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1. Introduction 

In nowadays, seagrass has been regarded as one of the healthy indexes for costal ecosystem, 
for it can provide shelter for fish living and laying egg, and also provide food for fish, 
tortoise, Dugong and seabirds. Management and preservation of coastal marine resources is 
a formidable challenge given the rapid pace of change affecting coastal environments. Fast, 
accurate, and quantitative tools are needed for detecting change in coastal ecosystems. 
Traditional in-situ surveys are time and labor intensive, generally lack the spatial resolution 
and precision required to detect subtle changes before they become catastrophic, and can be 
difficult to maintain from year to year (Orth & Moore, 1983, Peterson & Fourqurean 2001). In 
recent times satellite technology has played a vital role in seagrass monitoring. Remote 
sensing was a useful method for detection of land use change and seagrass. Satellite remote 
detecting of seagrass was different from that of terrestrial vegetation for water absorbing 
greatly at red and infer-red spectrum. When seagrass distributed underwater, visible 
spectrum was often used to detect the density and living state of seagrass. Lennon 
introduced the advantage of satellite remote sensing on detection of seagrass in 1989 and 
regarded red, blue and green as the most useful channel for detecting seagrass distribution 
(Lennon, 1989). Dahdouh-Guebas (1999) also used channel of blue, red and green to map the 
distribution of seagrass in Kenyan coast. Understanding of light scattering by plant canopies 
is crucial for remote sensing quantification of vegetation abundance and distribution 
(Jacquemoud et al. 1996). Hyperspectral data is very useful for assessing seagrass resources 
as it contains plentiful information. High turbidity is one of the important reasons for 
seagrass decline and usually was a problem for detection of seagrass with remote sensing. 
Phinn (2005) retrieved the seagrass along the coast of Moreton Bay, Australia and found that 
seagrass in turbid water was relatively difficult to detect. After studied variation of seagrass 
distribution and species affected by land use change, Batish (2002) concluded that hurricane 
and strong rainfall was the main factors for mud losing and sediment resuspension, which 
increased the water turbidity. The need for precise detection of living status and distribution 
of seagrass led some researchers to use high resolution remote sensing data. Among them 
SPOT data was very useful, for it had spatial resolution of 2.5m, 5m, 10m and four bands 
(visible and inferred, Bands B1: 0.50–0.59┤m; B2: 0.61–0.68┤m; B3: 0.78–0.89┤m; B4 : 1.58–
1.75 ┤m with a resolution of 20 m ). Pasqualini (2005) used SPOT 5 data to map the 
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distribution of Posidonia oceanica along Zakinthos Island in Greece with Principal 
Component Analysis, obtained good results and the accuracy was between 73%-96%. 
However, SPOT data only have two visible bands, which limited the use of image for 
retrieval of substrate information. IKONOS was another satellite data with high resolutions. 
Some researchers used the IKONOS data to retrieve the types of sea bottom and seagrass 
distribution. Andrefouet (2005) used IKONOS data to classify tropical coral reef 
environment, overall accuracy was 77% for 4–5 classes, 71% for 7–8 classes, 65% in 9–11 
classes, and 53% for more than 13 classes. Compared with SPOT data, IKONOS and 
Quickbird have their advantage on more bands cover visible spectrum. Compared with 
IKONOS data, Quickbird is better for higher spatial resolution. Some researchers compared 
Quickbird data with Landsat-5 and CASI data, the conclusion was reached that Quickbird 
was better for mapping of seagrass cover, species and biomass to high accuracy levels (> 
80%) (Phinn et al. 2008). 

