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1. Introduction 

Micro-electro-mechanical systems (MEMS) represent a very important class of systems 
having applications ranging from small embedded sensors and actuators, passive 
components in RF and microwave fields, and micro-mirrors in the optical range. The 
importance of MEMS stems from their many advantages, among which are, their small 
compact size amendable to integration with other components, low loss and parameter 
variability. 
From structural point of view, each MEMS component is, by itself, a very small 
electromechanical system of heterogeneous structure composed of materials with different 
chemical composition (dielectric substrate, metal alloys and conducting wire) and different 
physical (electrical, thermal, mechanical) properties. Moreover, MEMS components may 
represent static systems or they may contain some moving parts, such as in variable 
capacitor, moving membranes and cantilevers. The dimensional scale of the different parts 
of MEMS components may vary from very small (microns or even nanometers) in one 
dimension, such as thickness of a plate, to comparatively large of few hundred microns in 
other dimensions, thus resulting in large aspect-ratios. 
When MEMS components are put into oration, they constitute systems, in which electrical, 
thermal, mechanical, and other physical phenomena take place and interact with each other. 
From mathematical modeling and simulation point of view, this calls for multi-physics 
treatment, in which coupled systems of differential equations of different combinations of 
electromagnetic, mechanical, fluid, heat transfer and/or transport equations, are formulated 
then solved depending on the type of boundary conditions imposed by MEMS component 
under investigation. 
Mathematical modeling and simulation has been used in all fields and disciplines of 
engineering for decades, for theoretical characterization of devices and systems before 
manufacturing, or even before prototyping, for a number of reasons among which are 
reduction in manufacturing cost and time. However, the heterogeneous nature of MEMS 
structures, coupled with multi-physics phenomena that take place during their operation, 
makes modeling and simulation of MEMS components, a complex and challenging task.  
The main objectives of this chapter are to outline the nature of MEMS componets, from both 
the structural and physical points of view and identify the difficulties that these 
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heterogeneous structures impose on modeling and simulation of these systems and to give a 
comprehensive account of different modern modeling methods and techniques used to 
overcome MEMS modeling and simulation difficulties, with illustrative examples. From 
here onwards, the word ‘components’ will be suppressed and refer to MEMS component 
just as MEMS for brevity.  
The chapter starts with some basic definitions, then shed light on the use and advantages of 
mathematical modeling and simulation in MEMS design and manufacturing, investigates 
the nature of MEMS and the main challenges facing researchers in their modeling and 
simulation. It presents systematic approach to MEMS modeling and simulation, gives a 
survey coverage of different methods and techniques used for simulation of MEMS, such as 
finite-differences time-domain (FDTD), finite-element (FE) and their different variants 
proved to be successful in their applications to such microstructures. A detailed illustrative 
MEMS modeling and simulation example is given and other examples developed by other 
active research workers, are cited. The chapter concludes with future outlook and new 
trends in MEMS modeling and simulation.  

