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Austria 

1. Introduction 

1.1 Motivation and environmental aspects 

The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the 
atmosphere and therefore contributes significantly to global warming. Interest in the 
development of methods to reduce greenhouse gases has increased enormously. In order to 
control such emissions, many advanced technologies have been developed, which help in 
reducing energy consumption, increasing the efficiency of energy conversion or utilization, 
switching to lower carbon-content fuels, enhancing natural sinks for carbon dioxide, capture 
and storage of carbon dioxide, reducing the use of fossil fuels in order to decrease the 
amount of carbon dioxide and minimizing the levels of pollutants. In the last few years, 
research on renewable energy sources that reduce carbon dioxide emissions has become 
very important. Since the 1980s, bioethanol has been recognized as a potential alternative to 
petroleum-derived transport fuels in many countries. Today, bioethanol accounts for more 
than 94% of global biofuel production, with North America (mainly the US) and Brazil as 
the overall leading producers in the world (about 88% of the world bioethanol production in 
2009). 
Generally, biofuel production can be classified into three main types, depending on the 
converted feedstocks used: biofuel production of first, second and third generation. 
Bioethanol production of the first generation is either from starchy feedstocks, e.g. seeds or 
grains such as wheat, barley and corn (North America, Europe) or from sucrose-containing 
feedstocks (mainly Brazil). The feedstocks used for bioethanol production of the second 
generation are lignocellulose-containing raw materials like straw or wood as a carbon 
source. Biofuel production of the third generation is understood as the production of 
lipolytic compounds mainly from algae.  
The feedstocks of bioethanol production of the first generation could also enter the animal 
or human food chain. Therefore, bioethanol production of the first generation is regarded 
critically by the global population, worrying about food shortages and price rises. Other 
reasons which lead to research and developments in bioethanol production of the second 
generation are: a shortage of world oil reserves, increasing fuel prices and reduction of the 
greenhouse effect. In addition to this, the renewable energy directive (EC 2009/28 RED) 
demands a reduction for Europe of 6% in the greenhouse gases for the production and use 
of fuels. This reduction is only possible if biofuels are added to diesel fuel or gasoline by the 
year 2020. It also seems that the target for greenhouse gas reduction for Europe can only be 

www.intechopen.com



 
Bioethanol 

 

154 

achieved if the biofuels are mainly from biothanol of the second generation. Outside Europe 
(Brasil, USA) the targets can be achieved using first generation biofuels. Hence, research and 
development on the production of bioethanol of the second generation needs to be 
intensively promoted, particularly in the European countries. 

1.2 State of science and technology 

Bioethanol production of the first generation from sugar cane and from wheat or corn is well 
established in Brazil as well as in the US and Europe. The world´s ethanol production in 
more than 75 countries amounted in 2008 to more than 77 billion litres of ethanol (Sucrogen 
bioethanol, 2011).  
Bioethanol production of the second generation can use lignocelluloses from non-food crops 
(not counted in the animal or the human food chain), including waste and remnant biomass 
e.g. wheat straw, corn stover, wood, and grass. These feedstocks are composed mainly of 
lignocellulose (cellulose, hemicelluloses and lignin). 
The process of bioethanol production of the first generation is well established and shown in 
Fig. 1. 
 

 
Fig. 1. Flow chart showing bioethanol production from starchy raw materials 

The process of bioethanol production from wheat normally consists of five major process 
steps: 
1. Milling of the grain 
2. Liquefication at high temperatures 
3. Saccharification (enzymatic degradation of starch) 
4. Fermentation with yeast 
5. Distillation (rectification) of ethanol 
The production of bioethanol from lignocelluloses follows more or less the same principle 
and is composed of the following sub-steps: milling, thermophysical pretreatment 
hydrolysis, fermentation, distillation and product separation/processing (Fig. 2).  
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Fig. 2. Flow chart showing bioethanol production from lignocelluloses 

