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1. Introduction 

Systemic sclerosis (SSc) is a systemic, autoimmune, chronic inflammatory disease affecting 
the connective tissue. SSc is mainly characterised by progressive fibrosis of the skin, 
subcutaneous tissue and internal organs, leading to their failure (1). In the majority of cases, 
lesions involve the osteoarticular, gastrointestinal or cardiovascular system, lungs, kidneys, 
and nervous system (2-4). The disease occurs in all ethnic groups and mainly affects women; 
its peak incidence is observed in the 5th and 6th decade of life. Occasionally, lesions develop 
in childhood (about 3% of cases) (5).  
The aetiology and pathogenesis of SSc have not been fully elucidated. The immune system 
activation appears to be essential for the development of disease (6-8). By releasing 
cytokines and growth factors, the immune response markedly affects the growth and 
differentiation of fibroblasts as well as synthesis of collagen (9). The study findings 
demonstrate that the extent of lymphocytic infiltrates in the affected skin of SSc patients 
correlates with the severity and degree of skin hardening (10). In the early stages of SSc, 
inflammatory infiltrates in the skin composed of T lymphocytes, macrophages, mast cells, 
eosinophils, basophils, and, although less frequently, of B lymphocytes, precede the 
histological features of fibrosis (7,11). With the progression of fibrosis, inflammatory 
infiltrates tend to regress (12).  

2. The role of T lymphocytes in SSc 

T lymphocytes are essential for the pathogenesis of immunological abnormalities in 
systemic sclerosis. CD4+ T lymphocytes and macrophages are most abundant in the skin 
whereas CD8+ T lymphocytes are abundant in the lungs (13). The total number of 
lymphocytes in the peripheral blood is normal or slightly decreased; however, the ratio of 
circulating CD4/CD8 lymphocytes and the percentage of CD4+25+ T cells are increased 
while the number of CD8+ T lymphocytes is reduced. Additionally, increased concentration 
of the soluble CD8 molecule (sCD8) in peripheral blood is suggestive of enhanced activation 
of lymphocytes in systemic sclerosis (14-16). In the inflammatory stage of SSc, the activated 
T lymphocytes induce fibrotic processes through the production of cytokines or through 
direct contact with fibroblasts. The mediators secreted by Th1 lymphocytes (IL-2, IL-12, IL-
18, IFN-Ǆ), Th2 lymphocytes (IL-4, IL-5, IL-6, IL-10, IL-13, IL-17) and macrophages are of 
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particular importance (17-19). Serum levels of IL-4, IL-10, IL-13, IL-17 secreted by Th2 
lymphocytes are elevated. IL-4 appears to be essential for fibrosis. It increases the synthesis 

of collagen in fibroblasts and induces the production of TGF-, which stimulates the 
synthesis of various types of collagen, proteoglycans and fibronectin, and inhibits their 
synthesis by increasing the production of a tissue inhibitor of matrix metalloproteinases. 
Moreover, a negative correlation between the serum concentration of IL-10, severity of skin 
lesions and duration of vasomotor disorders has been demonstrated (20). Through the 
inhibition of IFN-Ǆ and TNF activities, IL-10 is most likely to stimulate indirectly the 
processes of tissue fibrosis (16), because both IFN-Ǆ and TNF are important SSc mediators. 
IFN-Ǆ is secreted by Th1 lymphocytes and, to a lesser degree, by NK cells, CD8 
lymphocytes, macrophages and dendritic cells. IFN-Ǆ is one of the key inhibitors of collagen 
synthesis. It decreases the levels of procollagen I, II and III, inhibits proliferation of 
fibroblasts and stimulating effects of TGF-ǃ. Its involvement in the pathogenesis of systemic 
sclerosis is supported by significantly lower levels of this cytokine in serum of patients 
compared to controls (19). TNF, on the other hand, affects directly and indirectly the growth 
of fibroblasts, synthesis of collagen and activation of the endothelial cells. Increased 
concentrations of the soluble CD30 molecule (sCD30), belonging to the TNF receptor family, 
are suggestive of activation of Th2 cells and are directly proportionally correlated with the 
severity of skin lesions (16).  
The involvement of T lymphocytes in the pathogenesis of systemic sclerosis is also 

confirmed by changes in concentration of these mediators secreted by immune response 

cells. Increased levels of IL-2 were found in serum of SSc patients, which correlated with 

the extent of skin involvement and progression of the disease, as IL-2, a pro-inflammatory 

cytokine, stimulates monocytes and macrophages to increased synthesis of TGF-, which 

in turn stimulates fibroblasts to secrete the extracellular matrix (3,20). Furthermore, 

elevated levels of a soluble IL-2 receptor (sIL2R) were observed; the relation between the 

duration of Raynaud`s phenomenon and sIL2R concentrations in patients with lSSc was 

found to be inversely proportional whereas in dSSc patients directly proportional (10). 

Elevated levels of IL-1, IL-6, IL-13 and the connective tissue growth factor (CTGF) were 

detected in serum and tissues of SSc patients. IL-17 was found to be overexpressed in the 

peripheral blood and skin of SSc patients. IL-17 is synthesized by Th1 and Th2 

lymphocytes. It induces the endothelial cells to produce IL-1, IL-6 and stimulates the 

expression of adhesive molecules ICAM-1 and VCAM-1 (12,21). Moreover, it stimulates 

proliferation of fibroblasts and activates macrophages to produce TNF and IL-1, which in 

turn induces fibroblasts to produce collagen, IL-6 and the platelet-derived growth factor 

(PDGF) (7). 

