize a quadratic objective function subject to a set of 
constraints which might include those from a simple limit to the values of the variables, 
linear restrictions and nonlinear continuous constraints. This is an iterative method. 
Applying this procedure to the path planning problem, the objective function used is given 
by Eq. (4). The constraints are associated to the geometry of the robot, the limits of the 
actuators and the avoidance of collision. And the configuration C k is used as an initial 
estimation for its resolution. The solution of this optimization problem gives the adjacent 
configuration C p looked for. By repeating the obtaining of adjacent configuration, the discrete 
configuration space of the robot is obtained. These configurations are recorded in a graph. 
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8. “Sequential” algorithm applied to solving the trajectory planning problem. 
Problem statement 

8.1 Introduction 
The “sequential” algorithm is based on an indirect approach to solving the trajectory 
planning problem. The algorithm takes into account the characteristics of the actuators 
(torque, power, jerk and consumed energy), the interpolation functions and the obstacles in 
the workspace. It generates the configuration space. Then, a graph is associated to the 
previously obtained configuration space, which allows a collision-free path to be obtained 
between the initial and final configurations. Once the path is available, the dynamic 
characteristics of the robot are included, setting an optimal trajectory planning problem 
which aims to obtain the minimum time trajectory that is compatible with the robot features 
and the actuator capabilities (torque, jerk and consumed energy constraints). 

8.2 Obtaining a path 
First, the algorithm solves the path planning problem, obtaining the discrete configuration 
space of the robot (the discrete configuration space is generated by means of adjacent 
configurations, see Section 7) and then the minimum distance path is calculated. This path (a 
sequence of m configurations) is obtained by associating a weighted graph to the discrete 
configuration space and looking for the minimum weighted path. In the graph, the nodes 
correspond to the robot configurations and the arcs are related to joint displacements between 
adjacent configurations. 
The weight corresponding to the arc that goes from node k ( Ck robot configuration) to node 
p ( Cp robot configuration), can be given as: 

 ( ) ( )
( )3 1

2

1

F
p k
i i

i

,p x xa k
−

=

= −  (5) 

when that Ck and Cp are adjacent. In addition Ck and Cp must satisfy both type (3) constraints 
that avoid the obstacles between configurations and the angle increased from Ck to Cp must 
be smaller than the magnitude of the forbidden zone for that joint, so that large 
displacements are avoided for movement between adjacent configurations. 

In case the points above mentioned are not satisfied, then we consider that a(k ,p) = ∞ . 

Finally, the searching is started in the weighed graph with the path that joins the node 

corresponding to the initial configuration to the node corresponding to the final 

configuration. Since the arcs satisfy that 0a(k ,p) ≥ , the Dijkstra´s algorithm is used to obtain 

the path that minimises the distance between the initial and final configurations. If this path 

exists, it is easy to obtain a sequence of m robot configurations S. 

8.3 Interpolation function 
Once the path has been obtained (at this point, the algorithm uses Cartesian coordinates), 
we have a sequence of m robot configurations, S = {S1(qi1), S2(qi2)… Sm(qim)}. These 
configurations are expressed now in joint coordinates. And the objective now is to look for a 
minimum time trajectory (tmin), that contains them. The path is decomposed into m-1 
intervals, so the time needed to reach the Sj+1 configuration from the initial S1 is tj, and the 
time spent in the segment j (between Sj and  Sj+1 configurations) will be tj-tj-1. Cubic 
interpolation functions have been used for joint trajectories. They are defined by means of 
joint variables between successive configurations, so that for the segment j it is: 
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2 3
1j j ij ij ij ij ijt t ,t q a b t c t d t−

 ∀ ∈  = + + +   for i=1,…,dof  (dof being the degrees of freedoom of 

the robot) and j=1,…,m-1. (m is the number of the robot configuration)  

To ensure motion continuity between configurations, the following conditions associated to 
the given configurations are considered. 