2. Background 

Over the last few years, extensive research work in modeling and simulation of MEMS took 
place, and a large number of techniques appeared in the literature to tackle this complicated 
modeling problem, each having its own advantages and limitations (Bushyager et al., 2003; 
Lynn Khine & Moorthi, 2006; Khine A. et. al., 2008; Yong Zhu & Espinosa, 2003; 
Shanmugavalli et. al. 2006; Heung-Shik Lee et. al., 2008; Fengyan and Vaughn, 2009; Chiao 
& Liwei, 2000).  
Bushyager and his coworkers considered modeling electro-statically actuated RF passive 
components, such as parallel–plate capacitors and tuners (Bushyagers & Tenzeris, 2002; 
Bushyager et .al 2003; Bushyager, Mc Garvey & Tenzer 2000). They used finite-difference 
time-domain technique (FDTD) or its variant MRTD, with adaptive gridding to tackle the 
problem of large aspect ratio and moving boundary conditions (see section 4). 
Fengyan and Vaughn (2009) developed an on-line tool for simulating micro scale electro-
thermal actuators (ETA), using both distributed and lumped analysis. The model allows the 
user to input the electrical Current of ETA to compute both temperature distribution and the 
displacement of the ETA. Finite–Element method was used to find temperature distribution 
due to joule heating and the average temperature across the beam is used to find the 
displacement by lumped analysis. The Model takes into account both properties’ variation 
with temperature as well as radiation effects at high temperature. The main characteristics 
of their model is the use of computationally expensive distributed analysis for modeling 
electro thermal phenomenon and the computationally efficient lumped analysis for the 
modeling the thermo mechanical phenomenon thus improving the overall computational 
efficiency, accessibility and ease of use. The last two properties (accessibility and ease of use) 
are due to on-line availability of model for remote users.  
Chiao & Liwei (2000) Considered self buckling behavior of micromechanical clamped-
clamed micro beams under resistive heating using both analytical and finite-difference 
technique. Their model consisted of electro-thermal part in which electric current flowing 
through the beam gives rise to Joule Heating effects, and thermo-mechanical part which 
deals with the mechanical buckling of the beam due to thermal expansion. Results was 
verified by measurements with good agreement. They considered the effected of residual 
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stress and found that when compressive residual is considered in the analysis the critical 
current causing bulking of the beams, decreased where as tensile residual stress hinders the 
actuation of the beams. They also considered the effect of process variation such as the 
width and the thickness of the beam, and found that they affect the performance of the 
beams such as the current–deflection curves, however variation expansion and Young’s 
modulus with temperature, were not considered and called for characterization of these 
properties’ variation in order to improve the accuracy of MEMS Models. 
Most, if not all, of these attempts relied on numerical (computational), rather than analytical 
techniques, due to ability of numerical methods to model structures with arbitrarily 
complex geometrical shapes. Despite the advantages of numerical techniques researchers 
were faced with a number of difficulties when trying to use commercial simulation packages 
and adapt traditional numerical methods, such as finite-difference, time-domain (FDTD) 
and finite-element (FE), used in modeling structures at macro-scale. The main difficulties 
and challenges are highlighted in section 4. 

3. Modeling & simulating definition & advantages 

3.1 Definitions 
Before we go into further details of this chapter definition of some of the main concepts is in 
order. In the following are given, definitions of the main keywords of this chapter; modeling 
and simulation.  
Modeling: Modeling, and a model, has different meanings depending on the context or field 
of application. In engineering science and technology, Modeling refers to mathematical 
representation of a physical phenomenon, system or device. Usually mathematical models 
can take many forms such as dynamic system models, statistical models, game models, 
differential equation…etc. But for the purpose of this chapter, we will be mainly concerned 
with mathematical models that are represented by differential equations. 
Simulation: Similar to modeling, simulation also has different meanings depending on the 
context and type of application and it can take many forms. However for the purpose of this 
chapter, we will concentrate on computer simulation or computational modeling, which is 
defined as: a computer program, or package, that attempts to simulate or imitate an abstract 
model of a particular system or device. Computer simulations have become very much 
related and integrated with mathematical modeling, and usually modeling and simulation 
are taken as being one discipline that can be used to explore and gain insight into the new 
technology and predict and estimate behavior of complex systems and devices that are too 
much complicated for analytical solutions. 
Modeling and Simulation generally have iterative nature. A model is first developed then 
simulated to gain some understanding. The Model is then revised, and simulated again and 
this process goes on until an adequate level of understanding is developed for the 
system/device under consideration.  