Since cytokines are essential for the activation of mediators and humoral immune response, 
their impaired production by Th1 and Th2 lymphocytes may be the key factor for the 
development of systemic sclerosis. Noteworthy, cytokines secreted by Th2 cells stimulate 
whereas those secreted by Th1 cells inhibit the synthesis of collagen. However, some studies 
demonstrate the inhibiting effects of Th2 cells on synthesis of type I collagen (14).  
Furthermore, the most recent reports indicate significant involvement of B lymphocytes in 

the pathogenesis of systemic sclerosis (18). The activation of B lymphocytes in SSc is 

manifested by hypergammaglobulinaemia, presence of autoantibodies, stimulation of 

polyclonal B cells and overexpression of CD 19 molecules on naive and memory B 

lymphocytes (22,23). Noteworthy, homeostasis of the peripheral B lymphocyte 
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subpopulation is impaired in systemic sclerosis. Increased activity of naive B lymphocytes 

and decreased numbers of memory cells as well as plasmoblasts are observed. Despite their 

reduced numbers, memory lymphocytes are activated continuously, which is most likely 

associated with CD 19 overexpression (13). Overexpression of CD 19 appears to be specific 

for systemic sclerosis (24). It has not been demonstrated in other autoimmune diseases, such 

as systemic lupus erythematosus or dermatomyositis (18). The detection of autoantibodies 

in over 90% of SSc patients is a relevant diagnostic and prognostic marker of internal organ 

involvement and severity of disease (25). In systemic sclerosis, antinuclear antibodies react 

mainly with the nucleolar antigens and are directed against one antigen (26). A close genetic 

relationship of autoantibodies with the HLA system suggests the involvement of 

immunogenetic mechanisms in the development of SSc (1). T lymphocytes have been shown 

to affect the synthesis of anti-DNA topoisomerase antibodies, other autoantibodies and 

accumulation of B lymphocytes in skin lesions. This confirms the hypothesis that 

interactions between T and B lymphocytes are likely to play a significant role in the 

pathogenesis of systemic sclerosis (7,27).  

The cause of lymphocyte activation in systemic sclerosis is not known. Genetic 

predisposition (haplotypes DR3, DR5, DRw52) and environmental factors are considered 

(28). Moreover, microchimerism, exposure to organic solvents and toxins (toluene, benzene, 

xylene, aliphatic hydrocarbons, epoxy resins), infective factors, particularly human 

cytomegalovirus, some drugs, including bleomycin, vitamin K, penicillamine, beta-blockers, 

pentazocine, and genetically-determined individual susceptibility to oxidative stress, 

combined with secretion of free radicals, are also implicated (1,29-32). Recent studies stress 

the role of impaired or deregulated apoptosis in the pathogenesis of SSc immune changes 

regarding compromised ability to eliminate autoreactive T or B lymphocytes (2,13,33). 

According to the recent findings, the abnormal ratio of CD4/CD8 lymphocytes, associated 

with excessive loss of CD8+ T lymphocytes, may result not only from the activity of 

lymphocytotoxic antibodies and anti-lymphocyte antibodies blocking determinants but also 

from enhanced apoptosis of CD8+ T cells (34). Noteworthy, inhibition of apoptosis in 

systemic sclerosis leads to excessive activation of T and B lymphocytes, contributing to 

overproduction of antibodies (35). 

The objective of the present review is to discuss the selected parameters of T lymphocyte 

apoptosis in patients with systemic sclerosis. 

3. Apoptosis – genetically programmed cell death 

Apoptosis (from Greek – “dropping off” of leaves) is an active, programmed process of 

morphological and biochemical changes determined by the expression of appropriate 

genes leading to cell death. It enables the elimination of cells without inducing 

inflammation and damage to the surrounding tissues (36). Apoptosis always involves 

single cells although their overall number may be high. As a genetically programmed cell 

death, apoptosis plays a key role in maintaining proliferation and homeostasis of 

multicellular organisms. It counteracts excessive proliferation and ensures the choice of 

cells with an optimal set of receptors in the immune system. Moreover, it conditions the 

precise control of the number and type of cells during ontogenesis and organogenesis, 

and eliminates excessively produced embryonic and damaged cells, whose survival 

would not be beneficial for the organism (37-39). The process of apoptosis was discovered 
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by Alastair Currie, John Kerr and Andrew Wyllie in 1972 (40). Morphologically, apoptosis 

is characterized by shrinkage of the cytoplasm, condensation of the cell nucleus followed 

by its fragmentation (41); due to such changes, the microvilli are lost and apoptotic bodies 

formed, composed of morphologically intact nuclear fragments or other cell organelles. 

Finally, the apoptotic bodies are phagocytised by the adjacent scavenger cells (Fig.1) (42). 

The biochemical changes observed during apoptosis involve a decrease in mitochondrial 

potential, release of cytochrome c from mitochondria, an increase in intracellular 

concentration of calcium ions, formation of free radicals, activation of caspases, loss of 

asymmetric distribution of phospholipids in the cell membrane and enzymatic 

degradation of DNA. Due to gradual suppression of metabolic activity and increased 

permeability of the cell membrane, the cell, whose nucleus shows apoptotic changes, dies 

within several hours (43). Normal apoptosis neither impairs the tissue structure and 

function nor generates the immune response (44).  

 
 

 

Fig. 1. Morphological cell changes during apoptosis (42)  

There are several stages of programmed cell death: initiation, effector, and destruction (45). 

The initiation stage involves cell damage in response to a death signal, which leads to 

critical DNA damage, metabolic stress or activation of programmed cell death receptors. A 

relevant element of initiation is protein p53, which decides whether the signal received is 

strong enough to initiate apoptosis or if there is still a possibility to inhibit the cell cycle at 

phase G1 and activate the repair mechanisms. When the signal is strong enough, the cell 

enters the effector stage, which determines the irreversibility of changes. At this stage, 

however, internal regulation (e.g. mediated by Bcl proteins) is possible. The activation of 

caspase cascade initiates the destruction stage – irreversible structural and functional 

changes leading to cell death. The remaining parts of a damaged cell are phagocytised, most 

commonly by tissue macrophages (44,46). 
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Fig. 2. Pathways of apoptosis induction (based on literature data) 

Apoptosis may be induced by direct DNA damage caused by intrinsic (e.g. cytokines) or 

extrinsic factors (e.g. hyperthermia, ionizing radiation). The physiological activators of 

apoptosis are considered to be the tumour necrosis factor (TNF), transforming growth factor 

ǃ (TGF-ǃ), some neurotransmitters (e.g. dopamine), calcium, glucocorticosteroids, NK cells 

or cytotoxic T lymphocytes. Moreover, apoptosis is induced by loss of cell-extracellular 

matrix contact. The pathological factors inducing apoptosis include some bacterial toxins, 

free radicals, metabolites and some viruses. Apoptosis can also be triggered by physical 

factors, e.g. ultraviolet radiation, gamma radiation, thermal shock or hypoxia (43,47,48). The 

pharmacological inducers of apoptosis include chemotherapeutics such as cisplatin, 

doxorubicin, bleomycin, cytosine arabinoside, methotrexate, vincristine, inhibitors of DNA 
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topoisomerase I (from the camptothecin family) and inhibitors of DNA topoisomerase II 

(etoposide, teniposide) (49). 