New technology provided by ocean color remote sensing provides high spatial and 

temporal resolution of the benthos, but the application of ocean color data in shallow waters 

is still in its early stage. Unverified classification techniques neglect the confounding effects 

of reflectance from benthos and spectral shifts, and this can lead to considerable errors. In 

optically shallow water, the radiance can be modified due to spectral scattering and 

absorption by phytoplankton, suspended organic and inorganic matter and dissolved 

organic substances (Dekker et al., 1992). Therefore, more efforts should be paid in accuracy 

of classification of seagrass on water column correction. A foremost problem for mapping 

seagrass by analysis of remote sensing data is water column effect. Most photons are 

absorbed or scattered by all particulates in optically shallow water (Morel et al.1977, Gordon 

et al., 1983). So water depth and water column inherent optical properties must be measured 

for mapping seagrass (Holden et al., 2001). While most water column correction procedures 

may not be appropriate for mapping or deriving quantitative information of seagrass. For  
instance, simply subtracting a deep-water remote sensing reflectance from each pixel is 
based on the assumption that energy traveling through a water column behaves the same 
way regardless of substrate type and water depth. In fact, when light penetrates water its 
intensity decreases exponentially with increasing depth. This process is known as 
attenuation and it exerts a profound effect on remotely sensed data of aquatic environment. 
The severity of attenuation differs with the wavelength of electromagnetic radiation. The 
single/quasi-single scattering theory and numerical simulations are often used to estimate 
water column effects (Liang, 2007). In these approaches a parameterized forward model for 
reflectance such as Hydrolight (for aquatic applications) takes a series of parameters 
describing the optical properties of participating media or canopy structure. Image analysis 
then uses a search algorithm to find the parameter space location which minimizes the 
distance of the corresponding spectral space location from the image pixel reflectance 
(Goodman & Ustin, 2007). With the approach, the model may take substantial 
computational effort. Often the model is simplified or approximated to facilitate inversion. 
So, model accuracy must be compromised. Conger et al. (2006) applied the approach 
separating determinations of the spectral albedos of typical materials covering the floor 
(Morel, 1993) to develop a simple technique to merge SHOALS (Scanning Hydrographic 
Operational Airborne Lidar Survey) LIDAR bathymetry data with Quickbird data. The 
remote sensing data with respect to depth was linearized in the model by subtracting an 
optically deep water value from the entire waveband under consideration and taking the 
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natural logarithm of the result. Subtracting a deep-water remote sensing reflectance from 
each pixel (Cannizzaro & Carder, 2006) or utilizing the water optical properties which are 
derived from adjacent deep waters, were used to correct water column effects. Modeled 
shallow water reflectance typically has an inverse exponential relationship with depth 
(Mobley, 1994), so a regular subdivision of a depth parameter would over-sample the deep 
water spectral space region with similar reflectance spectra produced from unnecessary 
forward model runs. At the same time the shallow water spectral space region would be 
relatively under-sampled with a higher discretization error in the tabulated reflectance 
(Froidefond & Ouillon, 2005). The interaction between multiple parameters (e.g. depth vs. 
water clarity) makes the general problem of efficient and accurate LUT (look-up tables) 
construction very hard to tackle by analytical means (Hedley et al., 2009). Routine or large-
scale operational image analysis by physics-based methods therefore demands the 
development of efficient approaches for both modeling and inversion. Often the model is 
simplified or includes too many parameters which cannot be measured directly (i.e. the 
attenuation coefficients for the upward streams originating from the water column and from 
the bottom) (Sathe & Sathyendranath, 1992; Nichols & Kyrala, 1992). In our investigation an 
optical model of in-coming solar radiation transfer was developed, in which multi-layer 
water was considered. Implementation of the method was found to be effective for 
improving the accuracy of coastal habitat maps and essential for deriving empirical 
relationships between remotely sensed data and interested features in the marine 
environment. Retrieved bottom reflectance was then used to study the relationship between 
reflectance and the LAI (leaf area index) of seagrass. In addition, it was found that the peak 
location of retrieved bottom reflectance was highly correlated to LAI of seagrass measured 
in Sanya Bay, South China Sea. Then, this paper studied the seagrass distribution along the 
northeast coast of Xincun Bay and Sanya Bay. The first aim was to give a regional bio-optical 
model of seagrass for detecting seagrass distribution with high accuracy. The second was to 
provide the information of seagrass distribution and living state for government and people 
to understand how to preserve and protect seagrass.  