3.2 Need for MEMS modeling and simulation 
There are many reasons why we need modeling and simulation for MEMS, among which 
are: 
a. Due to small dimensions of MEMS, direct experimentation for determination of some 

physical properties of MEMS is difficult, and measurement errors occur when dealing 
with these micro-level systems.  
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b. Time reduction: Designers need simulation tools that allow them try “what If 
“experiments in hours instead of days and weeks, thus reducing time to market.  

c. Production cost reduction: Modeling and simulations are needed in order to study the 
behavior of the design under different experimental conditions and different level of 
parameters, before prototyping, thus reducing production cost. 

d. MEMS are usually embedded within other systems or packaged with other micro-
machined components and systems. Therefore modeling and simulation is needed at 
macro or system level as well as micro-level.  

e. Modeling and simulation can render fast design cycle that allows extensive scoping for 
more and accurate decision making.  

f. Modeling and simulation allows better understanding of the device/system operation 
and gives scope for optimization of its operation.  

g. Modeling and simulation enable designers and system developers to see and further 
investigate systems behavior which could have not been discovered otherwise. 

4. MEMS modeling challenges 

The difficulties and challenges that face MEMS modeling and simulation experts are due to 
the very nature of MEMS and can be related to the following MEMS features: Physical 
principle of operation, geometrical structure, miniaturization, packaging, manufacturing 
and processing of MEMS, and environmental conditions. These are detailed in the 
following:  
a. Physical Principles: 
As mentioned earlier, MEMS are characterized by interaction of many physics domains in a 
single device or system. This is pictorially represented in Fig. 2. Interaction of many physical 
phenomena in MEMS needs dealing with different types of equations, each governing a 
certain physical phenomenon e.g. electrical, mechanical or thermal. Moreover these 
governing equations are always coupled sometimes strongly and sometimes weakly, thus 
calling for solution of coupled system of equation a phenomenon called multi- physics 
approach. Depending on the number of physics domains involved, we can further classify 
these multidomain systems as: Double-Physics (interaction of two physics domain, Triple-
Physics (interaction of three physics domains), Quadruple-Physics (interaction of four 
physics domains) and so on. In section 7.2 , we show specific modeling and simulation 
examples illustrating these different physics categories.  
b. MEMS geometrical structure:  
One of the main obstacles facing accurate modeling of micro-systems is proper definition 
(construction) of the system geometry, one of the main first requirements in any modeling 
and simulation process. This is due to different deformations and irregularities during 
MEMS operation, such as in the case of tuners and microbeams that contain moving parts. 
In order to tackle this problem, Peyrou David et.al, 2004, proposed a reverse engineering 
technique, whereby the model is first built using the real shape of the device, then a virtual 
model is made from the deformed shape, using different software packages. This method 
was applied for simulation of RF-MEMS capacitive switch and electrical contact resistance 
of RF MEMS, with satisfactory results (Peyrou David et.al, 2004). 
c. Large Aspect Ratio:  
Many MEMS, such as metallic sheets on top of large substrate (e.g. capacive stub tuners), 
have very small dimension in one direction (thickness) compared to relatively large 
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dimension ( length) in other direction, thus leading to large aspect ratio. Large aspect ratio, 
in turn lead to creation of large number of computations cells thus leading to long 
computation time (Ali, I. Kabula M. & Hartnagel H. L., 2010). 
 

  