Apoptosis can be induced via the intrinsic (mitochondrial) or extrinsic (receptor) pathway. 

The dominating mitochondrial pathway is connected with caspase cascade activation. The 

permeability of the outer mitochondrial membrane is increased resulting in translocation of 

proteins from the perimitochondrial space to the cytoplasm. The mitochondria release the 

programmed cell death-inducing factors: cytochrome c, apoptosis-inducing factor (AIF), the 

second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding 

protein with low pi (Smac/Diablo), Omi/HtrA2 serine protease (high temperature 

requirement) and endonuclease G. This results in decreased mitochondrial potential – the 

marker of early apoptosis, autocatalytic activation of pro-caspase 9 and effector caspases, 

which induces proteolysis of various nuclear and cytoplasmic proteins (44,50,51). The 

extrinsic (receptor) pathway induces apoptosis through binding of a specific ligand by the 

receptor on the cell surface. The receptors in question are the TNF receptors (TNF-R, Fas), 

binding TNF and FasL, respectively. The ligands are protein death signals sent by other 

cells. The activated ligand-bound receptor binds adaptor proteins, which results in 

autocatalytic activation of pro-caspase 8 and other effector caspases, ultimately leading to 

cell death (Fig.2) (44,52). 

4. The role of Bcl in SSc apoptosis 

The best-known products of cellular oncogenes regulating apoptosis are Bcl proteins. The 

family includes both proteins inhibiting (Bcl-2, Bcl-Xl, Bcl-w, Mcl-1, BAG-1) and initiating 

(Bax, Bcl-xs, Bak, Bik, Bad, Bid, Bim, NOXA) apoptosis (40). The basic functional elements of 

Bcl proteins are p26, responsible for binding the protein with intracellular membranes, and 

at least one of the four Bcl-2 homology domains (BH 1-4). The BH1 subunit determines the 

regulation of apoptosis, BH2 is responsible for formation of homo- or heterodimers with 

other Bcl proteins, BH3 occurs also in other proteins regulating the process of programmed 

cell death whereas BH4 enables the anti-apoptotic action (53,54). According to the function 

and structure of Bcl-2 constituents, the proteins can be divided into three groups: 1- proteins 

with all four domains and anti-apoptotic effects (e.g. Bcl-2, Bcl-Xl); 2 – pro-apoptotic proteins 

(e.g. Bax, Bak), deprived of the BH4 domain (except for Bcl- xs); and 3 - pro-apoptotic 

proteins containing only the BH3 domain (e.g. Bim, Bid, Bik, Bad) (46,55). 

B cell lymphoma/leukaemia 2 (Bcl-2) is the product of bcl-2 gene localized on chromosome 

18. It is detected in the inner mitochondrial membrane, endoplasmic reticulum and nuclear 

membrane, albeit in smaller amounts. Bcl-2 shows the anti-apoptotic action; therefore, under 

physiological conditions, its expression is observed in the cells of all three embryonic germ 

layers, non-renewable cells (e.g. neurons) and epithelial basilar cells (56,57). Bcl-2 acts anti-

apoptotically thanks to formation of heterodimers with the molecules enhancing apoptosis 

(Bax) (46). In addition to blocking pro-apoptotic proteins, Bcl-2 stabilizes the cell membranes 

contributing to increased membranous potential, increased adenosine triphosphate (ATP) 

synthesis and inhibition of calcium ion escape. Moreover, it activates the regulatory proteins 

of G1 phase (including p53) (58).  

In systemic sclerosis, the effects of Bcl-2 on T lymphocytes are regulated by various 

cytokines, such as IL-2, IL-4, IL-7, IL-13, and IL-15 (59). The study conducted by Stummvoll 
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et al. in 39 SSc patients, demonstrated significantly higher expression of Bcl-2 in CD4+ 

lymphocytes compared to the control group of 47 healthy individuals. There were, however, 

no significant differences in the expression of Bcl-2 in CD8+ lymphocytes, which suggests 

that increased expression of Bcl-2 exerts protective effects on CD4+ lymphocytes, hence 

promotes increased loss of CD8+ lymphocytes and increased ratio of CD4+/CD8+ ( in 

favour of CD4+) (60). Kessel et al., who studied 27 SSc patients, did not find significant 

differences in Bcl-2 expression in CD8+ lymphocytes compared to the control group (28 

healthy individuals), which strongly suggests that anti-apoptotic effects of Bcl-2 do not 

involve CD8+ lymphocytes (61). Furthermore, Czuwara et al. observed increased apoptosis 

and impaired expression of Bcl-2 in mononuclear cells of peripheral blood in SSc patients as 

well as reduced response to camptothecin. They demonstrated that camptothecin, an 

inhibitor of topoisomerase I, stimulated the process of programmed cell death resulting in 

decreased expression of Bcl-2. In mononuclear cells of peripheral blood of SSc patients, this 

effect was markedly lesser compared to the control group of healthy individuals (62).  

Bcl-2 is an anti-apoptotic protein, which prevents programmed cell death both via the 
intrinsic pathway, inhibiting the release of pro-apoptotic particles from the mitochondria 
and via the receptor pathway, inducing the anti-apoptotic action of NF-κB (45,63). 
Extremely enhanced spontaneous expression of Bcl-2 in peripheral mononuclear cells and 
its high increase mediated by camptothecin and IL-2 were demonstrated in a female patient 
with systemic sclerosis and breast cancer. Increased expression of Bcl-2 was likely to be 
caused by the coexistence of two diseases. The authors suggest that further studies 
involving a larger population of patients are required to interpret explicitly the pathogenetic 
and diagnostic role of Bcl-2 (62). 
The findings reported by Stummvoll et al., who studied 17 patients with diffuse and 22 

patients with limited SSc, did not reveal significant differences in Bcl-2 expression in CD4+ 

and CD8+ lymphocytes. The authors suggest that expression of Bcl-2, as a marker of 

apoptosis, may not be dependent on the clinical form of systemic sclerosis (60). Similar 

results were presented by Cipriani et al. in 17 patients with dSSc and 5 with lSSc, which is 

likely to indicate that Bcl-2-mediated apoptosis is not dependent on the clinical form of SSc 

(59). Moreover, there were no significant relations between the expression Bcl-2 in 

peripheral blood lymphocytes in SSc patients and the duration of disease, its activity, degree 

and extent of skin lesions, duration of sclerotic microangiopathy, organ changes, antinuclear 

antibodies or treatment applied (59,60). 