•  Position: it gives a total of (2dof (m-1)) equations: 

 ( ) 2 3
1 1 1 1ij j ij ij j ij j ij jq t a b t c t d t− − − −= + + +   (6) 

 ( ) 2 3
ij j ij ij j ij j ij jq t a b t c t d t= + + +   (7) 

• Velocity: for each interval, the initial and final velocity is zero, the velocity condition 
gives place to (2dof) equations: 

 ( )1 0 0iq t =   (8) 

 ( ) 0im mq t =   (9) 

When passing through each configuration, the final velocity of the previous configuration 
should be equal to the initial velocity of the next configuration, leading to (dof (m-2)) 
equations 

 ( ) ( )1ij j ij jq t q t+=    (10) 

• Acceleration: For each intermediate configuration, the final acceleration of the previous 
configuration should be equal to the initial acceleration of the next configuration, giving 
rise to (dof(m-2)) equations: 

 ( ) ( )1ij j ij jq t q t+=    (11) 

In addition, the minimum time trajectory must meet the following constraints: 

• Maximum torque on the actuators, 

 ( )min max
i i itτ τ τ≤ ≤  [ ]min0,t t∀ ∈ , i = 1…dof  (12) 

• Maximum power on the actuators, 

 ( )min max
i i iP P t P≤ ≤  [ ]min0,t t∀ ∈ , i = 1…dof  (13) 

• Maximum jerk on the actuators, 

 ( )min max
i i iq q t q≤ ≤    [ ]min0,t t∀ ∈ ,  i = 1…dof   (14) 

• Consumed Energy, 

 
1

1 1

dofm

ij
j i

ε
−

= =

 
≤ Ε 

 
   ,   (15) 
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ijε  being the energy consumed by the i actuator between configurations j and j+1 

Given the large number of iterations required by the process, the technique used for 
obtaining the coefficients is crucial. The first task is to normalize the polynomials that define 
the stages (see Suñer et al., 2007).In short, the optimization problem is set by using 
incremental time variables in each interval, so that in the interval between Sj and Sj+1, the 
time variable should be Δtj=tj-tj-1, and the objective function, 

 
1

min
1

m

j
j

t t
−

=

Δ =   (16) 

The solution is obtained by means of SQP procedures, so that at each iterative step it is 
necessary to obtain the above mentioned polynomials coefficients from the estimation of the 
variables of the problem. 

8.4 Obtaining a trajectory 

The trajectory is obtained when the optimization problem posed has been solved. The 
solution (and therefore the trajectory) is achieved by solving an optimization problem 
whose objective function is the trajectory total time and the constraints are the maximum 
torques in the robot actuators, maximum power, maximum jerk and the consumed energy. 
The solution of the optimization problem is approached by means of a SQP algorithm of 
Fortran mathematical library NAG. In each iterative step is necessary  to obtain the 
coefficients of the previously mentioned polynomials from an estimation of the variables (tj). 
Notice that the previous conditions above mentioned  define a system of (4Ndof(m-1) ) 
independent linear equations. Since the complete trajectory has  (4Ndof(m-1) ) unknowns 
corresponding to the coefficients of the polynomials, the linear system can be solved, 
obtaining the complete trajectory. And this linear system is solved in each iteration whithin 
the optimization problem. These coefficients are necessary to calculate the maximum torque, 
power, jerk and consumed energy for each one of the actuators by means of solving the 
inverse dynamic problem in each interval.  
Finally, when the optimization problem has been solved we obtain the minimum time 
trayectory (subject to the mentioned constraints) and also all the kinematic properties of the 
robotic system. 

8.5 Impact of interpolation function 

The impact of the interpolation function is very important from the point of view of the 
robot´s performance. Polynomial interpolation functions have been used in the “sequential” 
algorithm. It has been noticed during the resolution of the examples that they extract the 
maximum dynamic capabilities of the robot´s actuators, so that the robot moves faster than 
if any other interpolation function is used (harmonic functions, etc). Therefore when the 
polynomial interpolation functions are used the algorithm gives the best results from the 
point of view of the time requiered to do the tasks.  