2. Water column model 

In our investigation an optical model of in-coming solar radiation transfer was adopted, in 
which multi-layer water was considered (Yang et al. 2010). This algorithm which had been  
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Fig. 1. The optical model of light propagation in optically shallow water 
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used to successfully extract seagrass and coral reefs information in Sanya Bay enables us to 
simulate radiation fields in a wide range of optical characteristics of these layers to analyse 
the mechanisms of the formation of the radiation characteristics inside and outside the 
layers, and to estimate any contribution of each region. Differences in water column 
properties would only modify the input to the equation for retrieving bottom reflectance but 
not the equation.  

At the core of the inversion method by Yang et al. (2010) lies an analytical expression for 

( )0 ,water
rsR λ− , subsurface remote sensing reflectance of the water column, for an optical 

shallow water body: 
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Where Q is the radio of the subsurface upward irradiance to radiance conversion factor, and 
has a value of 3.25 (Morel & Gentili 1993)；λ is the wavelength; k is a unique attenuation 

coefficient which is invariable with respect to depth; z is water depth measured downward 
from the detector; zsurf is the distance between ocean surface and the detector; βw(ψ,λ) is the 
total volume scattering function (VSF) for pure seawater (Morel 1977); Morel gave the 
values of ┚ (90°, ┣0) at the reference wavelengths of 350 and 600nm, and λ0 is the wavelength 
value selected from the reference wavelength table; The wavelength dependence of ┣-4.32 
results from the wavelength dependence of the index of refraction; The factor 0.835 is 
attributed to the anisotropic properties of the water molecules (Chami et al. 2006); bp is the 
particle scattering coefficient; g is a parameter that can be adjusted to control the relative  
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Fig. 2. The fraction of incident power scattered out of the beam through an angle ψ into a 
solid angle j∆Ω . 
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amounts of forward and backward scattering in βHG, Henyey-Greenstein phase function 

(Henyey-Greenstein, 1941); R (0-, ┣) is the irradiance reflectance just beneath the sea surface.  

In addition, ψ is the angle of reflection of the incident beam; ψ1, and ψ2 can be expressed as: 
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Where, FOV is the field of view of the sensor, ┙0 is the solar attitude, and θ0 is the view 

angle. In addition, the final signal detected by the receiver results from the flux reflected by 

the bottom (as if the bottom were black) and the flux reflected by the bottom (when it is not 

black) (Maritorena et al., 1994). For simplification, reflectance, mentioned below, represents 

the remote sensing reflectance. Finally, we can get the bottom reflectance, Rbrs: 

 ( )(0 , ) 0 ,b water
rs rs rsR R Rλ λ− −= −  (4) 

Here R is the total irradiance radio just below the surface.  

3. Results and analysis 

3.1 The difference between uncorrected and corrected reflectance 

Fig. 3 shows the retrieved bottom reflectance was lower than the in situ measured 

reflectance and the change between the corrected and uncorrected reflectance did exist (Fig. 

4) (Yang et al. 2010). The range of the variation varied widely, and the difference was much 

larger at 400-450 nm. The variation in spectral reflectance was determined mainly by 

absorption and scattering properties of shallow water. 

 

Fig. 3. Reflectance spectra of seagrass; Rrs(0-) represents subsurface remote-sensing 
reflectance; Rrsb represents the bottom reflectance (Yang et al. 2010). 
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Fig. 4. (a) Comparison of the in situ measured bottom reflectance with subsurface remote-
sensing reflectance; (b) Comparison of the in situ measured bottom reflectance with the 
retrieved bottom reflectance from the optical model; Rrs(0-) represents subsurface remote-
sensing reflectance; Rrsb represents the bottom reflectance  (Yang et al. 2010). 