The Bcl-2 – Bax ratio is thought to be essential for apoptosis - due to antagonistic effects of 
these proteins, the ratio decides about cell survival or otherwise (64). 
The Bcl-2-associated X protein (Bax) is one of the best-known proteins of the Bcl family. It 
has an important function in pro-apoptotic regulation of programmed cell death via the 
mitochondrial pathway. In its inactive form, it is localized in the cytoplasm. Having 
stimulated the cell to apoptotic death, Bcl-2 translocates to the outer mitochondrial 
membrane, where it is oligomerised (63). The functional molecule is the 21 kDa protein of 
the structure similar to Bcl-2. The action of p53 results in increased amounts of Bax and 
decreased amounts of Bcl-2, which leads to their imbalance and formation of Bax-Bax 
homodimers. This results in formation of the mitochondrial membranous channel, release of 
cytochrome c to the cytoplasm, activation of caspases and disintegration of cell structures 
(40,46). Moreover, Bax accelerates the transition of the cell into the phase of genetic material 
replication, which suggests its relevant role in proliferative processes, i.e. promoting 
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neoplasia. This could explain worse prognosis in neoplasms with high Bax expression and 
better prognosis in cancers with low Bcl-2/Bax ratio (46). 
According to the study carried out by Stummvoll et al. in 39 SSc patients and 47 healthy 

controls, there were no significant differences in Bax expression in CD4+ and CD8+ 

lymphocytes, which is likely to suggest that Bax does not play any significant role in 

apoptosis regulation in SSc patients. Moreover, there were no significant differences in Bax 

expression in relation to the clinical subtype, duration of disease, or immunosuppressive 

therapy administered (60). Our findings in 40 patients with systemic sclerosis revealed 

higher expression of Bax in CD8+ lymphocytes in patients with active disease (65). This 

enhanced Bax expression in CD8+ lymphocytes may suggest the increased loss of these cells 

through the process of apoptosis. The pathogenesis of SSc is associated with increased 

proliferation of CD4+ and loss of CD8+ lymphocytes. Apoptosis appears to be one of the 

possible mechanism for CD8+ loss (14).  

5. The role of NF-κB in SSc apoptosis 

Another relevant transcription factor responsible for activation and regulation of expression 

of genes involved in apoptosis is the nuclear factor κB (NF-κB) (66). It plays a crucial role in 

regulation of the immune response, inflammatory processes, oncogenesis, and virus 

replication. Moreover, it is necessary for activation of lymphocytes, proliferation and 

expression of cytokines (61). The NF-κB–activated genes include genes encoding cytokines 

IL-1, IL-2, IL-6, IL-12, TNF, LTǂ/ǃ), granulocyte macrophage-colony stimulating factors 

(GM-CSF), immunoreceptors ( with the MHC ligand), cell adhesion molecules (ICAM, 

VCAM, ELAM), acute phase proteins (SAA – serum amyloid), enzymes (inducible nitric 

oxide synthase - iNOS, cyclooxygenase-2 – COX-2) and genes encoding oncogenesis-

involved factors (cIAP1, cIAP2, fasl, c-myc, p53, cyclin D1) (67). To date, ten various 

transcription factors belonging to the NF-B family (Rel) have been identified in mammals. 

Five of them are transcription regulators: Rel/NF-B (p50/p105 – NF-B1, p52/p100 – NF-

B2, c-Rel-Rel, RelA – p65 and RelB); the remaining ones have inhibitory properties (IB-

IBa, IBb, IBg-p105, IBd-p100, Bcl-3) (68). All regulatory factors contain the rel homology 

domain (RHD), composed of 300 amino acids, which is responsible for formation of 

dimmers, their permeation to the nucleus and binding to an appropriate DNA fragment 

(69). The terminal fragment of RHD contains a nuclear location sequence (NLS), which 

permits binding to the nucleus (67).  

The NF-B proteins may be homo- and heterodimers (except for RelB). The majority of 

homodimers are not capable of inducing transcription whereas heterodimeric structures 

contain transactivating domains indispensible for induction of genes involved in the 

immune response (68,70). The best-known heterodimer is p50/Ril, composed of two 

subunits, p50, a product of NF-κB1 gene, and p65, a product of RelA gene (67).  

NF-B, found bound to IκB in all cells, except for lymphocytes B, is activated in the 
cytoplasm, following the cell exposure to pro-inflammatory factors, e.g. lipopolysaccharides, 
(LPS), the tumour necrosis factor (TNF-ǂ, TNF-ǃ), epidermal growth factor (EGF), free 

radicals, cytokines, viruses, ionizing or ultraviolet radiation. NF-B, released during IκB 
degradation, is translocated to the nucleus, where it binds to DNA and activates suitable 

genes, e.g. mediators of inflammation, carcinogenesis or IB mediators (68, 70). 
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Numerous data highlight a significant regulatory role of NF-B in the process of apoptosis. 

Being involved in various pathways of programmed cell death, NF-B exerts anti- and pro-

apoptotic effects, which is most likely dependent on the predominance of factors activating 

or inhibiting the expression of the cascade of apoptotic events. Apoptosis is inhibited due to 

NF-B-induced transcription of Bcl anti-apoptotic genes (Bcl-xl, BFl/A1) and inhibitors of 

apoptosis (cIAP1, cIAP2) (which indirectly reduces the activity of cytochrome c). Moreover, 

the mechanism of activation of tumour receptor-associated factors (TRAF1, TRAF2) and 

IAPs (cIAP1, cIAP2, XIAP), resulting in inhibition of the caspase cascade, is involved; 

caspase 8 is deactivated by TRAF1, TRAF2, cIAP1, cIAP2, whereas caspase 3 mainly by 

activated proteins cIAP1 and cIAP2 (Fig.3) (61,66,71,72).  