Fig. 1. Multiphysics nature of MEMS 

d. Geometry change due to moving parts:  
Some MEMS components, such as electrostatic and thermal actuators, contain moving parts, 
which lead to moving boundary conditions.Commercially available traditional frequency 
domain simulators are not adequate to handle these features, due to many approximations 
that are more to simplify modeling and time-domain techniques, are more appropriate 
(Bushyagers & Tenzeris. 2002; Bushyager et. al., 2003). However even the well-known time–
domain techniques such as FDTD, are not adequate as they stand and some sort of 
modification are needed to deal with large grid size and moving boundary conditions. 
These are solved by using adaptive gridding in both space and time, which are included in 
FDTD technique with variable gridding capability or the use of multi resolution time 
domain technique known as MRTD for short.  
e. Miniaturization:  
Due to the very small dimensions of MEMS many physical phenomena such as surface 
tension from humidity, become significant at micro-level. Downscaling of the dimensions of 
MEMS structures, which are usually three-dimensional makes the scale of these effects 
(force, displacement … etc.) also significantly small which, in turn lead to accumulation of 
numerical errors.  
f. Packaging: 
In many cases MEMS are assembled and packaged with other electronic components and 
devices, and this calls for proper modeling and simulation at systems level taking into 
consideration all input/output feedback etc. 
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g. Manufacturing and processing:  
Manufacturing and process uncertainties which result from the fact that the dimensions and 
properties used in simulation of the MEMS cannot be exactly produced during fabrication. 
h. Environmental Conditions:  
MEMS are sometimes needed to work at different environmental conditions, such as sensors 
on the surface of the aircraft wings or sensors and actuators in nuclear power plants or 
under sea. Being tiny components at micro level, these systems are much affected by these 
external conditions. This calls for careful considerations of these conditions when modeling.  

5. MEMS modeling and simulation process, techniques and tools 

In this section, we show a systematic procedure for modeling and simulation process of 
MEMS, and give a survey of techniques and software tools proved to be successful in 
tackling many of the modeling and simulation challenges illustrated in the last section.  

5.1 Modeling and simulation process cycle 
The process of modeling and simulation goes through a defined number of steps, briefly 
described and depicted graphically in Fig.1 below: 

Step 1: Description of the Physical Problem: 

The first step in the modeling and simulation process is the physical description of the 
problem under investigation in order to understand its geometrical structure and the entire 
physical phenomenon involved in its operation. 

Step 2: formulation of governing equations: 

Depending on the physical principles governing operation of the device/system, all 
equations and mathematical expressions governing this operation are setup together with 
appropriate boundary and/or initial conditions. 

Step 3: approximation of governing equations: 

At this step, some approximations that facilitate solution with adequate effort and/or 
resources are made. If more than one equation is involved, the degree of coupling between 
different types of equations is determined at this step. 
Steps 2 and 3 are usually very much interrelated, and the process of approximation and 
formation of governing equations are done iteratively in one step. 

Step 4: Method(s) of solution:  

Here all adequate methods of solutions of the governing equations are explored, and the 
most appropriate one identified. Appropriateness here calls for proper consideration of all 
available computation resources (both hardware and software), and selection of the most 
efficient one in terms of computational resources. 

Step 5: Solution of the governing equation(s): 

The method(s) identified in step 4 is applied to find the solution of the system of equations 
under specified boundary/initial conditions. 

Step 6: Verification of Results: 

After finding the general solution in step 5, some simplified standard cases which can be 
verified by experimental measurements or for which analytical or known solutions are 
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Fig. 2. The main Steps of Modeling and Simulation process (details of each step are given in 
the main text) 

identified for comparison reasons. If adequate solution that agree with measurements or 

known solution is obtained, move to the following step or otherwise go back to check 

method of solution or even the model itself. This checking process goes on until adequate 

solution is obtained (see decision block in the flowchart of Fig.2. 

Step 7: Use model for exploration and design optimization: 

This is the last step at which you make use of your efforts in modeling and simulation. Here 

the model is used for analysis of varied situation under different conditions i.e. change of 

input parameters and study of what-if conditions. 
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5.2 MEMS modeling techniques 
There are a number of modeling techniques, with different facilities and capabilities, for 
modeling and simulation of MEMS at both component and system levels. However, we will 
concentrate on two mostly used techniques; the finite difference time domain (FDTD) and 
Finite Elements techniques and their variants. 