8.6 Application and examples solved 

Different examples have been solved for a PUMA 560 robot. The examples have been solved 
with sequences of different initial and final configurations. The trajectories calculated meet 
constraints on torque, power, jerk and energy consumed and the goal is to analyze impact of 
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these constraints on the generation of minimum time collision-free trajectories for industrial 
robots. The results obtained show that constraints on the energy consumed must enable the 
manipulator to exceed the requirements associated with potential energy, as the algorithm 
works on the assumption that the energy can be dissipated but not recovered. Also, an 
increase in the severity of energy constraints results in longer time trajectories with more 
soft power requirements. When constraints are not very severe, efficient trajectories can be 
obtained without high penalties on the working time cycle. An increase in the severity of the 
jerk constraints involves longer time trajectories with more soft power requirements  and 
lower energy consumed. When constraints are very severe, times are also severely penalized 
even the jerk might appear. To obtain competitive results in the balance between time cycle 
and energy consumed, the actuators should work with the maximum admissible value of 
the jerk so that the robot can work with the desired accuracy. 

9. “Simultaneous” algorithm applied to solving the trajectory planning 
problem. Problem statement 

9.1 Introduction 

The “simultaneous” algorithm is based on a direct approach to solving the trajectory 
planning problem in which the path planning problem and the problem of determining the 
time history of motion are treated as one instead of treating them separately as the indirect 
methods do. The algorithm is called “simultaneous” because of the simultaneous generation 
of discrete configuration space and the minimum distance path, making use of the 
information that the objective function is generating when new configurations are obtained. 
The algorithm works on a discretized configuration space which is generated gradually as 
the direct procedure solution evolves. It uses Cartesian coordinates (to specify the motion of 
the end-effector) and joint coordinates (to solve the inverse dynamic problem). An 
important role is played by the generation of adjacent configurations using techniques 
described by Valero et al. ,2006 . The resolution of the inverse dynamic problem has been 
done using Gibbs-Appel´s equations, as proposed by Sebastian Provenzano ( see 
Provenzano, 2001). Any obstacle can be modelled using simple obstacle patterns: sphere, 
cylinder and prism. This helps calculate distances and avoid collisions. 
The algorithm takes into account the torque required by the actuators, analyses the best 
interpolation function and consider the obstacles in the workspace. To obtain a new adjacent 
configuration C k , a first optimization problem has to be solved which can be stated as 
follows: 

 Find C k , minimizing ( ) ( )
1

n
f fk k

i i
i

Min C C Min x x
=

 
− = −  

 
  (17) 

and subject to:  
a. Geometrical constraints of the robot structure; 
b. Constraints on the mobility of robot joints; 
c. Collision avoidance within the robot workspace; 

(where k
ix  and f

ix  are the Cartesian coordinates of intermediate and final configurations C k 

and C k respectively). 
The process for calculating the whole trajectory between initial and final configurations ( C 1 
and C f ) is based on a second and different optimization problem which can be stated as: 
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 Find     ( ) ( ), , fq t t tτ  between each two configurations (18) 

 Minimizing 
0

1
ft

min J dt
τ∈Ω

= ⋅   (19) 

Subject to the robot dynamics 

  ( )( ) ( ) ( ) ( )( ) ( ) ( )( )M q t q t C q t , q t q t g q t (t)τ+ + =     (20) 

Unknown boundary conditions for intermediate configurations a priori 

( ) ( )1 1int int int intq t q ; q t q− −= =  

 ( ) ( )1 1 1int int int intq t q ; q t q− − −= =      (21) 

( ) ( )1 1 1int int int intq t q ; q t q− − −= =     

Boundary conditions for initial and final configuration (used to solve the first and final step) 

  
( ) ( )

( ) ( )

0

0 0 0

o f f

f

q q ; q t q

q ; q t

= =

= = 
  (22) 

Actuator torque rate limits  

  ( )min maxtτ τ τ≤ ≤   (23) 

Collision avoidance within the robot workspace     

  ij j jd r w≥ +   (24) 

where ijd is the distance from any obstacle pattern j (sphere, cylinder or prism) to link i; jr is 

the characteristic radius of the obstacle pattern and jw is the radius of the smallest cylinder 

that contains the link i. 