 

 

Fig. 3. Possible pathways of NF-κB anti-apoptotic action (66) 

An example of NF-B anti-apoptotic action is its involvement in transcriptional regulation 

of genes associated with liver regeneration after partial hepatectomy or protection of 

cortical neurons against apoptotic effects of ǃ-amyloid (exposure of cortical neurons to ǃ-

amyloid is connected with an increase in IB-ǂ mRNA level, which reduces the NF-B 

activity) (73,74). 

On the other hand, the role of NF-B in transcriptional regulation of several pro-apoptotic 

genes is noteworthy. It is highly likely that this process results from rapid activation of NF-

B in response to the apoptotic signal and from effects of NF-B on expression of some 

genes associated with programmed cell death, e.g. TNF, c-myc or fasl genes (66). By 

increasing the expression of FasL, NF-B enhances the Fas-FasL interactions. Moreover, as 

demonstrated earlier, the transcription factor RelA (p65) is essential for activation of the 

promoter fragment FasL (75,76). It should be emphasized, however, that some researches do 

not confirm possible NF-B-activated apoptosis mediated by expression of Fasl gene (77,78). 

Another indirect example of pro-apoptotic NF-B action is activation of nitric oxide 

synthase required for production of nitric oxide. The process results in inhibition of caspase 
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cascade, which leads to cell apoptosis (61). It is worth noting that apoptosis may be 

regulated by the antagonistic action of protein p53 towards NK-κB, which compete for 

binding to the co-activator p300 (33). 

The involvement of NF-B in cell cycle regulation involves facilitation of transition from 

phase G1 to S through inhibition of activation or function of p53 and increased expression of 

the cyclin D1. Additionally, NF-κB can activate the transition from phase G2 to M by 

inhibiting the expression of the growth arrest DNA-damage protein 45 (GADD45), which 

blocks the cyclin B/CDK2 complex (66). 

The ability of transcription factor NF-B proteins to suppress apoptosis and regulate the cell 

cycle indicates that NF-B may play an essential role in oncogenesis. Enhanced expression 

of NF-B has been demonstrated in numerous neoplastic diseases, e.g. breast, lung or 

thyroid cancer, T and B cell leukaemia, malignant melanoma, prostate, gallbladder, head 

and neck cancer (34,35,79-82). 

In the study performed in 27 SSc patients and 28 healthy controls, Kassel et al. observed 

reduced expression of NF-B in CD8+ lymphocytes of SSc patients compared to controls; 

additionally, an inverse correlation was found between the percentage of anti-apoptotic 

CD8+ T lymphocytes and NF-B expression. The authors believe that decreased NF-B 

expression in CD8+ lymphocytes in peripheral blood is likely to be one of the mechanisms 

of enhanced apoptosis of CD8+ lymphocytes in SSc patients. This weighs in favour of the 

anti-apoptotic action of NF-B in systemic sclerosis and thus confirms an important role 

of NF-B in regulation of homeostasis and tolerance of T lymphocytes (61, 83). The exact 

mechanism leading to decreased NF-B expression in CD8+ lymphocytes in SSc patients 

has not been fully explained. The ability of NF-B to regulate the expression of anti-

apoptotic genes, such as cellular inhibitors of apoptosis (c-IAP1, c-IAP2, IXAP), TNF 

receptor-associated factors (TRAF1 and TRAF2) as well as Bcl-2 proteins, appears to be 

crucial (83,72). Importantly, NF-B, as a nuclear transcription factor, and pathways of its 

anti-apoptotic action can be activated by various factors: cytokines, free radicals, 

lipopolysaccharides, or directly acting receptors, e.g. TNF receptor (61). The NF-B 

involvement in regulation of apoptosis has been confirmed in experimental studies 

carried out for over ten years. Numerous reports indicate that NF-B activation is 

necessary for protection of lymphocytes against apoptosis induced by various factors (83). 

In 1997, Ivanov et al. suggested a possible relevant role of NF-B in the regulation of Fas 

receptor-induced apoptosis of T lymphocytes (84). Two years later, Dudley et al. 

confirmed protective effects of NF-B on T lymphocytes against Fas receptor- and TNF-

induced apoptosis (85). The recent reports demonstrate that NF-B activation is 

indispensible for protection of T lymphocytes against apoptosis induced by mutagens and 

anti-Fas antibodies (78).  

According to Auphan et al. and Lanza et al., steroid preparations are likely to contribute to 

NF-B inactivation, hence increasing the percentage of apoptotic cells. Glucocorticosteroids, 

as one of the most powerful anti-inflammatory and immunosuppressive agents, inhibit the 

synthesis of cytokines and many cell surface molecules required for induction of immune 

responses. NF-κB is inactivated due to steroid-induced increased synthesis of IκB. IκB, a 

nuclear factor inhibitor, retains NF-κB in the cytoplasm in the form of inactive complexes 

(86,87).  
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6. The role of mitochondrial membrane potential in SSc apoptosis 

Many researchers stress an important role of mitochondria in programmed cell death (88-
90). The majority of human cells undergo apoptosis via the intrinsic pathway (91). It has 
been shown that the key point in induction of mitochondrial pathway of apoptosis is 
increased permeability of the outer mitochondrial membrane, usually accompanied by 

decreased potential of inner mitochondrial membrane (m). The differences result from 