The cellulose in the lignocellulose is not accessible to enzymes. Therefore, lignin and/or 
hemicelluloses have to be removed in order to make the enzymatic degradation of the 
cellulose possible. Ideal pretreatment should lead to better performance during bioethanol 
production from lignocelluloses. 
The pretreament should cause the hydrolysis of hemicelluloses, high recovery of all 
carbohydrates, and high digestibility of the cellulose in enzymatic hydrolysis. No sugars 
should either be degraded or converted into inhibitory compounds. A high solid matter 
content and high concentration of sugars should be possible. The process should have low 
energy demands and require low capital and operational cost.  
The pretreament methods can be classified roughly into three types: thermophysical 
methods, acid-based methods and alkaline methods. Thermophysical methods like steam 
pretreament, steam explosion or hydrothermolysis solubilise most of the cellulose and 
hemicelluloses. There is only a low level of sugar conversion. Cellulose and hemicelluloses 
have to be converted enzymatically into C6 sugars (mainly glucose) and to C5 sugars 
(mainly xylose). Acid-based methods use mineral acids like sulphuric acid and phosphoric 
acid. Hemicelluloses are degraded to sugar monomers, cellulose has to be converted to 
glucose enzymatically. Alkaline methods like ammonia fibre explosion leave some of the 
hydrocarbons in the solid fraction. Hemicellulases acting both on solid and dissolved 
hemicelluloses are required as well as the celluloytic enzymes. 
Lignocellulose containing substrates are mainly composed of cellulose (40-50%), 
hemicellulose (25-35%) and lignin (15-20%). Cellulose is a glucose polymer, hemicellulose is 
a heteropolymer of mainly xylose and arabinose, and lignin is a complex poly-aromatic 
compound. The different pretreatment methods are necessary to loosen the close bonding 
between cellulose, hemicellulose and lignin. Wheat (Triticum aestivum L.) straw is composed 
of 45% cellulose, 26% hemicellulose and 19% lignin. Maize (Zea mays) straw is composed of 
39% cellulose, 30% hemicellulose and 17% lignin.  
The high percentage of hemicelluloses and the resulting pentoses, e.g. xylose from the 
hydrolysis of the polymer, are a further challenge to a cost-competitive bioethanol process 
with lignocelluloses as carbon source.  
Yeasts used for the conversion of sugars into ethanol (mostly Saccharomyces spec.) usually 
only convert glucose into ethanol. C5 sugars like xylose are only converted into ethanol at 
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low rates by very few yeast (Pichia spec.) strains. Research programs are underway either to 
adapt yeasts for the use of both C5 and C6 sugars or to modify Saccharomyces genetically to 
obtain yeast that produces ethanol simultaneously from C5 and C6 sugars.  
Nevertheless, because of its ready availability and low costs, lignocellulosic biomass is the 
most promising feedstock for the production of fuel bioethanol. Large-scale commercial 
production of bioethanol from lignocellulose containing materials has still not been 
implemented. 

2. Potential of second generation bioethanol 

The world-wide availibility of feedstock has to be taken into account if bioethanol from 
lignocelluloses is to contribute significantly to the world fuel market. A report by Bentsen & 
Felby (2010) shows existing agricultural residue of 1.6 Gt/year cellulose and 0.8 Gt/year 
hemicelluloses (figures do not include Africa and Australia). This gives a theoretical 
quantity of 1.24 Gm3 bioethanol from cellulose (690 l/t using Saccharomyces spec.) and 
0.480 Gm3 (600 l/t using Zymomonas spec.) from hemicelluloses. For comparison: the 
worldwide production of crude oil is estimated to reach not more than 4.8 Gm3 pa  
(83 million bbl/day) and is supposed/predicted to decline to under 2.4 Gm3 pa (41.5 million 
bbl/day) by 2040 (Zittel, 2010). The potential of bioethanol from agricultural residues seems 
to be high. But not all residues will be available and the conversion rates will not be 100%. 
Therefore, it is thought that lignocellulose-containing materials have to be produced on 
agricultural land possibly in combination with the production of feedstocks like wheat, corn 
or sugar cane. These crops would serve as feedstocks for bioethanol production of the first 
generation. 
The yield per hectare is conservatively estimated at 3000 l and 1500 l per hectare of 
agricultural land for bioethanol of the first and second generation, respectively. A 
replacement of 41.5 million bbl/day of crude oil would require an area of land of around  
5 million km2.  
Using DDGS (distillers dried grain solubles) as protein-rich animal feed, taking into account 
an increase in productivity in agriculture and using intermediate crops as feedstock, the 
required area could be reduced to  under 2.5 million  km2. This represents approximately 3% 
of the world’s land (Bentsen & Felby, 2010).  