As well, ( ) nq t R∈ is the vector of joint positions (n being the number of degrees of freedom 

of the robot), ( ) nt Rτ ∈  is the vector of actuator torques, ( )( ) nxnM q t R∈  is the inertia matrix 

of the robot, ( ) ( )( ), nxnC q t q t R∈  is a third-order tensor representing the coefficients of 

centrifugal and Coriolis forces and ( )( ) nG q t R∈  is the vector of gravity terms, and Ω  is the 

space state in which the vector of actuator torques is feasible. Each time a new adjacent 

configuration C k is generated, an uncertainty to be overcome lies in the fact that at this stage 

we do not know its kinematic characteristics (particularly velocity and acceleration), 

although we know they should be compatible with the dynamic characteristics of the robot. 

It should also be noted when calculating the minimum time between two adjacent 

configurations that each step starts from a configuration with its kinematic properties 

known, obtaining the time and the kinematic properties at the end configuration, so that if 

the dynamic capabilities of the actuators had been exhausted ( ( )int mini tτ τ≅ or ( )int maxi tτ τ≅ ) 

due to the kinematic properties generated at the end configuration ( ( )intq t , ( )intq t  and 

( )intq t ), it would have been impossible to observe constraints on the next generation step of 
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the trajectory ( )min int 1 maxtτ τ τ+≤ ≤ . Finally, by connecting adjacent configurations, the whole 

trajectory is generated. 
The process explained is applied repeatedly to generate adjacent configurations until 
reaching the final configuration. Finally, by connecting adjacent configurations, the whole 
trajectory is generated. 

9.2 Interpolation function 

It must be noticed that three types of trajectory spans should be distinguished because of 
their different boundary conditions: the initial (which contains the initial configuration C 1), 
the final (which contains the final configuration C f ), and the intermediate (which does not 
contain either the initial or the final configuration). 
Each pair of adjacent configurations is interpolated using harmonic functions in order to 
limit the kinematic characteristics of goal configuration so that progression to the following 
step should be admissible without breaking the dynamic properties. In that way, it is not 
necessary to previously impose kinematic constraints onto the process. Now, starting from 
the initial configuration, the harmonic function leads to the knowledge of the kinematic 
characteristics of the configurations adjacent to it, and so on. And therefore the process of 
obtaining adjacent configurations can continue until reaching the end. It is true that the 
results are influenced by the use of different interpolation functions between adjacent 
configurations. We use harmonic functions because they are capable of limiting the 
maximum values of velocity and acceleration required for the actuators. So, values for 
velocities and accelerations are limited. This important trait is deduced from the properties 
of Fourier series because of the harmonic functions used as interpolation functions and can 
be expressed by means of their Fourier series, which can ultimately be expressed as 

 0 1 1f (t ) C C cos(t )θ= + +   (25) 

whose C1 coefficient is the value of the amplitude for the fundamental component and θ1 is 
the phase angle. It can be demonstrated that the values of the function are limited to the 
interval [C1,-C1] (the coefficients of the cosine terms). Analyzing the harmonic function on 
the basis of the type of trajectory span we distinguish three types. We use different 
interpolation functions to determine their impact on the characteristics of the solution 
generated. The cases analyzed and interpolation functions for each case are as follows. 
a. Initial span: Cases A, B and C 
In all three cases we have used the same interpolation function for the first span, therefore 
the procedure to calculate the constants is identical 

 ( ) ( )1 1 1 1i i i iq a sin t b cos t c= ⋅ − ⋅ +    (26) 

with i =1..Ndof and 1 is for the first span. Ndof  is the number of the robot´s degrees of freedom. 
For this type of interpolation function, velocity and acceleration values are limited by the 
coefficients aij, bij. The known boundary conditions are three: the initial and final 
configuration of the interval and the initial velocity. They allow the set of coefficients aij, bij 
and cij to be obtained, which are dependent on time. 
b. Intermediate span. 
Three different interpolation functions corresponding to cases A, B and C have been used. 
To calculate the constants in each case we have proceeded as follows: 
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 b1) Case A 
The interpolation function is 