metabolic features of membranes. High values of inner mitochondrial membrane (Δm) 
have to be maintained for proper mitochondrial energetic processes, which lead to the 
formation of adenosine triphosphate (ATP). In normal cells, the inner mitochondrial 
membrane is virtually impermeable; however, it is equipped with transport systems for 
selected metabolites, whose weight does not exceed 1.5 kDa. Thanks to the presence of 
voltage-dependent anion channels (VDACs), the outer mitochondrial membrane acts as a 
molecular sieve, which is permeable to the majority of ions and low-molecular substances 
dissolved in water of a molecular weight below 5 kDa. VDACs are characterized by 
reversibility and selectivity, both for anions and cations; at low voltages, they are open for 
anion metabolites. Thus, under normal conditions they are impermeable to positively 
charged cytochrome c. The mechanism for opening and closing of VDACs is regulated by 
Bcl proteins (55,63,92-94).  
The results of studies in patients with chronic B-cell leukaemia reveal that decreased 
mitochondrial potential is a marker of early apoptosis mediated by the mitochondrial 
permeability transition pores (MPTPs) formed in the inner mitochondrial membrane. The 
major constituents of MPTPs are adenine nucleotide translocase (ANT) and cyclophilin D, 
located in the inner mitochondrial membrane as well as VDACs and the peripheral 
benzodiazepine receptor located in the outer membrane. In normal mitochondria, VDACs and 
ANTs form a macromolecular complex responsible for transport of adenine nucleotides from 
the site of ATP production within the mitochondrial matrix to that of ATP consumption in the 
cytosol. Since apoptosis is relevant for the development of systemic sclerosis, impaired 
production of ATP should be expected in T lymphocytes of SSc patients. It is known that the 
mitochondria are essential for apoptosis, which results from the fact that permeability of the 
mitochondrial membrane and activation of caspases determine irreversibility of the process. 
Interestingly, permeability of the outer mitochondrial membrane is a constant feature of 
apoptosis. The opening of several MPTPs, or even one of them, leads to depolarization of 
mitochondria, impaired oxidative phosphorylation and marked swelling of mitochondria. 
With progression of programmed cell death, the mitochondrial potential decreases, which 
results in the release of proteins closed within the intermembrane space (e.g. cytochrome c, 
apoptosis-inducing factor (AIF), pro-caspase 2, 3, 9, adenylate kinase, the second 
mitochondrial activator of caspases). The outflow of these molecules is necessary for quick 
activation of the cascade of programmed cell death events (95,96). 
In contrast to the outer membrane, apoptotic permeability of the inner membrane is not a 
constant feature of apoptosis and does not cause such an intense release of proteins from the 
matrix. An increase in inner membrane permeability to dissolved molecules of molecular 
weight of about 1.5 kDa is a characteristic feature, which is associated with dispersion of the 
proton gradient responsible for mitochondrial transmembrane potential (∆Ψm) (97,98). 
The available literature lacks studies assessing the mitochondrial membrane potential in the 
population of CD4+ and CD8+ lymphocytes. In our study, the percentage of apoptotic cells 
was analysed using chloromethyl-X-rosamine (CMXRos) (65). The method assesses the 
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mitochondrial potential, an indicator of the induction of an intrinsic apoptotic pathway. The 
method was chosen as it enabled the assessment of the very early stages of apoptosis, before 
the cells undergoing apoptosis are eliminated from the circulation through phagocytosis (89).  
Our findings show higher percentages of CD4+ and CD8+ lymphocytes with reduced 

mitochondrial membrane potential (m) in patients compared to healthy controls, which 
is likely to suggest the activation of early CD8+ T lymphocyte apoptosis through the 
mitochondrial pathway in patients with systemic sclerosis (65). It is noteworthy to mention 
that a decrease in mitochondrial potential is characterized by specificity, as the process 
involves only the cells entering apoptosis, and universality, as it regards all cells entering 
the programmed cell death pathway. Moreover, decreased mitochondrial potential is 

characterized by irreversibility since the cells of decreased m undergo apoptosis even 
when the triggering stimulus is removed (99,100). Thus, the measurement of mitochondrial 
potential seems to be an extremely sensitive and precise method for assessment of apoptotic 
cell percentages. 

7. The role of Fas receptor and Fas ligand in SSc apoptosis 

The role of the soluble Fas (sFas) in initiation of programmed cell death is illuminated by the 
results of studies in patients with systemic sclerosis and other autoimmune diseases (101). 
The Fas receptor (APO-1, CD95) and Fas ligand (FasL) belong to the family of TNF receptors 
(102). Soluble Fas (sFas) is a 4 kDa glycosylated type I membrane protein, whereas FasL is 
synthesized as a 40 kDa type II transmembrane protein. The Fas receptor is expressed on the 
surface of various types of normal and neoplastic human cell lines, e.g. T and B 
lymphocytes, macrophages, hepatocytes or thymocytes. FasL is produced by activated 
CD4+, CD8+ T lymphocytes and NK cells; it is expressed in the eyes and testes and is 
characterized by high cytotoxic activity towards the Fas receptor-bearing cells. The activity 
of FasL is stimulated by UV radiation, gamma radiation and some drugs, e.g. bleomycin, 
anisomycin and doxorubicin, and inhibited by cyclic adenosine monophosphate (cAMP), 
retinoic acid, nitric oxide and vitamin D3 (39,75,76,103). 
In response to an apoptotic signal, FasL binds to the Fas receptor, which results in Fas 
trimerisation. The interactions between Fas and FasL are relevant for induction of lymphoid 
line apoptosis and systemic immune response. The pro-apoptotic action is possible thanks to 
the complex of adaptor proteins, the mediators of the reaction, or to cell contact. This 
happens because Fas receptor fragments are deprived of catalytic domains. One of the 
adaptor proteins contains the death domain (DD) - the sequence of specific amino acids, 
which enables interactions of FADD protein with the cytoplasmic fragment of activated Fas 
receptor. Consequently, the death-inducing signalling complex (DISC) is formed. In 
addition to DD, the FADD protein has the death effector domain (DED), to which pro-
caspase 8 binds with its DED. This complex is necessary for autocatalytic activation of pro-
caspase 8. At this stage, two pathways of further signalling leading to apoptosis are possible. 
In the first one, active caspase 8 is sufficient to activate pro-caspase 3, which finally leads to 
condensation of nuclear chromatin and DNA degradation. The cells characterized by this 
signalling on the extrinsic pathway are called type I cells. In contrast, in type II cells, 
activation of caspase 8 is insufficient for induction of apoptosis as it is usually weak, and 
thus does not lead to formation of sufficient amounts of the product. The signal has to be 
enhanced on the mitochondria-dependent intrinsic pathway. A link between both apoptotic 
pathways is the Bid protein (Fig.4) (39,76,104,105). 

www.intechopen.com



 
Apoptosis of T Lymphocytes in Systemic Sclerosis 

 

81 

 
 

Fig. 4. The pathway of apoptotic events induced by FasL (39) 

Wetzig et al. demonstrated significantly increased levels of sFas in the group of 30 patients 

with systemic sclerosis compared to 15 healthy controls. The authors suggested that 

increased sFas levels might be an important marker of prevention of T lymphocyte 

apoptosis in systemic sclerosis (103). Similar results were reported by Dziankowska-