3. The production of bioethanol from lignocelluloses 

3.1 Pretreatment 

Lignocellulose containing biomass has to be pretreated prior to hydrolysis to improve the 
accessibility of the biomass. For this pretreatment, several processes are available: 
mechanical treatment for size reduction (e.g. chopping, milling, grinding), hydrothermal 
treatment (e.g. uncatalysed steam treatment with or without steam explosion, acid catalysed 
steam treatment, liquid hot water treatment) and chemical treatment (e.g. dilute acid, 
concentrated acid, lime, NH3, H2O2). Diverse advantages and drawbacks are associated with 
each pretreatment method (Mosier et al., 2005; Hendriks & Zeeman, 2009; Chen & Qui, 2010; 
Talebnia et al., 2010).  
Steam explosion is a widely-employed process for this pretreatment. This process combines 
chemical effects due to hydrolysis (autohydrolysis) in high temperature water and acetic 
acid formed from acetyl groups, and mechanical forces of the sudden pressure discharge 
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(explosion). The steam explosion process offers several attractive features when compared 
to other technologies. These include less hazardous process chemicals and significantly 
lower environmental impact (Alvira et al., 2010). Typical operation conditions for steam 
explosion treatment of straw – temperature and duration of treatment – are summarised in 
Table 1.  
 
Biomass Temperature 

in °C 
Duration of pretreatment
in minutes 

Catalyst Reference 

Wheat straw 220 2.5 none Tomás-Pejó et al., 2009 
Wheat straw 190 8 none Ballesteros et al., 2004 
Wheat straw 190 10 H2SO4 Jurado et al., 2009 
Wheat straw 200 10 none Sun et al., 2005 
Wheat straw 200 4.5 none Chen et al., 2007 
Barley straw 210 5 none Garcia-Aparicio et al., 2006 
Barley straw 210 5 H2SO4 Linde et al., 2007 
Corn stover 200 10 none Yang et al., 2010 
Corn stover 200 5 H2SO4 Varga et al., 2004 
Rice straw 220 4 none Ibrahim et al., 2011 

Table 1. Typical operation data for steam explosion of straw 

According to Overend and Chornet (1987), the severity of the pretreatment can be 
quantified by the severity factor R0. The severity factor combines the temperature of the 
pretreatment (T in degree Celsius) and the duration of the pretreatment (t in minutes) thus: 

 0
0

( ) 100
exp .

14.75

t
T t

R dt


   (1) 

The severity factor is based on the observation that it is possible to trade duration of 
treatment and the temperature of treatment so that equivalent final effects are obtained. 
However, it is not intended to give mechanistic insight into the process. 

3.2 Hydrolysis 

Clearly, the hydrolysis step is affected by the type of pretreatment and the quality of this 
process - particularly by the accessibility of the lignocellulose. 
Lignoculluloses can be solubilised by enzymatic or chemical hydrolysis (mainly with acids). 
Both the pretreatment and hydrolysis are performed in a single step during acid hydrolysis. 
Two types of acid hydrololysis are usually applied: concentrated and dilute acid hydrolysis 
(Wyman et al., 2004, Gray et al., 2006, Hendriks & Zeeman, 2009). 
Cellulase enzymes from diverse fungi (e.g. like Trichoderma, Aspergillus) (Dashtban et al., 
Sanchez, 2009) and bacteria (e.g Clostridium, Bacillus) (Sun & Cheng, 2002) can release sugar 
from lignocellulose at moderate temperatures (45-50°C) with long reaction times (one to 
several days) (reviewed in Brethauer & Wyman, 2010; Balat, 2011). 
Three different enzymes work synergistically - the endo-ǃ-1,4-glucanases (EC 3.1.2.4), exo-ǃ-
1,4-glucanases (EC 3.2.1.91) and ǃ-glucosidase (EC 3.2.1.21) – to generate glucose molecules 
from cellulose (Lynd et al., 2002). In addition, enzymes like hemicellulases and ligninases 
improve the hydrolysis rate and raise the content of the fermentable sugar (Palonen & 
Viikari, 2004; Berlin et al., 2005).  
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Diverse factors inhibit the activity of the cellulase and thereby decrease the rate of 
hydrolysis and the effectiveness of the hydrolysis step: end-product inhibition, easily 
degradable ends of molecules are depleted, deactivation of the enzymes, binding of 
enzymes in small pores of the cellulose and to lignin (Brethauer & Wyman, 2010; Balat, 
2011).  
Hemicellulose is a highly complex molecule and  multi-enzyme systems are needed like 
endoxylanase, exoxylanase, ǃ-xylanase, ǂ-arabinofuranosidase, ǂ-glucoronidase, acetyl 
xylan esterase and ferulic acid esterase (all produced by diverse fungi e.g. Aspergillus and 
bacteria e.g. Bacillus) for the enzymatic hydrolysis (reviewed in Balat, 2011). 

