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1. Introduction 

The overproduction of organic wastes has led to the use of inappropriate disposal practices 
such as their indiscriminate and inappropriately-timed application to agricultural fields. 
These practices can cause several environmental problems, including an excessive input of 
potentially harmful trace metals, inorganic salts and pathogens; increased nutrient loss, 
mainly nitrogen and phosphorus, from soils through leaching, erosion and runoff; and the 
emission of hydrogen sulphide, ammonia and other toxic gases (Hutchison et al., 2005). 
However, if handled properly, organic wastes can be used as valuable resources for 
renewable energy production, as well as sources of nutrients for agriculture, as they provide 
high contents of macro- and micronutrients for crop growth and represent a low-cost 
alternative to mineral fertilizers (Moral et al., 2009). 

The health and environmental risks associated with the management of such wastes could 
be significantly reduced by stabilizing them before their disposal or use. Composting and 
vermicomposting are two of the best known-processes for the biological stabilization of a 
great variety of organic wastes (Domínguez & Edwards, 2010a). However, more than a 
century had to pass until vermicomposting, i.e. the processing of organic wastes by 
earthworms was truly considered as a field of scientific knowledge or even a real 
technology, despite Darwin (1881) having already highlighted the important role of 
earthworms in the decomposition of dead plants and the release of nutrients from them.  

In recent years, vermicomposting has progressed considerably, primarily due to its low cost 
and the large amounts of organic wastes that can be processed. Indeed, it has been shown 
that sewage sludge, paper industry waste, urban residues, food and animal waste, as well as 
horticultural residues from cultivars may be successfully managed by vermicomposting to 
produce vermicomposts for different practical applications (reviewed in Domínguez, 2004). 
Vermicompost, the end product of vermicomposting, is a finely divided peat-like material of 
high porosity and water holding capacity that contains many nutrients in forms that are 
readily taken up by plants.  

Vermicomposting is defined as a bio-oxidative process in which detritivore earthworms 
interact intensively with microorganisms and other fauna within the decomposer 
community, accelerating the stabilization of organic matter and greatly modifying its 
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physical and biochemical properties (Domínguez, 2004). The biochemical decomposition of 
organic matter is primarily accomplished by microorganisms, but earthworms are crucial 
drivers of the process as they may affect microbial decomposer activity by grazing directly 
on microorganisms (Aira et al., 2009; Monroy et al., 2009; Gómez-Brandón et al., 2011a), and 
by increasing the surface area available for microbial attack after comminution of organic 
matter (Domínguez et al., 2010) (Figure 1). These activities may enhance the turnover rate 
and productivity of microbial communities, thereby increasing the rate of decomposition. 
Earthworms may also affect other fauna directly, mainly through the ingestion of 
microfaunal groups (protozoa and nematodes) that are present within the organic detritus 
consumed (Monroy et al., 2008); or indirectly, modifying the availability of resources for 
these groups (Monroy et al., 2011) (Figure 1).  

 

Fig. 1. Positive (+) and negative (-) effects of earthworms on microbiota and microfauna 
(modified from Domínguez et al., 2010). 

Furthermore, earthworms are known to excrete large amounts of casts (Figure 1), which are 
difficult to separate from the ingested substrate (Domínguez et al., 2010). The contact 
between worm-worked and unworked material may thus affect the decomposition rates 
(Aira & Domínguez, 2011), due to the presence of microbial populations in earthworm casts 
different from those contained in the material prior to ingestion (Gómez-Brandón et al., 
2011a). In addition, the nutrient content of the egested materials differs from that in the 
ingested material (Aira et al., 2008), which may enable better exploitation of resources, 
because of the presence of a pool of readily assimilable compounds in the earthworm casts. 
Therefore, the decaying organic matter in vermicomposting systems is a spatially and 
temporally heterogeneous matrix of organic resources with contrasting qualities that result 
from the different rates of degradation that occur during decomposition (Moore et al., 2004). 
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2. Earthworm species suitable for vermicomposting 