3.2 Spectral characteristics of seagrass 

Fig. 5 shows that the reflectance of Thalassia increased between 518 and 532 nm, which 
might indicate changes in xanthophyl-cycle pigmentation. In South China Sea the leaves of 
Thalassia display olive-drab color, and this just coincides with the relevant spectral features 
of Thalassia detected around 550 nm. The reflectance differences between 600 and 650 nm 
can mainly be attributed to different proportions of red, orange, yellow and brown 
carotenoids. Between 650 and 680 nm reflectance decreased, and that suggests reduced 
absorption of light by chlorophyll, which may be resulted from reduction in chlorophyll. 
The reflectance overlapped around 720nm may be relative to the total effect whereby the 
relationship between light harvesting efficiency and chlorophyll content is non-linear due to 
pigment self-shading among thyllakoid layers. The particularly strong package e 
ffect observed in seagrass was largely attributed to restriction of chloroplasts to  
the leaf epidermis (Cummings et al. 2003, Enriquez 2005). Zone between 800 and 840 nm  

 

Fig. 5. The remote sensing reflectance of seagrass meadows  (Yang et al. 2010). 
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encompasses a spectral region of maximum reflectance, although a weak water absorption 
feature occurs near the 812 nm (Becker et al. 2005). In addition, the seagrass can also 
spectrally be identified with leaf samples coated by epibionts including a diverse array of 
microalgae, bacteria, juvenile macroalgae and sessile invertebrates such as tubeworms and 
bryozoans. It was found that seagrass reflectance reduced drastically at the green peak 
without having a noticeable effect on the chlorophyll absorbance trough in infrared. 
However, biliproteins of algal epibionts were responsible for the increased reflectance peaks 
observed between 560-670 nm.  

3.3 LAI and the spectral response 

The spectral reflectance of seagrass measured at different station changed regularly with 
LAI. The bands with good relationship with LAI were 555,635, 650 and 675 nm (Yang and 
Yang 2009), for absorption and reflectance of seagrass photosynthetic and accessory pigment 
(Fig. 6), and correlation coefficient of quadratic equation was greater than 0.79. These results 
can be explained as lower leaf area index the exposed area of sediment was greater, and 
water leaving radiance from seagrass bed is weaker; with higher seagrass LAI, water 
leaving radiance from bottom is dominant by seagrass and increased with increasing LAI. 
Previous study showed that the bands with good relationship with LAI were 555,635, 650 
and 675 nm, for absorption and reflectance of seagrass photosynthetic and accessory  
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Fig. 6. Relationship between seagrass LAI and different hyperspectral band (Yang et al. 
2011b) 
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pigment, the results in the paper are also confident with the results of previous study. 
Compared with Quickbird bands (Band1 (0.45-0.52┤m), 2(0.52-0.59┤m), 3(0.63-0.69┤m) and 
4(0.77-0.89┤m)). Band 2 and band 3 of Quickbird can be well used for retrieving seagrass 
distribution. 

3.4 The peak location and LAI 

Red edge refers to the region of rapid change in reflectance of chlorophyll in the near 
infrared range. Vegetation absorbs most of the light in the visible part of the spectrum but is 
strongly reflective at wavelengths greater than 700 nm. The change can be from 5% to 50% 
reflectance between 680 nm to 730 nm. The phenomenon accounts for the brightness of 
foliage in infrared photography. It is used in remote sensing to monitor plant activity and 
could be useful to detect light-harvesting organisms on distant planets. Fig.7 also shows the 
typical reflectance characteristics of seagrass with an obvious spectral peak at red edge, and 
the peak at the wavelength of 695-710 nm range shifted to the red with increasing of leaf 
areas. Fig.7 indicates a strong relationship between the peak location and LAI with a 
coefficient of correlation of 0.7263 in the near infrared range. 
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Fig. 7. Relationship between the peak location and LAI  (Yang et al. 2010). 