3.3 Fermentation 

The microorganisms for the ethanolic fermentation process for lignocellulose-containing 
hydrolysates should ferment both hexoses and pentoses (if both cellulose and hemicellulose 
are solubilised) to achieve efficient bioethanol production. Unfortunately, no known natural 
microorganisms can efficiently ferment both pentoses and hexoses, which are generated 
during hydrolysis from lignocelluloses (Ragauskas et al., 2006). The perfect microorganism 
for fermentation should exhibit several properties: sugar tolerance, ethanol and 
thermotolerance, resistance against diverse inhibitors, fermentation of hexoses and pentoses 
and stability during industrial application.  
Diverse microorganisms like Saccheromyces cervisiae, Pichia stipitis, Escherichia coli and 
Zymomonas mobilis are typically applied in the bioethanol process from lignocellulose. Both 
generally used microorganisms, the yeast Saccheromyces cervisiae and the bacterium 
Zymominas mobilis, can convert hexoses into bioethanol offering high ethanol tolerance and 
ethanol yields. Genetically modified yeast strains from Saccheromyces cervisiae converting 
both pentoses and hexoses into bioethanol have been generated (reviewed in Vleet & 
Jeffries, Bettiga et al., Matsushika et al., 2009). Zymomonas mobilis was also genetically altered 
converting xylose into ethanol (reviewed in Girio et al., 2010, Balat, 2011). 
Pentoses (xylose, the main sugar from hemicellulose) can be utilized from the yeast strains 
Pichia stipitis, Pachysolen tannophilus and Candidae shetatae. The main disadvantage of these 
yeast strains is their low ethanol tolerance and ethanol yield. Bacteria like Escherichia coli and 
Klebsiella oxytoca take up hexoses and pentoses but lead to very low ethanol yields. 
Successful genetic modifications have been performed in these bacteria leading to higher 
ethanol yields (reviewed in Girio et al., 2010; Balat, 2011).  
Enzymatic hydrolysis and fermentation can be carried out simultaneously (SSF). This 
process has several advantages: lower enzyme concentrations, higher sugar yields (no end 
product inhibition of cellulase), higher product yields, shorter process times and lower risk 
of contamination. The main disadvantage is the different optimal conditions for the 
hydrolysis and fermentation reactions (reviewed in Balat, 2011). Performing enzymatic 
hydrolysis and fermentation separately is known as SHF. Each step has to be carried out 
under optimal reaction conditions but the end product inhibition of the cellulase reduces the 
rate of hydrolysis and this type of process is costlier (reviewed in Balat, 2011). 

3.4 Distillation 

With conventional distillation at atmospheric pressure, the maximum achievable ethanol 
concentration is 90-95%, because in the system ethanol-water there is an azeotrope at 95.6% 
(w/w) ethanol, boiling at a temperature of 78.2°C. For the production of anhydrous ethanol 
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further dehydration of the concentrated ethanol is required. This can be achieved by 
employing azeotropic distillation, extractive distillation, liquid-liquid extraction, adsorption, 
membrane separation or molecular sieves (Hatti-Kaul, 2010; Huang et al., 2008).  
Separation of ethanol from water is an energy-intensive process. The energy required for 
production of concentrated ethanol by distillation also depends very much on the feed 
concentration (Zacchi & Axelsson, 1989). The search for solutions for the reduction of the 
energy required is a field of intensive research. Membrane separation processes need much 
less energy for ethanol separation but are not in operation on an industrial scale. First results 
from a pilot plant using the SiftekTM membrane technology show a reduction of the energy 
required for dehydration of about 50% (Côté et al., 2010). Process and heat integration 
techniques also play an important role in energy saving in the bioethanol process (Alzate & 
Toro, 2006; Wingren et al., 2008). Maximum energy saving in the distillation of about 40% is 
possible by applying mechanical vapour recompression (Xiao-Ping et al., 2008). Solar 
distillation of ethanol is under investigation for distillation of bioethanol in smaller plants 
(Vorayos et al., 2006). The production of solid biofuel or biogas for thermal energy supply 
also reduces the net energy requirement of bioethanol production (Eriksson & Kjellström, 
2010; Šantek et al., 2010). 