5.2.1 Finite – Difference – Time Domain (FDTD)  
FDTD technique is direct method of Solution of Maxwell’s curt equation (Taflove, A. & 
Hagness, S., 2001): 

 ߘ	X Ē= -ߤ డࡴడ௧  (1) 

 ߘ	X ࡴ= σĒ + ߳ డࡱడ௧  (2) 

where E and H are the vector electric and magnetic fields, ߤ, ߳ and ߪ	are the respectively, 
permeability, permittivity and conductivity of the medium.  
FDTD method is a full-wave time stepping procedure that uses simple central—Difference 
approximation to evaluate the space and time derivatives. FDTD method has been 
successfully used for simulation of complex structure at macro scale, however one of the 
most constraints of FDTD is the requirement that cell size be equal to or smaller than the 
smallest feature of the device or system being simulated. This leads to large grid size when 
simulating structures consisting of several different elements or structure with large aspect 
ratios, such as MEMS circuits. The large grid size leads, in turn to large computing time.  
In order to overcome this difficulty, a number of modification and /or addition have been 
proposed, among which are the method of sub gridding, and the use of non-uniform grid 
(Shanmugavalli et. al., 2006; Bushyager et. al., 2001). The first, subgridding method 
subdivides sections of the FDTD grid, thus creating finer grids in areas of large field 
variation or interfaces between areas of different properties. This method can be used when 
small complex devices are embedded in a coarse grid, such as small passive compounds ( 
compactors’ or inductors) connected by micro strip lines or when MEMS are packaged. Here 
a subroutine is needed to interface grids of different sizes. In the non uniform grid 
technique, each direction of the structure under investigation is treated separately, thus 
allowing each axis to be divided into a number of sections each having a different cell size. 

5.2.2 Multiresolution Time Domain (MRTD) technique 
MRTD employs multiresolution principles to discretize Maxwell’s equations in wavelet 
expansions, which provide a set of functions with adaptive resolution. Higher resolution 
functions can be added and subtracted during simulation. Accordingly MRTD has built-in 
gridding capability in both time and time and space 
1. MRTD  can model changes in structure over time because it is a time-domain simulator 

for example: variable parallel-plate capacitor. 
2. Variable grid capability and ability to arbitrarily place metals in structures allow for 

modeling of a structure that changes configuration during simulation.  
3. Adaptive (variable) gridding allows modeling of MEMS in packages such as variable 

capacitor connected to large feed lines .In this case the surrounding structure can be 
modeled with a comparatively coarser grid, while the MEMS is modeled with a fine 
grid (higher resolution ). 
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When MRTD is applied to Maxwell’s Curl equations (1 and 2 above), the orthogonality of 
the wavelets provides an efficient discretization that results in an explicit time marching 
scheme similar to that of FDTD technique. Due to this property and the characteristics of 
MRTD stated in 1-3 above, MRTD has been successfully applied by Bushyager and his co-
workers to a number of modeling and simulation of RF MEMS structures, such as parallel-
plate capacitor (Bushyager & Tentzeris 2001), MEMS tunable capacitors (Bushyager et. al. 
2002), analysis of MEMS embedded components in multilayer packages (Tentzeria et. al. 
2003), for intracell modeling of metal/dielectric interfaces (Bushyager & Tentzeris, 2003), for 
static MEMS capacitor (Bushyager, McGarvey & Tentzeris, 2001).  

5.2.3 Finite Element Technique 
The finite element method (FEM) is a numerical technique for finding approximate 
solutions of partial differential equations (PDE) and integral equations. The solution 
approach is based either on eliminating the differential equation completely (steady state 
problems), or rendering the PDE into an approximating system of ordinary differential 
equations, which are then numerically integrated using standard techniques such as Euler's 
method, Runge-Kutta, etc. Historically, finite element method originated from the need for 
solving complex material and structural problems by civil and mechanical engineers.  
The first step in finite-difference analysis is to divide the structure under consideration into 
small homogeneous pieces or elements with corners called nodes. The nodes define the 
boundaries of each element and the entire collection of elements defines the analysis region 
or the geometry of the structure. These elements can be small where detailed geometric 
properties are required and much larger elsewhere. A simple variation of the field is 
assumed in each element and the main goal of FEA is to determine field quantities at each 
node. In general, FEA techniques solve for the unknown field quantities by minimizing an 
energy functional using variational techniques. The energy functional is an expression 
describing all the energy associated with the structure under consideration. For instance, 
this functional for 3-dimentional time-harmonic electromagnetic fields E and H is 
represented as: 