3.5 Relationship between seagrass LAI, NDVI and Hyperspectral Bands 

The Normalized Difference Vegetation Index (NDVI) is a simple numerical indicator that 
can be used to analyze remote sensing measurements. In order to fully explore the useful 
information in hyperspectra, the red band reflectance of NDVI was replaced by the green 
and blue band reflectance. The equations are listed as follows: 

 Red NDVI          RNDVI=(NIR-Red)/(NIR+Red) (5) 

 Green NDVI       GNDVI=(NIR-Green)/(NIR+Green)  (6) 

 Blue NDVI         BNDVI=(NIR-Blue)/(NIR+Blue)  (7) 
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where, NIR is near infrared reflectance. In the paper, VNDVI is taken as the general name of 
BNDVI, GNDVI and RNDVI. Hyperspectra, leaf area index and NDVI (Normalized 
Difference Vegetation Index) of seagrass were measured and calculated with equations (5, 6, 
7), and the relationship between them was obtained. 

As Fig.8 indicates, the spectral reflectance of seagrass measured at different stations changed 
regularly with LAI. The bands with a good correspondence with LAI were 555, 635, 650 and 
675 nm, for absorption and reflectance of seagrass photosynthetic and accessory pigment. 
However, at the band around 400 and 720 nm, a relatively poor relationship with LAI was 
found (Table 1). The peaks and troughs on the reflectance spectra were also affected by 
factors such as reflectance and transmission of single leaves, types of background, leaf angle, 
the geometry of sun and sensor angles, etc, and these effects can be reduced to great extent 
when hyperspectral measurement are taken in situ. 
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Fig. 8. Relationship between spectral bands and seagrass LAI  (Yang et al. 2009). 

 

550 nm y = 0.0011x2 - 0.0026x + 0.0099 R2 = 0.8846 

635 nm y = 0.001x2 - 0.0028x + 0.0072 R2 = 0.8575 

650 nm y = 0.001x2 - 0.0029x + 0.0068 R2 = 0.8512 

675 nm y = 0.0008x2 - 0.0026x + 0.0053 R2 = 0.7929 

400 nm y = 0.0011x2 - 0.0041x + 0.0068 R2 = 0.7728 

700 nm y = 0.0008x2 - 0.0024x + 0.0057 R2 = 0.7604 

Table 1. Relationship between LAI and different hyper spectral band. In Table 1, y is remote 
sensing reflectivity from bottom, x is LAI. 
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In order to monitor seagrass with satellite remote sensing, the relationship between Leaf 

Area Index (LAI) and the Normalized Difference Vegetation Index (NDVI) was correlated. 

Analysis indicated that a good relationship existed between NDVI and LAI. Relationships 

between every VNDVI (RNDVI, GNDVI and BNDVI) and LAI were studied. Fig.9 shows 

that the VNDVI increased with the increase of LAI. The correlation coefficient between G-

NDVI and LAI (0.7357) was better than the RNDVI (0.6705) and BNDVI (0.6729), which 

means that GNDVI is more sensitive than RNDVI and BNDVI when applied to seagrass 

remote sensing. However, when LAI is less than 1.5, the correlation coefficient between 

VNDVI and LAI is relatively low. A0s the band set in the visible and infrared of the satellite 

remote sensing data (CBERS, Landsat TM, and QuickBird) is blue (0.45-0.52┤m), green (0.52-

0.59┤m), red (0.63-0.69┤m) and infra-red (0.77-0.89┤m), NDVI was retrieved with blue, 

green and red also, which is compatible with the satellite data band set. 
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Fig. 9. Relationship between LAI and NDVI  (Yang et al. 2009). 

3.6 Seagrass detection with satellite remote sensing 

QuickBird data was used for correcting seagrass density and detailed distribution 
retrieved with Landsat and CBERS data, for detailed seagrass distribution was very 
important for us to compare seagrass distribution changes (Yang and Yang 2009). With 
the water body correction, sun glint correction and computation of bands, seagrass 
distribution along the south coast of Xincun Bay was retrieved and showed in Fig 10 
(Yang 2008). From the Quickbird image, substrate types, such as sand, seagrass can be 
detected clearly, and the profiles from bank to the center of Xincun Bay were sea pond, 
sand, seagrass and optically deep water. In shallow water near bank and relatively deeper 
water, no seagrass can be detected. The pattern of seagrass distribution can be detected 
clearly, and seagrass mainly distributed in the pattern of cluster, with tens meter distance 
away from the bank.  
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Fig. 10. Seagrass distribution in the northwest of Xincun Bay with Quickbirds (Yang et al. 
2011b).  