3.5 Use of residues for energy supply 

The stillage from distillation can be separated in a liquid-solid separation step into two 
fractions. The solid fraction is usually used for solid fuel production. The liquid fraction is 
either fed to an anaerobic digestion process, generating biogas with a methane concentration 
of about 60% (Prakash et al., 1998) or is used for solid fuel production together with the 
solid fraction after evaporation of most of the water. In this case the concentrated liquid 
fraction is mixed with the solid fraction before drying and pelletizing.  
Biogas is used for heat generation or combined heat and power generation for the 
bioethanol process, whereas solid biofuels can also be sold on the market. 

4. Our results for bioethanol production from steam explosion pretreated 
straw 

4.1 Steam explosion pretreatment 
4.1.1 Operation of steam explosion reactor 

The bulk density of the straw in the steam explosion reactor depends very much on the 
condition of the straw and the feeding method. When filling the pilot reactor with chopped 
straw manually, a bulk density of about 60 kg m-3 was achieved. Loading baled straw would 
lead to a bulk density of approximately 150 kg m-3 (bulk density of straw bales according 
Jenkins (1989): 100 – 200 kg m-3). The bulk density of straw pellets is 500 kg m-3 and higher 
(Theerarattananoon et al., 2011). For reliable discharge of the treated straw from the reactor 
in the explosion step, addition of water to the dry straw is usually required. The thermal 
energy requirement of the steam explosion treatment is met by steam directly fed into the 
reactor. In small steam explosion units, steam is also optionally used for jacket heating of the 
reactor. In adiabatic operation, the thermal energy is required for heating up the biomass 
and the added water. The steam in the vapour phase of the reactor is lost through a vent 
during the sudden pressure discharge of the reactor. The steam required for heating up the 
biomass and the added water mst,1 (in kg) can be calculated thus: 
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The mass of straw mS and the mass of the added water mW are in kg. The specific heat 
capacity of straw cp,S and the specific heat capacity of water cp,W  are in kJ kg-1 K-1. The 
temperature difference between pretreatment temperature and feed temperature for straw 
ΔTS and water ΔTW are in K. The enthalpy of vaporization for water ΔhV at pretreatment 
temperature and the net reaction enthalpy ΔhR of the pretreatment process are in kJ kg-1. 
The venting loss of steam mst,2 (in kg) can be calculated thus: 
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 (3) 

The bulk density of the straw in the reactor ρS,b as well as the density of straw ρS, the density 
of water ρW and the density of steam ρst, all at operation temperature and pressure, are in  
kg m-3. The factor for the volumetric use of reactor volume is ηV.  
An increase in steam consumption of 10% can be estimated because of non-adiabatic 
operation of the steam explosion system and steam leakages (Sassner et al., 2008). The total 
steam consumption is therefore calculated thus: 

  ,1 ,21.1 .st st stm m m   (4) 

A reduction in the cost of pretreatment can be achieved by minimisation of the specific 
steam demand. Ahn et al. (2009) determined the specific heat capacity of wheat straw with a 
water content of 4.3 g water/g dry sample to be 1.630.07 kJ kg-1 K-1. The specific heat 
capacities of other types of straw were in the same range. The specific heat capacity of water 
is about 2.5 times higher than the specific heat capacity of straw. Therefore, the total water 
content of the input material is a main influencing factor on the thermal energy 
consumption of steam explosion pretreatment. Minimizing the rate of water addition to the 
straw is a way to reduce the steam consumption. Preheating of the added water using waste 
heat e.g. from the condenser of the distillation or increasing the bulk density of the straw in 
the reactor are also ways to reduce the steam consumption (Fig. 3).  
A reduction in steam temperature would reduce the steam demand too, but at the same time 
reduce the effect of steam explosion treatment. 
For the discharge of the treated straw from the reactor in the explosion step a certain 
fraction of the reactor volume has to remain filled with uncondensed steam. The remaining 
steam- filled fraction of the reactor volume under various operation conditions is shown in 
Fig. 4.  
The steam explosion pretreatment of straw pellets is restricted by the pore volume available 
for the addition of water and condensing steam. From this point of view, a type of 
compacted straw with a density between 150 kg m-3 and 500 kg m-3 would be preferable.  