 ( ) ( ) ( ) ( )2 3 4ij ij ij ij ijq a sin t b cos t c sin t d cos t= ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅   (27) 

with i=1..Ndof and j =1..Nspan. . Nspan is the number of the span that is being analyzed. 
From experience in the resolution of a great number of cases, a polynomial term has been 
added to ensure the boundary conditions of velocity and acceleration along the trajectory in 
this span. Velocity and acceleration equations are 

 ( ) ( ) ( ) ( )2 2 3 3 4 4ij ij ij ij ijq a cos t b sin t c cos t d sin t= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅    (28) 

 ( ) ( ) ( ) ( )4 2 9 3 16 4ij ij ij ij ijq a sin t b cos t c sin t d cos t= − ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅   (29) 

Their values are limited by the coefficients aij, bij, cij and dij. The known boundary conditions 
are four: the initial and final configurations of the span and the velocities and accelerations 
at the beginning, and they allow the expressions for the constants aij, bij, cij and dij to be 
determined which, as in the previous case, are dependent on time. 
 b2) Case B 
The interpolation function is 

 ( )ij ij ij ij ijq cos( t ) (sin( t ) (a sin t b ) c ) d= ⋅ ⋅ ⋅ + + +    (30) 

Velocity and acceleration equations are  

 
ij ij ij ij

ij ij ij

q cos( t )  (cos( t )   (a   sin( t ) + b ) + a   cos( t )   sin( t )) - sin( t )    

(sin( t)  (a    sin( t ) + b ) + c )

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅


 (31) 

 

2 2
ij ij ij ij ij

ij ij ij ij

ij ij

q cos( t )  ( - a   sin ( t ) - sin( t )  (a   sin( t ) + b ) +2  a   cos ( t ))- 

cos( t )  (sin( t )  (a  sin( t ) + b ) + c ) - 2  sin( t )  (cos( t )  (a   sin( t ) 

+ b ) + a   cos( t )  sin( t )

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅



)

   (32) 

Their values are limited by the new coefficients aij, bij, cij and dij. The known boundary 
conditions are also four: the initial and final configurations of the span and the velocities 
and accelerations at the beginning. Therefore the constants aij, bij, cij and dij  can be 
determined which, as in the previous case, are dependent on time. 
 b3. Case C 
The interpolation function is 

 ( )ij ij ij ij ijq sin(t) (cos(t) (a sin t b ) c ) d= ⋅ ⋅ ⋅ + + +   (33) 

Velocity and acceleration equations are 

 2
ij ij ij ij ij ij ijq sin(t) (a  cos (t) - sin(t) (a  sin(t) + b )) + cos(t)  (cos(t)  (a  sin(t) + b ) + c )= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   (34) 

 

2
ij ij ij ij ij ij

ij ij ij ij

q 2 cos(t) (a cos (t) - sin(t) (a sin(t) + b )) - sin(t) (cos(t) (a  sin(t) + b ) +

c ) + sin(t) ( - cos(t) (a sin(t) + b ) - 3 a cos(t) sin(t))

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅


 (35) 
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Their values are limited by the new coefficients aij, bij, cij and dij. The known boundary 
conditions are also four: the initial and final configurations of the span and the velocities 
and accelerations at the beginning. Therefore the constants aij, bij, cij and dij  can be 
determined which, as in the previous case, are dependent on time. 
c. Final span: Cases A, B and C 
In all three cases we used the same interpolation function for the last span and therefore the 
procedure to calculate the constants is identical 

 ( ) ( ) ( )
2 2

iF iF iF iF jF iFq a sin t b cos t c sin t d t e t= ⋅ + ⋅ + ⋅ + ⋅ + ⋅    (36) 

with i=1..Ndof and F is for the final trajectory span. 
In this type of span a polynomial term has been introduced, in this case of grade 2, which 
would ensure the continuity of velocity and acceleration. The velocity and acceleration 
equations are 

 ( ) ( ) ( ) ( )2 2iF iF iF iF iF iFq a cos t b sin t c sin t cos t d e t= ⋅ − ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅   (37) 

 ( ) ( ) ( ) ( )
2 2

2 2iF iF iF iF iFq a sin t b cos t c (cos t sin t ) e= − ⋅ − ⋅ + ⋅ ⋅ − + ⋅   (38) 

Their values are limited by the coefficients aij, bij, cij, dij and eij. The known boundary 
conditions are five: the initial and final configuration in the last span or interval, the velocity 
and acceleration at the beginning of the interval and the velocity at the end. These boundary 
conditions enable the coefficients aij, bij, cij, dij and eij to be obtained. 