The pattern of seagrass distribution can also be clearly classified, and seagrass was mainly 
distributed in a stripe pattern, some tens of meters away from the coastline (YANG and 
HUANG 2011a). Seagrass density is regular in the main seagrass bed. From the outside to 
the center of the main seagrass bed, seagrass distribution coverage was under 20%, 20-40%, 
40-60%, 60-80% and greater than 80%. Among them, the area of seagrass coverage greater 
than 80% accounted for more than 30% of the total seagrass bed (Fig. 11). Seagrass species in  

 

Fig. 11. Seagrass density retrieved with QuickBird (Yang et al. 2009). 

www.intechopen.com



 
Remote Sensing of Planet Earth 

 

86

Xincun Bay are mainly Enhalus acoroides, Thalassia hemprichii, Cymodocea rotundata and 
Halodule uninervis; however, we could not differentiate one species from another with 
QuickBird data. Detection accuracy of seagrass with Quickbird data was mainly by 
comparing pixels of satellite remote sensing with in situ observations. In this paper, the 
accuracy was more than 80% for seagrass coverage greater than 20% when compared with 
the in situ observation results. Detailed information on seagrass distribution was very 
important for us to know the density of seagrass distribution and can be used as basis for 
comparing seagrass distribution changes. In order to further study seagrass distribution 
changes in Xincun Bay, Landsat TM and CBERS data was used (Yang et al. 2009). 
Compared with QuickBird, seagrass detected with Landsat TM and CBERS had fewer 
classes, which only showed the distribution range, for pattern and species cannot be 
clearly obtained. However, the distribution contour can be detected clearly, which was 
enough for comparison of seagrass distribution changes. Landsat data was usually used 
for detecting seagrass distribution for cost-effective and relatively higher revisit 
frequency, and visible band was regarded as the most useful. Lennon introduced the 
advantage of satellite remote sensing with Landsat TM data on detection of seagrass in 
1989 and regarded red, blue and green as the most useful channel for detecting seagrass 
distribution (Lennon, 1989). Dahdouh-Guebas (1999) also used channel of blue, red and 
green of Landsat TM data to map the distribution of seagrass in Kenyan coast with good 
results.  

The imperfect was that band spectrum coverage was relatively wider and the pixel sizes 

(20–30 m) are of a similar magnitude to the size of the habitat patches. So it was 

problematical when applied Landsat data on detecting seagrass in small area and 

distinguishing seagrass species. In 1970s, Yang et al (1979) investigated the seagrass 

distribution in the Chinese costal water, and distribution of seagrass in coastal water of 

Hainan province showed in the references. However, seagrass in the west coast of Hainan 

province disappeared in recent years. Some researchers regarded that it is mainly caused by 

aquaculture. Seagrass distributed in the east coast of Hainan province only confined within 

a few bays. Because different species of seagrass live in different environment, distribution 

of seagrass is confined by its growth habitat. Generally speaking, vertical distribution of 

seagrass from coastal to relative deep water around the coast of Hainan Province were 

Halophila, Cymodocea, Syringgodium, Ehaus, Thalassia, Ha-lophila. Substrates of sand, seagrass 

and coral were differentiated with different reflective characteristics. Based on the results, 

we can find that area of seagrass distribution in Sanya bay decreased, from distributed in 

the whole south coast in 1991 to less than 1 hectare in southwest coast of Sanya bay in 1999 

(Fig 12).  

Seagrass distribution in the south coast of Xincun Bay was mainly studied (Yang et al. 