4.1.2 Steam explosion experiments 

The pretreatment of the straw was carried out in a steam explosion pilot unit using a reactor 
with a reaction volume of 0,015 m³. Explosion was carried out into a cyclonic separator to 
separate the treated straw from the vapour phase. The vapour was then condensed in a 
regenerative cooler. The maximum steam temperature of the steam generator was 200°C  
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Fig. 3. Specific steam demand in steam explosion pretreatment of straw; general operating 
data: assumed volumetric use of reactor volume: 0.95; density of straw: 1290 kg m-3 (Shaw & 
Tabil, 2005); net reaction enthalpy neglected; individual operating data (as shown in the 
legend): temperature of treatment, bulk density of straw, temperature of added water; 
literature data: thermal energy demand without indication of water content (Zhu & Pan, 
2010).  

 

 
Fig. 4. Remaining steam-filled fraction of the reactor volume under various operating 
conditions; individual operating data (as shown in the legend): temperature of treatment, 
bulk density of straw, temperature of added water 

(equivalent to a steam vapour pressure of 1.55 MPa). The operation temperature in the 
reactor is reached via a temperature ramp. In most experiments the mass of added water 
was 1.0 kg per kg of straw. The operation temperature was generally 200°C and the duration 
of the treatment was usually 10 minutes. This results in a severity factor of 9500 (log (R0) = 
3.98). 
The bulk density of the straw in the reactor was 60 kg m-3 for chopped straw. When straw 
pellets (mixture of Triticale (Triticosecale Wittmack) and wheat straw) were pretreated, the 
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bulk density increased to 520 kg m-3. However, in these cases the volumetric use of reactor 
volume had to be reduced. Also the ratio of added water was lower. 
The steam consumption in the pilot tests was more than two times the calculated value due 
to only partial thermal insulation of the reactor. In the case of a cold start of the system, 
steam consumption was even higher. 
Figs. 5a and 5b show an example of wheat straw before and after pretreatment. The 
scanning electron microscope (SEM) images show wheat straw with intact bundles of fibres 
before preatrement (Fig. 5a) and the same material after pretreatment (Fig. 5b), where the 
morphological structure has been broken down. This material is now accessible to the 
cellulytic enzyme complex. 
 

 
Fig. 5a. Wheat straw untreated (SEM) 

 
Fig. 5b. Wheat straw treated (SEM) 

4.1.3 Recycling of low ethanol concentration solutions into the steam explosion 
reactor 

The outcome of an economic study shows that the most important factor for economic 
bioethanol production is maximum ethanol output (von Sivers & Zacchi, 1996). A possibility 
to increase the ethanol output would be the recycling of effluents with low ethanol 
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concentration, e.g. the stillage from the distillation, which contains about 1% ethanol 
(Cortella & Da Porto, 2003) or low concentration effluents from membrane separation steps 
via the steam explosion reactor. In this case, the added water would be replaced by the 
effluent to be recycled. During the steam treatment, vapour-liquid equilibrium of the 
ethanol-water system will be reached. Due to the fact that ethanol is more volatile than 
water, the concentration of ethanol in the vapour phase will be much higher than in the 
liquid phase. The vapour-liquid equilibrium of the ethanol-water system at 1.5 MPa is 
shown in Fig. 6.  
 

 
Fig. 6. Vapour-liquid equilibrium of the ethanol-water system at 1.5 MPa, calculated with 
the Wilson equation (Gmehling & Brehm, 1996) 

When the reactor is vented, the exploded biomass is separated from the vapour phase in a 
cyclonic separator. In the separator secondary vapour is also produced by evaporation 
cooling of the wet biomass. The vapour phase has to be condensed by cooling at the 
separator outlet to recapture the ethanol. The collected condensate can be added to the feed 
of the distillation column.  
In a first series of experiments on the recycling of ethanol-containing effluent, the added 
water in the feed to the steam explosion reactor was replaced by a solution containing 
10% (w/w) ethanol. Analyses of the pretreated wet straw are shown in Table 2. The 
samples were taken from the treated straw heap in the separator immediately after the 
explosion step and transferred into a gastight bottle. With the exception of ethanol no 
significant differences were found when 10% ethanol (w/w) solution was used. The 
ethanol content of 31.6 g/kg feed straw (d.b.) in the treated straw from the experiment 
with the addition of 10% ethanol solution (w/w) is equivalent to 31.6% of the added 
ethanol; the remaining 68.4% is expected to be in the condensate. It was not possible to 
verify this due to limitations in the drainage of such small amounts of condensate from 
the installed regenerative cooler. 
Treated straw samples taken from the separator about five minutes after the explosion step 
showed a significantly lower ethanol content. The average ethanol content in these samples 
was 13.5 g/kg of feed straw (d.b.), whereas the concentrations of the other components were  
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Added water 
1 kg/kg wheat 
straw 