Earthworms represent the major animal biomass in most terrestrial temperate ecosystems 
(Edwards & Bohlen, 1996). Indeed, more than 8,300 species of earthworms have been 
described (Reynolds & Wetzel, 2010), although for the great majority of these species only the 
names and morphologies are known, and little is yet known about their biology, life cycles and 
ecology. Different species of earthworms have different life histories, occupy different 
ecological niches, and have been classified, on the basis of their feeding and burrowing 
strategies, into three ecological categories: epigeic, anecic and endogeic (Bouché 1977). 
Endogeic species (soil feeders) forage below the surface soil, ingest high amounts of mineral 
soil and form horizontal burrows. Anecic species (burrowers) live in deeper zones of mineral 
soils, ingest moderate amounts of soil, and feed on litter that they drag into their vertical 
burrows. And, epigeic earthworms (litter dwellers and litter transformers) live in the soil 
organic horizon, in or near the surface litter, and mainly feed on fresh organic matter 
contained in forest litter, litter mounds and herbivore dungs, as well as in man-made 
environments such as manure heaps. These latter species, with their natural ability to colonize 
organic wastes; high rates of consumption, digestion and assimilation of organic matter; 
tolerance to a wide range of environmental factors; short life cycles, high reproductive rates, 
and endurance and resistance to handling show good potential for vermicomposting 
(Domínguez & Edwards, 2010b). In fact, few epigeic earthworm species display all these 
characteristics, and only four have been extensively used in vermicomposting facilities: Eisenia 
andrei, Eisenia fetida, Perionyx excavatus and Eudrilus eugeniae (Figure 2). 

 

Fig. 2. Earthworm species Eisenia andrei (top left), Eisenia fetida (top right), Eudrilus eugeniae 
(bottom left) and Perionyx excavatus (bottom right). 
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3. How does vermicomposting work? 

The vermicomposting process includes two different phases regarding earthworm activity: 
(i) an active phase during which earthworms process the organic substrate, thereby 
modifying its physical state and microbial composition (Lores et al., 2006), and (ii) a 
maturation phase marked by the displacement of the earthworms towards fresher layers of 
undigested substrate, during which the microorganisms take over the decomposition of the 
earthworm-processed substrate (Aira et al., 2007; Gómez-Brandón et al., 2011b). The length 
of the maturation phase is not fixed, and depends on the efficiency with which the active 
phase of the process takes place, which in turn is determined by the species and density of 
earthworms (Domínguez et al., 2010), and the rate at which the residue is applied (Aira & 
Domínguez, 2008). 

More specifically, the impact of earthworms on the decomposition of organic waste during 
the vermicomposting process is initially due to gut associated processes (GAPs) (Figure 3), i.e., 
via the effects of ingestion, digestion and assimilation of the organic matter and 
microorganisms in the gut, and then casting (Gómez-Brandón et al., 2011a). Specific 
microbial groups respond differently to the gut environment (Schönholzer et al., 1999) and 
selective effects on the presence and abundance of microorganisms during the passage of 
organic material through the gut of these earthworm species have been observed. For 
instance, some bacteria are activated during passage through the gut, whereas others remain   

Organic matter

Casts

GAPs: Gut associated processes

CAPs: Cast associated processes 

GAPs

CAPs

Organic matter

Casts

GAPs: Gut associated processes

CAPs: Cast associated processes 

GAPs

CAPs

 

Fig. 3. Earthworms affect the decomposition of organic matter during vermicomposting 
through ingestion, digestion and assimilation in the gut and then casting (gut associated 
processes); and cast associated processes, which are more closely related with ageing processes. 
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unaffected and others are digested in the intestinal tract and thus decrease in number 
(Drake & Horn, 2007; Monroy et al., 2009). Such selective effects on microbial communities 
as a result of gut transit may alter the decomposition pathways during vermicomposting, 
probably by modifying the composition of the microbial communities involved in 
decomposition, as microbes from the gut are then released in faecal material where they 
continue to decompose egested organic matter. Indeed, as mentioned above, earthworm 
casts contain different microbial populations to those in the parent material (Domínguez et 
al., 2010), and in turn it is expected that the inoculum of those communities in fresh organic 
matter promotes modifications similar to those found when earthworms are present, 
altering microbial community levels of activity and modifying the functional diversity of 
microbial populations in vermicomposting systems (Aira & Domínguez, 2011). 