Whenever a new adjacent configuration is generated by solving Eq. (4), a new trajectory 

span will also be created (by solving the second optimization problem Eq. (17)), and the 

necessary time tj to perform the span is then obtained. The joint positions are adjusted using 

the corresponding harmonic interpolation function again. The solution of equations is 

obtained by iteration using quadratic sequential programming techniques (SQP) through 

the mathematical commercial software NAG (Numerical Algorithms Group). An each step 

of the iterative process it is necessary to recalculate the coefficients of the harmonic 

interpolation functions used, since they are time functions. To facilitate calculations, each 

span has been discretized using ten subintervals, so that the kinematic and dynamic 

characteristics are to be calculated at this discrete set of points. The solution of the 

optimization process provides the minimum time tj  to go from one configuration to its 

adjacent one and consequently the joint positions ( )q t that must be followed between these 

two configurations, as well as the necessary torques in the actuators ( )tτ and the 

corresponding kinematic characteristics ( )q t and ( )q t . 

9.3 Impact of interpolation function 

As it was said earlier, the impact of the interpolation function is very important from the 
point of view of the robot´s performance. Three types of interpolation functions have been 
used (A, B and C) for the computation of intermediate configurations (harmonic functions) 
when using the “simultaneous algorithm. Pure polynomial interpolation functions have 
been excluded because they exceeded the dynamic capabilities of the actuators and therefore 
the algorithm failed to reach any solution. Therefore, after having analysed all kinds of 
interpolation functions, we state that the best of all them C (notice that each actuator has 
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been characterized by the maximum and minimum torque it can provide, see Eq. (23). 
Nonetheless, both the computational and execution time are very high compared with the 
results obtained using the “sequential algorithm”. 

9.4 Cost function 

An important point of the algorithm is to understand the process by which the algorithm is 

gradually creating the trajectory. The algorithm works in a discretised workspace (see Rubio 

et al.,2009) , looking for a trajectory that joins the initial and final configurations by starting 

from the initial configuration and, on the basis of generating adjacent configurations and 

branching out from the most promising one, obtaining new configurations until reaching 

the final one. Therefore, the trajectory contains a discrete set of intermediate configurations. 

To ensure that the process moves from one configuration to another, that is, that the 

algorithm branches out from a general intermediate configuration to generate more new 

adjacent configurations, the uniform cost function is used. The discrete configuration space 

is analysed as a graph, where the configurations generated are the nodes and the arc 

between nodes (arc (i, j)= ( )time i, j ) is calculated as the time necessary to perform the 

motion between adjacent configurations. It is desirable that the number of configurations 

generated is not high and, in addition, that these configurations enable efficient trajectories 

to be obtained. The process followed to achieve the growth of the configuration space in the 

search for the final configuration is as follows: 

Let { }1 2 kCC C ,C , ,C=   be the set of existing configurations at a given instant, and CR the 

subgroup of CC that contains r (r < k) configurations that have still not been used to branch 

out. Now, it is necessary to follow what is called a branching strategy or searching strategy 

to select a C p configuration pertaining to CR, from which the algorithm tries to generate 

another six new adjacent configurations C p+1, C p+2, C p+3, C p+4, C p+5 and C p+6 (according to the 

technique explained in Valero (2006)), which are new configurations belonging to CR, while  

C p is taken out of this subgroup. The process finishes when the final configuration is reached. 
The cost function c (p) used to select a new configuration to branch out from is defined as follows 

• Uniform Cost: the time function c (j) associated with the configuration C j is defined as 
the minimum sum of arcs that permit the node j to be reached from the initial node 

 ( ) ( )1c j time , j=   (39) 

And the new branching is started from configuration C p , which meets 

 ( ) ( )c p min c j , j CR = ∀ ∈    (40) 

When a set of adjacent configurations has been created, Eq. (40) is used to select that one 
from which the process is expected to branch out again. Given two adjacent configurations 
the minimum time between them is calculated as explained in Section 4. Time is used to 
select the new configuration as just explained in Section 5, which is used to repeat the 
branching process and this in turn is repeated until the final configuration is reached. 