Ethanol Formic acid Acetic acid HMF Furfural 

Water 3.7 3.8 16.8 0.3 1.9 
10% ethanol 
(w/w) 

31.6 6.1 20.1 0.2 1.0 

Table 2. Analyses of steam-exploded wheat straw (pretreatment conditions: 200°C, 10 min); 
all values in g/kg feed straw (d.b.); averages of two pretreatment experiments; wet straw 
samples were leached with deionised water, analysis of the filtrate by HPLC  

very much the same. This can be explained by the evaporation of ethanol during the cooling 
of the treated straw. For example, the recycling of a 1% ethanol (w/w) solution would result 
in a condensate with about 5% ethanol (w/w) considering also the dilution of the liquid 
phase in the reactor by condensation of steam. 
However, recycling of low ethanol concentration effluents could be limited by inhibitors 
contained in the effluent. Further tests with real effluents are therefore required. 

4.2 Hydrolysis and fermentation 
4.2.1 Description of the experiments 

Bioethanol production from wheat straw was investigated. Several improvements, 
particularly one washing step and the recirculation strategy, were made. The washed wheat 
straw was named inhibitor-controlled wheat straw. These improvements increase both the 
sugar concentration and the bioethanol yield by up to 7%(vol). Also, the lignocellulose-
containing substrate corn stover was tested for its potential in bioethanol production. 
Furthermore, recirculation of bioethanol was performed to ultimately raise the end 
concentration of bioethanol. Therefore, ethanol was added during the pretreatment process 
and a possible effect on the hydrolysis and fermentation steps was examined.  
The enzyme mixture Accellerase TM1000 from Genencor® was used with enzyme activities 
of 775 IU cellulase (CMC)/g solids and 138 IU beta-glucosidase/g solids. Suspensions with 
various dry substances (10-20%) were produced with the pretreated substrate in citrate 
buffer (50 mM, pH 5.0) and incubated at 50°C for 96 hours in a shaking incubator (100 rpm). 
The hydrolysis of pretreated substrate was repeated three times in a recirculation process. 
Sample analysis was performed with HPLC. Diverse salts were added to the straw 
hydrolysate for fermentation. A wild-type strain of Saccharomyces cerevisiae was used 
exclusively for all experiments. The fermentation process was conducted at 30°C in a 
shaking incubator for one week (110 rpm). 

4.2.2 Results 

The glucose concentration obtained after hydrolysis from wheat straw pretreated with 
different levels/degrees of severity (conditions ranging from 160°C, 10 minutes to 200°C,  
20 minutes) is demonstrated in Fig. 7. The pretreatment at 200°C over 20 minutes (severity 
factor 18000; log(R0)=4.26) achieved the highest sugar concentration, converting about 100% 
cellulose during the hydrolysis. Recirculation strategies with wheat straw were developed, 
where the sugar solution of a first hydrolysis reaction was recycled twice to fresh straw and 
the subsequent hydrolysis reaction. The glucose concentration was further increased by a 
recirculation process to fresh washed solids and subsequent hydrolysis from 30 g/l to 143 g/l 

www.intechopen.com



 
Bioethanol Production from Steam Explosion Pretreated Straw 

 

165 

 
Fig. 7. Glucose concentration after hydrolysis of pretreated wheat straw  

(20% solids, third hydrolysis). After fermentation with Saccharomyces cerevisiae, an ethanol 
concentration of 7.5%(vol) was obtained. In Fig. 8, the final glucose concentrations after 
recirculation processes with inhibitor-controlled wheat straw as well as bioethanol yields 
after fermentation are shown.  
 

 
Fig. 8. Produced glucose concentration and bioethanol yields after fermentation of inhibitor 
controlled wheat straw 

Corn stover was pretreated at 190°C for 10 minutes. Initially, 10% of the dry substance 
corn stover was hydrolyzed and fermented. Here, the sugar concentration was 32 g/l 
glucose and 10 g/l xylose yielding 1.9% bioethanol (Table 3). The dry substance was 
increased to 15% and 20%, yielding considerably higher sugar and bioethanol 
concentrations (Table 3). 
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 10 % dry substance 15 % dry substance 20 % dry substance 
Glucose (g/l) 32 47 58 
Xylose (g/l) 10 16 20 
EtOH (%(vol)) 1.9 2.8 3.9 

Table 3. Sugar concentration and ethanol content from corn stover (10, 15 and 20 % solids) 

Wheat straw was moistened with water before steam explosion pretreatment. Ethanol was 
added during pretreatment (10 minutes at 200°C) to test for a possible effect on the 
hydrolysis and fermentation step. The wet straw was hydrolyzed with the enzymes and 
fermented with yeast. Additional ethanol during the pretreatment process did not influence 
the sugar and bioethanol content (Table 4). 
 