Upon completion of GAPs, the resultant earthworm casts undergo cast associated processes 
(CAPs; Figure 3), which are more closely related to ageing processes, the presence of 
unworked material and to physical modification of the egested material (weeks to months). 
During these processes the effects of earthworms are mainly indirect and derived from the 
GAPs (Aira et al., 2007). In addition, during this aging, vermicompost is expected to reach 
an optimum in terms of its biological properties, thereby promoting plant growth and 
suppressing plant diseases (Domínguez et al., 2010). However, little is yet known about 
when this “optimum” is achieved, how we can determine it in each case and if this 
“optimum” has some kind of expiration date. 

4. Effects of earthworms on the structure and activity of microbial 
communities during vermicomposting 

Since vermicomposting is a biological process, microorganisms play a key role in the 

evolution of the organic materials and in the transformations they suffer from wastes to safe 

organic amendments or fertilizers (vermicompost). Therefore, the effects that earthworms 

have on the microorganisms must be established because if the earthworms were to 

stimulate or depress microbiota or modify the structure and activity of microbial 

communities, they would have different effects on the decomposition of organic matter, and 

in turn on the quality of the final product. To address these questions we performed three 

laboratory experiments, with the following objectives: 

i. To investigate whether and to what extent the earthworm E. andrei is capable of altering 
the structure and activity of microbial communities through the gut associated 
processes. 

ii. To investigate how the earthworm species affect the structure and activity of microbial 
communities during the active phase of vermicomposting. 

iii. To investigate the effectiveness of the active phase of vermicomposting for the short-
term stabilization of a plant residue. 

4.1 How do earthworms affect microbial communities through the gut associated 
processes? 

To provide further light into the effect of gut transit on microbial communities, we carried 
out an experiment with microcosms filled with cow manure and inoculated with 25 mature 
individuals of the earthworm species E. andrei. The microcosms consisted of 250 mL plastic 
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containers filled to three quarters of their capacity with sieved, moistened vermiculite. A 
plastic mesh was placed over the surface of the vermiculite and 100 g (fresh weight, fw) of 
the substrate was placed on top of the mesh, to avoid mixing the substrate with the 
vermiculite bedding (Figure 4a). The microcosms were covered with perforated lids and 
stored in random positions in an incubation chamber, at 20 °C and 90% relative humidity, 
for three days (Figure 4b). Control microcosms consisted of each type of manure incubated 
without earthworms. Each treatment was replicated five times. In order to obtain cast 
samples, earthworms were removed from the microcosms, washed three times with distilled 
water and placed in Petri dishes on moistened filter paper (Figure 4b). Casts from the same 
Petri dish were then collected with a sterile spatula and pooled for analysis in 1.5 mL 
Eppendorf tubes (Figure 4b); the same amount of manure samples were also collected from 
the control microcosms. Viable microbial biomass was determined as the sum of all 
identified phospholipid fatty acids (PLFAs) (Zelles, 1999). The structure of microbial 
communities was assessed by PLFA analysis; some specific PLFAs were used as biomarkers 
to determine the presence and abundance of specific microbial groups (Zelles, 1997). The 
sum of PLFAs characteristic of Gram-positive (iso/anteiso branched-chain PLFAs), and 
Gram-negative bacteria (monounsaturated and cyclopropyl PLFAs) were chosen to 
represent bacterial PLFAs, and the PLFA 18:2ω6c was used as a fungal biomarker. Total  

n = 5
Earthworm E. andrei

Cow manure 

(100 g) 

(25 mature individuals)

Microcosma)

Plastic mesh

Vermiculite bedding

b)

3 days
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24 h

20 °C

Sample collection
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Fig. 4. Scheme of the (a) microcosm and (b) procedure for incubation of microcosms and 
collection of cast samples. 
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microbial activity was determined by hydrolysis of fluorescein diacetate (FDA), a colourless 
compound that is hydrolysed by both free and membrane bound enzymes, to release a 
coloured end product (fluorescein) that can be measured by spectrophotometry (Adam & 
Duncan, 2001). The data were analysed by a one-way ANOVA test, at α = 0.05. 