2009). In order to compare seagrass distribution in detail, we divided seagrass distribution 

regions as A, B and C (Fig. 12). Seagrass distribution in region A and region B was 

connected as one big seagrass bed in 1991, however, the two region seagrass separated 

gradually and they were only connected with a line of seagrass in 1999. Finally, complete 

separation was observed in 2001. Seagrass distribution in region C was relatively large 

with an elliptical shape in 1991; however, the shape of seagrass bed became thinner by 

1999 and became a line in 2001. In 2006, seagrass at region C could be detected with 

satellite remote sensing.  
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Fig. 12. Seagrass distribution change from 1991 to 2006 (Yang et al. 2009). 
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4. Impacts of environmental factors for seagrass distribution 

4.1 Effluent diffusion in Sanya Bay 

As water with high concentration of nutrients in Sanya River flow into Sanya Bay, it 

diffused by current and wave. The effluent plume streaming out of the Sanya river into the 

Sanya Bay flows straight for only a short distance before it is washed westward by the 

longshore current (Yang 2008). Sanya Bay is an open bay, the flows-in water only stay in a 

short time. Landsat TM data of 1991 was used to detect the diffuse pattern in Sanya Bay. 

From the satellite images, the water plume of Sanya River mainly distributed along the 

south of Sanya Bay. The reason is when tidal water rushed into Sanya Bay it splits and flows 

back from the south of Sanya Bay. In Sanya Bay, Seagrass mainly distributed along the north 

coast of Lu Huitou peninsular, the plume of Sanya River affected seagrass distribution in 

great extent.  

 

Fig. 13. The diffuse pattern of flows-in water in Sanya Bay (Yang 2008). 

4.2 Land use change 

Satellite Landsat data was used to retrieve land use change around Sanya bay. Sanya River 

and the island between the two rivers was chose as land use change indexes (Yang 2008). 

From the satellite images, area of eastern and western Sanya Rivers reduced in 1999 

compared with that in 1991. However the area of island between the two rivers enlarged 

more than 30%. The decreased river area, correspondently decreased the ecological wet land 

along the Sanya River, reduced the area for waste water cleaning. Seashore land use change 

was also retrieved with remote sensing data. From remote sensing data, the shape of costal 

line at the northeast of Lu Huitou peninsular changed greatly. In situ observation proved 

that buildings were constructed just along the coastal line. In situ observation also found 

that coast at the middle north of Lu Huitou peninsular was constructed as sea bath and sea 

diving area. 
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Fig. 14. Landsat TM data of Land use change around Sanya Bay in 1999 compared with that 
of in 1991 (Yang 2008). 

www.intechopen.com



 
Remote Sensing of Planet Earth 

 

90

4.3 Tendency of water chemical indexes by land use change in Sanya Bay 

Water quality of Sanya River and Sanya Bay, such as water transparency and water quality 
indexes, was provided by Sanya ecological field station and references. In situ water 
chemical data of inorganic nitrogen, phosphorus and chlorophyll a concentration was used 
for validation and correction of the results from satellite remote sensing data. Results 
showed that water quality of Sanya River degraded in 2002 compared with that in 
1991うFig.15え; water quality in Sanya bay near the Sanya River mouth was also degraded. 

However, water quality in other part of Sanya bay changed little. Perhaps Sanya bay is an 
open bay, where water exchange rate is relatively high.  
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Fig. 15. Waste water discharge in Sanya Bay in 1991 and 2002 (Yang 2008). 

4.4 Relationship between land use change and seagrass distribution 

Seagrass distribution in Sanya area conversely correlated with land use change, the more 
area of land use change the less coverage of seagrass distribution. This mainly because 
distribution of seagrass was confined by the following factors: (1) Sediments, in the area 
close to the bank, were sand and frequently affected by hydrodynamics, on which seagrass 
cannot grow flourish. (2) Human activities, such as aquaculture, digging clam worm and 
ship sailing, also affected seagrass growth in shallow waters; (3)Transparency was also an 
important factor for seagrass growth. Clear water mainly distributed in the southwest of 
Sanya Bay, which provided the suitable condition for large area continuous seagrass 
distributed in the area.  