Bartkowiak et al., who studied the group of 29 SSc patients and 10 healthy controls and 

found significantly higher levels of sFas in SSc patients, which is likely to implicate an 

important role of sFas in apoptosis prevention in systemic sclerosis (106). By affecting FasL-

Fas coupling sFas may prevent the induction of apoptosis, thus promote the activation of T 

lymphocytes in systemic sclerosis. The available results suggest that sFas may be essential 

for inhibition of apoptosis in the pathogenesis of systemic sclerosis. By preventing the 

initiation of programmed cell death, sFas is likely to increase the proliferative response of 

lymphocytes to autoantigenes, ultimately leading to excessive activation of T lymphocytes 

(14,101,107). Stummvoll et al. observed statistically significantly higher concentrations of 
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sFas in serum of SSc patients compared to healthy controls. Additionally, they showed 

higher Fas expression in CD8+ lymphocytes in SSc patients compared to controls, which is 

likely to suggest increased apoptosis of these lymphocytes. However, they did not observe 

any significant differences in Fas expression in CD4+ lymphocytes. Abnormal serum sFas 

levels in SSc patients are likely to be a marker of T lymphocyte activation during systemic 

sclerosis (60). Cipriani et al. demonstrated significantly higher serum sFas concentrations in 

22 SSc patients in comparison with healthy controls, which also seems to confirm the earlier 

implicated role of the receptor pathway of apoptosis in the pathogenesis of systemic 

sclerosis (59). Moreover, elevated sFas levels in SSc patients compared to healthy controls 

were observed by Nozawa et al., yet the differences were not statistically significant, which 

may be associated with the smaller population of patients included in their study (only 16 

patients) (108). 

The literary data indicates that SSc patients are characterized not only by increased numbers 

of activated T lymphocytes but also by the enhanced expression of Fas receptors in these 

cells, compared with healthy controls (60). This shows that increased serum levels of sFas in 

SSc patients may protect autoreactive T lymphocytes against apoptosis induced by the Fas-

ligand system and lead to excessive activation of T lymphocytes (14,101,107). Increased 

concentrations of sFas may be indicative of inhibition of apoptosis induction by the receptor 

pathway, and thus contributes to the activation of T lymphocytes in this disease.  

It is worth mentioning, however, that there are studies in which no significant differences in 

serum sFas levels in SSc patients were found compared to healthy controls, which may be 

associated with different study designs, differences in disease activity or therapy 

administered (101,109,110).  

Apoptosis appears to be mediated by the Fas receptor pathway in both forms of disease; 

nevertheless, considering the clinical picture of both forms, higher levels of sFas should be 

expected in SSc patients, whose disease develops more rapidly and affects the internal 

organs, especially in early stages (103,111-113). In the study by Wetzig et al., involving 16 

lSSc and 14 dSSc patients, there were no significant differences in sFas levels according to 

the clinical form of disease (103). Similar results were reported by Stummvoll et al. 

Additionally, they demonstrated a positive correlation between Fas receptor expression and 

the age of the patients. Their findings, showing statistically significant differences in Fas 

expression and sFas concentration, are likely to indicate enhanced activation of T cells 

resulting from impaired apoptosis of lymphocytes (60). Otherwise, the findings reported by 

Dziankowska-Bartkowiak et al. revealed statistically significant differences in sFas levels 

depending on the disease form. Their study involved two size-comparable groups of 

patients (15 dSSc and 14 lSSc patients). The sFas concentrations in dSSc patients were found 

higher in comparison with lSSc patients (52,106). According to Ingegnoli et al., expression of 

Fas receptor in CD4+ and CD8+ lymphocytes was significantly higher in dSSc patients. 

These findings are likely to confirm impaired lymphocyte homeostasis in systemic sclerosis. 

The authors suggested that enhanced Fas expression in dSSc patients might lead to the 

development of autoregulation mechanisms due to abnormal immune response. sFas-

induced excessive activation of T lymphocytes is likely to lead finally to the elimination of 

autoreactive lymphocytes through Fas receptor-activated apoptotic pathways (16).  

In the studies carried out by Wetzig et al. in SSc patients, only a slight correlation between 
sFas concentration and disease activity was found. The activity of disease was assessed 
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based on elevated CRP, SR and/or presence of immune complexes, leucocytosis and clinical 
markers of skin involvement (swelling, redness, or tenderness). The diagnostic criteria of 
inactive disease included normal SR and CRP, as well as skin sclerosis without swelling or 
atrophies. Elevated sFas levels were more common in patients with active disease, although 
in single cases high sFas levels were also observed in patients with inactive SSc (103). 
Ates et al. found no significant correlations between sFas concentration and degree or extent 
of skin involvement in SSc patients. They assessed the severity and extent of sclerosis using 
the 4-degree (0-3) scoring method of Kahaleh et al. in 15 body areas (101). Different results 
were reported by Dziankowska-Bartkowiak et al, who also used the Kahaleh scale and 
observed a positive correlation between sFas concentration and severity of skin lesions and 
a directly proportional relation between the serum sFas level and osteoarticular 
involvement. The authors suggest that elevated sFas levels in systemic sclerosis may be a 
marker of skin and osteoarticular involvement (106).  
Ates et al. did not show significant differences in serum sFas concentrations of patients with 

lung fibrosis and those without HRCT-detected chest lesions. Moreover, they did not 

observe significant correlations between serum sFas levels and lung diffusion capacity (101). 

Similar results were presented by Luzin et al. and Wetzig et al. (103,114). However, there are 

also reports stressing the role of sFas in the development of interstitial lung disease in SSc 

patients. The evidence can be found in studies devoted to the role of apoptosis in the 

pathogenesis of systemic sclerosis induced by bleomycin. According to Kuwano et al., anti-

FasL antibodies administered in injections may prevent lung fibrosis induced by bleomycin 

in SSc patients. Anti-FasL antibodies are most likely to lead to inhibition of apoptosis 

induced via the Fas-FasL pathway (115). This mechanism, however, does not seem 

sufficiently protective as lung fibrotic processes are induced not only through the ligand-

receptor pathway (49).  