4.1.1 Microbial biomass  

Recent reports suggest that the digestion of organic material by epigeic earthworms has 
negative effects on microbial biomass (Aira et al., 2006, 2009; Monroy et al., 2009). The 
present data are consistent with these findings, since we found a reduction in the viable 
microbial biomass as a result of the passage of the fresh substrate through the gut of the 
earthworm species E. andrei (Figure 5). More specifically, the total content of PLFAs was 1.5 
times higher in the control treatment (1868.11 ± 129.02 µg g-1 dw) than that in earthworm 
casts (1249.87 ± 158.43 µg g-1 dw).  

 

Fig. 5. Changes in the viable microbial biomass, measured as total PLFAs, after the passage 
of cow manure through the gut of the earthworm species Eisenia andrei. Values are means ± 
SE. Control is the manure incubated without earthworms. 

Epigeic earthworms possess a diverse pool of digestive enzymes which enables them to 
digest bacteria, protozoa, fungi and partly decomposed plant debris (Zhang et al., 2000). 
Indeed, bacterial populations decreased in cow manure after transit through the earthworm 
gut (Figure 6a). As occurred with microbial biomass, bacterial PLFAs were 1.5 times lower 
in cast samples relative to the control (Figure 6a). However, the passage of cow manure 
through the earthworm gut affected fungal populations to a lesser extent than bacteria 
(Figure 6b).  

Animal manures are microbial-rich environments in which bacteria constitute the largest 
fraction (around 70% of the total microbial biomass as assessed by PLFA analysis), with 
fungi mainly present as spores (Domínguez et al., 2010). Thus, earthworm activity is 
expected to have a greater effect on bacteria than on fungi in these organic substrates. These 
contrasting short-term effects on bacterial and fungal populations with earthworm activity 
are thus expected to have important implications on decomposition pathways during 
vermicomposting, because there exist important differences between both microbial  
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Fig. 6. Changes in (a) bacterial biomass calculated as the sum of the bacterial PLFA markers: 
i14:0, i15:0, a15:0, i16:0, a17:0, 16:1ω7, 17:1ω7, 18:1ω7, cy17:0 and cy19:0, and (b) PLFA 
18:2ω6c, a measure of fungal biomass, after the passage of cow manure through the gut of 
the earthworm species Eisenia andrei. Values are means ± SE. Control is the manure 
incubated without earthworms. 

decomposers related to resource requirements and exploitation. This is based on the fact 
that bacteria are more competitive in the use of readily decomposable compounds and have 
a more exploitative nutrient use strategy by rapidly using newly produced labile substrates 
(Bardgett & Wardle, 2010); whereas fungi are more competitive with regard to the 
degradation of more slowly decomposable compounds such as cellulose, hemicellulose and 
lignin (de Boer et al., 2005). 

4.1.2 Microbial activity 

The transit of the organic material through the gut of the earthworm E. andrei reduced the 
microbial activity, measured as FDA hydrolysis, relative to the control (Figure 7). We found 
up to a 30% reduction in the microbial activity from the control treatment (524.8 ± 60.1 µg 
fluorescein g-1 dw h-1) to earthworm casts (208.0 ± 21.7 µg fluorescein g-1 dw h-1). Similar 
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decreases in microbial activity were reported in casts of Eu. eugeniae and E. fetida fed on pig 
and cow manures respectively (Aira et al., 2006; Aira & Domínguez, 2009). 

 

 

Fig. 7. Changes in microbial activity assessed by fluorescein diacetate hydrolysis, after the 
passage of cow manure through the gut of the earthworm species Eisenia andrei. Values are 
means ± SE. Control is the manure incubated without earthworms. 