9.5 Obtaining the trajectory 

When the final configuration is reached we know not only the robot configuration through 

the joint positions ( )q t but also the necessary torques ( )tτ  and the kinematic 
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characteristics of the motion ( )q t and ( )q t . The trajectory obtained is of minimum time on 

the graph generated. To obtain the global minimum time, the process should be repeated 

with different discretization sizes. The global minimum time is the smallest of all times 

calculated. 

9.6 Application and examples solved 

This algorithm has been applied to the PUMA 560 robot type, and a great number of 

examples have been analysed. Four important operational parameters have been monitored: 

the computational time used in generating a solution, the execution time, the distance 

travelled (which corresponds to the sum of the whole distance travelled by each significant 

point throughout the path to go from the initial to the final configuration, measured in 

meters) and the number of configurations generated. Though the examples, the behaviour of 

those four operational parameters mentioned earlier when the simultaneous algorithm and 

the different interpolation functions have been use can be analized. The results obtained 

show that the worst computational time is achieved when using the interpolation function 

of case A. Case B and C yield similar results. Also, the results show that the smallest 

execution time is achieved when using the interpolation function of case C. The smallest 

distance travelled is achieved when using the interpolation function of case C as well as the 

smallest number of configurations generated are achieved when using the interpolation 

function of case C. 

10. Conclusion 

In this paper, two algorithms that solve the trajectory planning problem for industrial robots 

in an environment with obstacles have been introduced and summarized. They have been 

called “sequential” and “simultaneous“ algorithm respectively. Both are off-line algorithms. 

The first one is based on an indirect methodology because it solves the trajectory planning in 

two sequential steps (first a path is generated and once the path is known, a trajectory is 

adjusted to it). Polynomial interpolation functions have been in this algorithm because they 

yield the best results. Besides, the trajectories calculated meet constraints on torque, power, 

jerk and energy consumed. The second algorithm is a direct method, which solves the 

equations in the state space of the robot. Unlike other direct methods, it does not use 

previously defined paths, which enables working with mobile obstacles although the 

obstacles used in this chapter are statics. Three types of interpolation functions have been 

used for the computation of intermediate configurations (harmonic functions). Polynomial 

interpolation functions have been excluded from this algorithm because during the 

resolution phase of the examples, because converge problems in the optimization problem 

have come up. 
The main conclusions are summarized as follows: 
a. The algorithms solve the trajectory planning problem for industrial robots in 

environments with obstacles therefore avoiding collisions. 
b. It can be applied to any industrial robot. 
c. “Sequential” algorithm: 

c.1. Constraints on the energy consumed must be compatible with the robot´s 
demanded potential energy, as energy recovery is not considered, as the algorithm 
works on the assumption that the energy can be dissipated but not recovered. 

www.intechopen.com



Sequential and Simultaneous Algorithms to Solve the Collision-Free Trajectory Planning  
Problem for Industrial Robots – Impact of Interpolation Functions and the Characteristics of … 

 

609 

c.2. To obtain competitive results in the balance between time cycle and energy 
consumed, the actuators should work with the maximum admissible value of the 
jerk so that the robot can work with the desired accuracy. 

c.3. The cubic interpolation function gives the best computational and execution time. 
d. “Simultaneous” algorithm: as for the peculiarities of the interpolation functions in 

relation to the four monitored operating parameters (computational time, execution 
time, distance travelled and number of configurations generated), the main point is that 
the best results are obtained when using the interpolation function of case C (taking into 
account that each actuator has been characterized by the maximum and minimum 
torque it can provide). With this algorithm the cubic interpolation function does not 
work because during the resolution phase of the examples, they exceeded the dynamic 
capabilities of the actuators and therefore the algorithm failed to reach any solution. 
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