Taking into account the treatment used, Ates et al. demonstrated significantly higher serum 

sFas levels in untreated SSc patients in comparison to healthy controls and patients 

undergoing therapy (101).  

The available literature does not provide evidence for significant correlations between Fas 

protein concentrations and disease duration or presence of oesophageal or cardiac lesions 

(59,103).  

8. The role of cytochrome c in SSc apoptosis 

Furthermore, the role of cytochrome c in apoptosis should be highlighted. Cytochrome c is a 

water-soluble 15 kDa haem protein, consisting of a 104 amino acid-long peptide chain 

combined with the haem molecule. It plays an essential role in oxygen phosphorylation and 

apoptosis, being involved in caspase 3 activation and DNA fragmentation (94,116,117). Like 

the majority of mitochondrial proteins, cytochrome c is encoded by the nuclear gene and 

synthesized in the cytoplasm as a precursor 12 kDa molecule, called apocytochrome c. It 

translocates from the cytoplasm, independently of the receptors, along the outer 

mitochondrial membrane to the perimitochondrial space where functionally active 

molecules of cytochrome c are formed mediated by the inner mitochondrial membrane 

enzyme – cytochrome c haem lyase. During programmed cell death, cytochrome c 

translocates from the mitochondria to the cytosol in response to the apoptotic signal. The 

molecular mechanism of this translocation is not fully explained. As demonstrated earlier, it 
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results from decreased membranous mitochondrial potential characteristic of early stages of 

apoptosis. The release of cytochrome c during apoptosis is regulated by Bcl proteins. Under 

normal conditions, VDAC, formed in the outer mitochondrial membrane by the 

mitochondrial channel protein porin, is impermeable to cytochrome c. Mediated by pro-

apoptotic proteins (Bax, Bak, tBid), VDAC opens and releases cytochrome c from the 

intermembrane space, whereas anti-apoptotic proteins, e.g. Bcl-xl, close the channel 

retaining cytochrome c within the mitochondria. Cytochrome c in the cytoplasm initiates 

programmed cell death events through the caspase cascade-dependent pathway (44). By 

catalysing the heptameric complex of caspase 9 and apoptosis protease activating factor 1 

(Apaf 1), a proenzyme of caspase 9, cytochrome c acts as a cofactor of the reaction. 

Cytochrome c binds Apaf 1 without the involvement of deoxyadenosine triphosphate 

(dATP); subsequently, in the presence of cytochrome c and with dATP involved, pro-

caspase 9 can bind to Apaf 1, which results in caspase 9 activation. In cases of cytochrome c 

deficiency, even if dATP is available, this reaction is infeasible, which points to the relevant 

role of cytochrome c in initiation of the cascade of caspases - executors of the death signal. 

The consequence of caspase 9 activation is indirect involvement of cytochrome c in 

activation of caspase 3, which leads to DNA fragmentation and cell death (Fig.5) 

(45,117,118). 

 

 

Fig. 5. The role of cytochrome c in apoptosis (117) 
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synthesized in its pro-enzymatic form as a zymogene. Unlike other caspases, the caspase 9 

zymogene shows high chemical activity, which may suggest that pro-caspase 9 proteolysis 

is not necessary for enzyme activation (119,120). Like other cysteine proteases, pro-

caspase 9 has a N-terminal pro-domain consisting of a larger subunit – p20 (20kDa) and a 

smaller subunit – p10 (about 10 kDa), joined with a short linker. This pro-domain is 

involved in dimerisation of pro-caspase molecules and their maintenance in inactive 

forms. According to its structure, caspase 9 is a caspase with a long pro-domain, with the 

caspase activation and recruitment domain (CARD). The enzyme is activated due to 

binding of the homological fragment of 85 amino acids of NH2- terminal fragment of Apaf 

to CARD 1 in the presence of cytochrome c and dATP and due to the effects of caspase 3 

and granzyme B on the pro-caspase 9 molecule, which was demonstrated under in vitro 

conditions (118,121-124). Caspase 9 can also be activated with involvement of active 

caspase 8 during Bid disintegration, which results in the release of cytochrome c to the 

cytosol. Moreover, pro-caspase 9 may be proteolysed through the apoptosome-

independent pathway using caspase 12 (125,126). The enzymatically active caspase 9 acts 

as a tetramer formed of two heterodimers consisting of a small and large subunit (p202 – 

p102) (40,127-129). Ultimately, it is located in the cytosol, where to pro-caspase 9 

translocates from the perimitochondrial space of various organs in response to the 

apoptosis-inducing stimulus. High expression of caspase 9 was shown in the heart, 

ovaries and testes. Its presence was also detected in the liver, kidneys, brain, spleen and 

lymphoid cell lines and neuroblastoma lines (45,130). 

In the process of apoptosis, caspase 9 plays an important role in induction of caspase 
cascade - the pathway of biochemical events directly responsible for programmed cell death. 
By activating the effector caspase 3 and 7, it substantially contributes to degradation and 
fragmentation of cytoplasmic and nuclear proteins. Additionally, since it can be activated by 
caspase 3, caspase 9, as an active enzyme, is crucially involved in irreversible changes 
occurring in the cells during apoptosis (128,130,131). The caspase 9 involvement in apoptosis 
is regulated by specific inhibitors, such as the tumour-up-regulated CARD-containing 
antagonist of caspase nine (TUCAN) protein, Akt kinase (protein kinase B), anti-apoptotic 
Bcl proteins and IAPs (132). 
The role of cytochrome c and caspase 9 in apoptosis has not been fully elucidated; therefore, 
further research is required. 

10. Key points 

1. The Bcl family appears to play a significant role in the regulation of T lymphocyte 
apoptosis in SSc patients. Enhanced expression of Bax in CD8+ lymphocytes in patients 
with active disease suggests increased loss of these lymphocytes through intensified 
apoptosis.  

2. Decreased expression of NF-B in activated CD8+ lymphocytes in peripheral blood is 
likely to be one of the mechanisms potentiating apoptosis of CD8+ lymphocytes in 
patients with systemic sclerosis.  

3. Measurements of mitochondrial potential appear relevant for assessment of early stages 
of apoptosis in patients with systemic sclerosis.  

4. Fas is likely to play an important role in prevention of T lymphocyte apoptosis during 
systemic sclerosis.  
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