4.2 How does the earthworm species affect microbial communities? 

Earthworms of different functional groups, or even different species within the same 

functional group, have a particular mode of food selection, ingestion, digestion, assimilation 

and movement, thus their importance in mixing, decomposition or nutrient release, as well 

as in the structure and activity of microbial communities will vary both qualitatively and 

quantitatively (Curry & Schmidt, 2007). To determine how the earthworm species shape the 

relationships between earthworms and microorganisms during the active phase of 

vermicomposting, we performed an experiment with mesocosms filled with cow manure 

and inoculated with 10 mature individuals of the earthworm species Eisenia andrei, Eisenia 

fetida and Perionyx excavatus. The mesocosms consisted of 2 L plastic containers filled to 

three quarters of their capacity with sieved, moistened vermiculite. A plastic mesh was 

placed over the surface of the vermiculite and 200 g (fresh weight, fw) of the substrate was 

placed on top of the mesh, to avoid mixing the substrate with the vermiculite bedding. The 

mesocosms were covered with perforated lids and stored in random positions in an 

incubation chamber, at 20 °C and 90% relative humidity. Control mesocosms consisted of 

each type of manure incubated without earthworms. Each treatment was replicated three 

times. The length of the active phase depends greatly on the rates at which the earthworms 

ingest and process the substrate (Domínguez et al., 2010). The high rate of consumption, 

digestion and assimilation of organic matter by these earthworm species resulted in the 

substrates being completely processed by the earthworms in one month, as previously 

shown by Lores et al. (2006). After this time (i.e., active phase), the earthworms were 

removed from the mesocosms and the processed material was collected from the surface of 

the vermiculite. The same amount of sample was also collected from the control mesocosms. 
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The viable microbial biomass was assessed as the sum of all identified PLFAs and certain 

PLFAs were used as biomarkers to determine the presence and abundance of specific 

microbial groups. Microbial community function was determined by measuring the 

bacterial and fungal growth rates. Bacterial growth was estimated by the incorporation of 

radioactively labelled leucine into proteins (Bååth, 1994), as modified by Bååth et al. (2001); 

fungal growth was estimated by the incorporation of radioactively labelled acetate into the 

fungal-specific lipid ergosterol Newell & Fallon (1991), with modifications by Bååth (2001). 

Total microbial activity was also assessed by measuring the rate of evolution of CO2. The 

data were analyzed by a one-way ANOVA test. Post hoc comparisons of means were 

performed by a Tukey HSD test, at α = 0.05. 

4.2.1 Microbial biomass  

The viable microbial biomass was about 3.8 times lower in the presence of E. andrei than that 
in the control (Figure 8), while no such pronounced decrease was detected in relation to the 
activity of E. fetida and P. excavatus (Figure 8). Similarly, the activity of E. andrei drastically 
reduced the bacterial and fungal biomass in cow manure, relative to the control (3.7 and 5.3 
times, respectively), after the active phase of vermicomposting (Figure 9).  

In the present study, the earthworm species E. andrei could have reduced the abundance of 
these microbial groups directly through ingestion, digestion and assimilation in the gut, 
and/or indirectly by accelerating the depletion of resources for the microbes, since greater 
losses of carbon were found as a result of earthworm activity after the active phase of 
vermicomposting (data not shown). However, the second explanation seems more likely to 
justify the reduction in fungal populations, since no significant changes were found in this 
microbial group after the passage through the gut of E. andrei (see experiment 1). 

 

 

Fig. 8. Changes in the viable microbial biomass, measured as total PLFAs, of cow manure 
after being processed by the epigeic earthworm species Eisenia andrei, Eisenia fetida and 
Perionyx excavatus during the active phase of vermicomposting. Values are means ± SE. 
Control is the manure incubated without earthworms. 
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Fig. 9. Changes in (a) bacterial biomass calculated as the sum of the bacterial PLFA markers: 
i14:0, i15:0, a15:0, i16:0, i17:0, a17:0, 10Me16:0, 10Me17:0, 10Me18:0, 16:1ω7, 18:1ω7, cy17:0 
and cy19:0, and (b) PLFA 18:2ω6c, a measure of fungal biomass, of cow manure after being 
processed by the epigeic earthworm species Eisenia andrei, Eisenia fetida and Perionyx 
excavatus during the active phase of vermicomposting. Values are means ± SE. Control is the 
manure incubated without earthworms. 