 Standard pretreatment Pretreatment with 10% ethanol (w/w) 
Glucose (g/l) 41 40 
Xylose (g/l) 20 19 
EtOH (%(vol)) 2.1 2.2 

Table 4. Sugar concentration and ethanol yields after fermentation of standard pretreatment 
and pretreatment with ethanol (from 10 % dry substance) 

Alternatively, pellets from mixed straw were used to increase the dry substance already 
during the pretreatment step. It was possible to increase the glucose concentration from wet 
straw pellets to 60 g/l resulting in 2.5%(vol) bioethanol (from 10 % dry substance).  

5. Other concepts for the use of lignocellulosic feedstocks 

Diverse concepts for the use of lignocellulose-containing plants for bioethanol production 
are available. In the simplest concept, only the glucose is fermented to bioethanol, with the 
by-products xylose solution and lignin pellets. The xylose sugars can be used as barrier 
films, hydrogels, paper additives (Söderqvist et al., 2001; Lima et al., 2003; Grönholm et al., 
2004) or in xylitol production (reviewed in Chen et al., 2010). At the moment, the utilization 
of lignin is unsatisfactory; therefore, the lignin pellets are used as solid biofuel.  
The economy of bioethanol production from lignocellulose-containing materials can be 
improved in a cost-effective concept by simultaneous fermentation of both sugars (glucose 
and xylose) to bioethanol by diverse microorganisms. In the last twenty years, diverse 
microorganisms were genetically modified to ferment both glucose and xylose, with good 
results (reviewed in Hahn-Hägerdal et al., 2007; Matsushika et al., 2009; Jojima et al., Kim et 
al., Mussatto et al., Weber et al, Young et al., 2010). Furthermore, diverse adaptation 
programs, mutagenesis and breeding were performed to produce yeasts and other 
microorganisms with improved xylose fermentation (reviewed in Hahn-Hägerdal et al., 
2007; Matsushika et al., 2009; Mussatto et al., 2010). However, in several countries 
production with GMO is only possible under strict standards and acceptance of GMO in 
these countries is poor. 
In a biorefinery concept, co-production of biofuels, bioenergy and marketable chemicals 
from renewable biomass sources take place simultaneously. Diverse biorefinery concepts for 
wheat straw were developed such as: bioethanol from glucose, biohydrogen from xylose 
and the residual effluents from bioethanol and biohydrogen processes being used for biogas 
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production (Kaparaju et al., 2009). The biorefinery concept including higher-value chemical 
by-products and autonomous power supplies will enhance economic competitiveness of 
second generation plants and, therefore, will make this type of plant economical in the near 
future. 

6. Outlook 

Research on bioethanol production from lignocellulose-containing substrates has made 
great progress over the last decades. As shown by other authors and our own results, the 
theoretical yield of bioethanol from cellulose (690 l/t cellulose, 283 l/t straw) is almost 
achievable. The yield of bioethanol from hemicelluloses still has to be increased. Compared 
to bioethanol production of the first generation, cost-effectiveness also has to be improved. 
No commercial bioethanol plant using lignocellulose-containing residues as feedstock is in 
operation in 2011. However, diverse pilot plants are in operation and the first demonstration 
plants have been completed and running succesfully.  
The production of biofuels such as bioethanol is often criticized because of the negative 
impact of the feedstock on biodiversity. The competition of the raw materials for use either 
as biofuel or for food production is also a major obstacle to increasing bioethanol production 
capacity. Therefore, lignocellulose-containing residues offer a possibility to satisfy part of 
the increasing demand for fuel by means of biofuel. 
Diverse scenarios are possible - only using first generation fuel, resulting in dramatic 
increases in world prices for feedstock crops. The stimulation of the second generation 
results in reduced pressure on world prices for feedstock crop. It is the authors’ opinion that 
the higher demand for biofuels will necessarily lead to the use of lignocelluloses as 
feedstock to produce biofuels. In order to replace fossil fuels to a larger extent, not only 
agricultural residue must be used as feedstock. Agriculture has to be geared towards food as 
well as towards energy production. This will only be possible in the context of a coordinated 
international effort.  
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