5. Discussions and conclusions 

As described in our investigation, much is known about the photophysiology of seagrass, 

while much is still required for us to effectively manage this important yet diminishing 

resource. New coastal ocean remote sensing techniques permit benthic habitats to be 

explored with higher resolution than ever before, however, the application of ocean color 
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remote sensing to quantitative mapping of sparse seagrass species is still in its early 

development.  

An optical model was proposed to simulate the radiation transfer in multi-layer, non-

homogenous, heterogeneous, natural media. This algorithm enables us to simulate radiation 

fields in a wide range of variations of optical characteristics of these layers and to analyze 

the mechanisms of the formation of the radiation characteristics inside and outside the 

layers, as well as to estimate any contribution of each region. Based on the algorithm, we 

appropriately removed the distorting influence of the water column on the remotely sensed 

signal to retrieve an estimate of the reflectance of seagrass. Implementation of the method 

was found to be effective for improving the accuracy of coastal habitat maps and essential 

for deriving empirical relationships between remotely sensed data and features of interest in 

the marine environment. Retrieved bottom reflectance was then used to study the optical 

characteristics of seagrass. Through spectrum analysis it was found that the wavelengths for 

the discrimination and mapping of seagrass meadows of Sanya Bay, South China Sea lay 

between 500-630 nm as well as 680-710 nm. An appropriate hyper spectral band set for the 

remote sensing of seagrass should include narrow bands (maximum 5-10 nm bandwidth) 

centered around 555, 650, 675 and 700 nm. If satellite images were used, the effect of 

atmosphere should be taken into account. Though the blue band is more easily affected by 

atmosphere, the accurate surface reflectance could be acquired with the development of the 

theory and models in atmosphere correction. The relationship between seagrass leaf area 

index (LAI) and hyperspectra is very important when satellite remote sensing data is 

applied for detecting seagrass distribution.  

Seagrass distribution in Xincun Bay spanning 15 years (1991-2006) was retrieved with 

satellite remote sensing. From the seagrass detection results, the resolution of satellite 

remote sensing image is very important for seagrass detection, so QuickBird data was more 

suitable for seagrass detection than Landsat TM and CBERS, especially when the seagrass 

distribution area was relatively small. Results in the paper proved that five classes can be 

classified clearly with QuickBird; however, only seagrass distribution contours can be 

detected with Landsat TM and CBERS data. 

Though the accuracy of seagrass detection with satellite remote sensing can be affected by 
many factors, seagrass in Xincun Bay can be detected clearly for the sediment there was 
sand. Compared with satellite remote sensing data in 1991, the seagrass distribution area 
was reduced gradually and large areas of seagrass had disappeared by 2006. Human 
activities and extreme natural disasters were the main reasons for seagrass reduction, 
especially land use changes in recent years. The effect of land use change on seagrass 
distribution can be concluded as following: seagrass distribution in Sanya area conversely 
correlated with land use change, the more area of land use change the less coverage of 
seagrass distribution. Mainly because of land use change changed the water quality and 
sediment type.  

Except for hydrodynamic effect, distribution of seagrass was also affected by the following 
factors: (1) Sediments, in the area close to the bank, were sand and frequently affected by 
hydrodynamics, on which seagrass cannot grow flourish. (2) Human activities, such as 
aquaculture, digging clam worm and ship sailing, also affected seagrass growth in shallow 
waters; (3)Transparency was also an important factor for seagrass growth. Clear water 
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distributed in the northeast of Xincun Bay, which provided the suitable condition for large 
area continuous seagrass distributed in the area.  

Human activities, such as construction of shrimp ponds, aquaculture, fishing with standing 
net, clam digging, boat sailing, capturing prawns and fishes with blasting and trawling, 
affected seagrass growth in shallow waters. The area dedicated to shrimp ponds increased 
greatly in recent years, which had great negative effects on seagrass distribution. 
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