4.2.2 Microbial activity  

E. andrei reduced the bacterial growth rate by approximately 1.5 times relative to the control 

without earthworms after the active phase of vermicomposting (Figure 10a); no significant 

differences were detected with E. fetida and P. excavatus (Figure 10a). Despite the consistent 

effects on bacterial growth, earthworm activity did not affect the fungal growth rate (data 

not shown). Microbial activity in cow manure followed the same pattern as the bacterial 
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growth rate (Figure 10b). As mentioned before, bacteria constitute the largest fraction of the 

microbiota in animal manures, and they are therefore expected to contribute greatly to the 

respiration rate. 

 
 

 
 
 

Fig. 10. Changes in (a) bacterial growth rate, estimated as leucine uptake and (b) microbial 
activity, measured as basal respiration, of cow manure after being processed by the epigeic 
earthworm species Eisenia andrei, Eisenia fetida and Perionyx excavatus during the active phase 
of vermicomposting. Values are means ± SE. Control is the manure incubated without 
earthworms. 

The above-mentioned results highlight the potential of E. andrei for biodegrading organic 
substrates. The species E. andrei and E. fetida are closely related, although E. andrei 
predominates in mixed cultures, especially when there is no substrate limitation, as 
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occurred in this experiment, indicating that it is a more extreme r strategist than E. fetida, as 
shown by more rapid growth and reproduction (Domínguez et al., 2005). 

4.3 How do earthworms affect microbial communities of a plant residue in the short-
term? 

In this study we evaluated the effectiveness of the active phase of vermicomposting for the 

short-term stabilization of grape marc, a lignocellulosic enriched residue that consists of the 

stalks, skin, pulp and seeds remaining after the grape crushing and pressing stages in wine 

production (Flavel et al., 2005). This by-product is a valuable resource as a soil fertilizer with 

high contents of macro- and micronutrients for crop growth (Bertran et al., 2004). However, 

the overproduction of grape marc – more than 750,000 ton per year in Spain (Fernández-

Bayo et al., 2007) – has become a problem that requires strategies for its disposal and/or 

management. Whilst composting has been widely used for the treatment of winery wastes 

(Bertran et al., 2004; Marhuenda-Egea et al., 2007; Fernández et al., 2008; Bustamante et al., 

2009; Paradelo et al., 2010), there are still very few studies on the application of 

vermicomposting as a methodological alternative to recycling such wastes (Nogales et al., 

2005; Romero et al., 2007, 2010). 

The vermicomposting of grape marc was performed in mesocosms that consisted of plastic 

containers (2 L), which were filled to three quarters of the capacity with moistened (80% 

moisture content) and mature vermicompost in order to ensure the survival of the 

earthworms. Five hundred juvenile and adult specimens of the epigeic earthworm species 

Eisenia andrei were placed on the surface of the vermicompost. One kilogram (fresh weight) 

of grape marc was placed on a mesh on the surface of the vermicompost and was rewetted 

by spraying it with 20mL of tap water. The mesocosms were covered with perforated lids 

and stored in random positions in an incubation chamber, at 20 °C and 90% relative 

humidity. Control mesocosms consisted of the grape marc incubated without earthworms. 

Each treatment was replicated five times. The high density of earthworms used and the 

relatively rapid gut transit time of the epigeic earthworm species E. andrei, around 2.5–7 h, 

resulted in the grape marc being completely processed by the earthworms in 15 days. After 

this time (i.e., active phase), the earthworms were removed from the mesocosms and the 

processed material was collected from the surface of the vermicompost bedding. The same 

amount of sample was also collected from the control mesocosms. The viable microbial 

biomass was assessed as the sum of all identified PLFAs and certain PLFAs were used as 

biomarkers to determine the presence and abundance of specific microbial groups. 

Microbial community function was determined by measuring the total microbial activity 

assessed by basal respiration, and by determining the activity of enzymes involved in C and 

N cycles, i.e. protease and cellulase activities. 

4.3.1 Microbial biomass  

Earthworm activity reduced the viable microbial biomass measured as total PLFAs relative 

to the control without earthworms (96.90 ± 1.04 µg mL -1 and 113.60 ± 1.04 µg mL -1 for 

treatments with and without earthworms). Similarly, the presence of earthworms also 

reduced the abundance of both bacteria and fungi after the active phase of vermicomposting 

of grape marc (Figure 11). 
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Fig. 11. Changes in (a) bacterial biomass calculated as the sum of the bacterial PLFA 
markers: i14:0, i15:0, a15:0, i16:0, i17:0, a17:0, 16:1ω7, 17:1ω7, cy17:0 and cy19:0, and (b) 
PLFAs 18:1ω9c and 18:2ω6c, a measure of fungal biomass, of grape marc after being 
processed by the epigeic earthworm species Eisenia andrei during the active phase of 
vermicomposting. Values are means ± SE. Control is the grape marc incubated without 
earthworms. 

4.3.2 Microbial activity  

As occurred in the two previous experiments, the total microbial activity measured as basal 
respiration was about 1.7 times lower in the presence of E. andrei than that in the control 
without earthworms (Figure 12). This suggests that the presence of earthworms favoured 
the stabilization of the residue, as shown by Lazcano et al. (2008). These authors found that 
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both vermicomposting treatments (vermicomposting and a combination of composting and 
vermicomposting) produced more stabilized substrates than the active phase of composting 
in terms of microbial activity.   

 
 
 
 
 

 
 
 
 

Fig. 12. Changes in microbial activity assessed by basal respiration of grape marc after being 
processed by the epigeic earthworm species Eisenia andrei during the active phase of 
vermicomposting. Values are means ± SE. Control is the grape marc incubated without 
earthworms. 

The study of enzyme activities has been shown to be a reliable tool for characterizing the 
state and evolution of the organic matter during vermicomposting (Benítez et al., 2005), as 
they are implicated in the biological and biochemical processes that transform organic 
wastes into stabilized products. In the present study, earthworm activity greatly reduced the 
activities of the protease (Figure 13a) and cellulase enzymes (Figure 13b) in comparison with 
the control. These findings are in agreement with microbial activity data, which reinforces 
that a higher degree of stability was reached after the active phase of vermicomposting. 
Similarly, Lazcano et al. (2008) reported lower values of protease activity, relative to the 
control, after vermicomposting and composting with subsequent vermicomposting (3 and 
4.4 times lower, respectively). However, they did not find any differences in relation to this 
enzyme activity after the active phase of composting, indicating that the vermicomposted 
materials were significantly more stabilized than the compost. 
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Fig. 13. Changes in (a) protease activity, and (b) cellulase activity of grape marc after being 
processed by the epigeic earthworm species Eisenia andrei during the active phase of 
vermicomposting. Values are means ± SE. Control is the grape marc incubated without 
earthworms. 

5. Conclusions 

Detritivorous earthworms interact intensively with microorganisms during 
vermicomposting, thus accelerating the stabilization of organic matter and greatly 
modifying its physical and biochemical properties. Digestion of the ingested material is the 
first step in earthworm-microorganism interactions. Passage of organic material through the 
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gut of epigeic earthworms reduced the viable microbial biomass and affected the abundance 
of bacteria to a greater extent than fungi. Microbial activity also decreased after transit of the 
microorganisms through the earthworm gut. Accordingly, the presence of earthworms 
reduced microbial biomass and activity after the active phase of vermicomposting, although 
this effect depended on the earthworm species involved. The bacterial growth rate also 
decreased in the substrate, whereas the fungal growth rate was not affected after one month. 
The speed at which these transformations occurred made the active phase of 
vermicomposting a suitable stage for studying the relationships between earthworms and 
microorganisms and permitted us to understand the chemical and biological consequences 
of earthworm activities. Ultimately, these findings provide valuable information for the 
understanding of the transformations that organic matter undergoes during 
vermicomposting and, in addition constitute a powerful tool for the development of 
strategies leading to a more efficient process for the disposal and/or management of organic 
wastes. 
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