ܨ  = ׬ ఓ|ு|మଶ௩ + ఢ|ா|మଶ + ௃ாଶ௝ఠ  (3)  ݒ݀

Where the first two terms represent energy stored in the magnetic and electric fields and the 
third is the energy dissipated or supplied by the conduction currents. 
Eliminating H using relation between E and H, and setting derivatives of this functional 
with respect to E to zero (for minimization), an equation of the form f(J,E)=0 is found. 
Appling Kth order approximation of F at each of the N nodes and enforcing boundary 
conditions results in a system of equations of the form: 

 ൥ܬଵܬ௡൩=൥ݕଵଵ ڮ ڭଵ௡ݕ ⋱ ௡ଵݕڭ ڮ ௡௡൩ݕ ൥ܧଵܧ௡൩ (4) 

Here Ji and yij ( i=1,2,..n and j=1,2,..,n) are known quantities and the electric fields E at each 
node are the unknowns to be determined. This needs inversion of the y matrix and the 
larger the number of nodes, the larger the size of the matrix and hence more computational 
requirements. For example a mesh of a 3-D cube with 1000 nodes (10 nodes per side) and 3 
degree of freedom creates a 3000 by 3000 matrix. Doubling the number of nodes per side 
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gives a system of 24000 by 24000 matrix. Therefore it is necessary to as fewer as possible 
number of nodes is preferable from the point of view of computer resources. On the other 
hand the more the number of nodes the more is the result accuracy. Usually a compromise 
is made between required accuracy and computational resources. For proper grasp of this 
useful technique, the reader is referred to any of the many text books on finite element 
analysis (see for instance Silvester & Ferrari (1990)). 

5.3 MEMS simulation software tools 
During the last decade, and specially in the period 2002-2010, there were a lot of research 

activities and developmental in the area of modeling and simulation tools dedicated to 

MEMS, and a number of such software simulation tools moved from research centers to the 

commercial world. These tools can be classified broadly as: system level modeling and 

simulation tools and detailed device–level tools known as field solvers. Technique used in type of 

tools, have been in use at macro level for some time and have gained maturity. the micro 

level , however . There tools are still going some modification due to the nature of MEMS, 

which comprises many physical domains such as; mechanical, thermal, electrical and optical 

domains. In the following sections, we give a brief overview of these techniques and tools.  

5.3.1 System level tools  
These tools predict the main behavior of the MEMS, using a set of ordinary differential 
equations and non linear functions at block diagram level in terms of input and output of 
each block. These tools are usually required by MEMS Designers for accurate prediction of 
the overall performance of these systems when connected or operated with other circuit 
components and for proper optimization (Lynn Khine & Moorthi P., Hine A. et. al. 2008). In 
addition they enable the designer predict the performance of the device under consideration 
for a set of defined input parameters, it allows him/her to study the effect of variation of 
one or a certain set of parameters relative to other parameters on the overall performance of 
the device, thus leading to optimized design. 

5.3.2 Field solvers  
The majority of these solvers are based on the well-known numerical techniques of finite 

elements (FE) or finite–difference time–domain, methods briefly out lined in the lost section, 

with only few tools based on analytical or asymptotic solution of the governing equation. 

These methods are virtual and can analyze complex geometric shapes. 

Finite-Elements–based tools 

The majority of MEMS software tools now available in the market are based on the well – 
established FE technique. These include ANSYS (COMSOL), ConvectorWare, Intellisuite, 
ABAQUS, and DELEN, to mention only some example. In the following we give a brief 
account of their mostly used tools in the field of MEMS analysis and design.  
a. ConventorWare  

This is a fully integrated MEMS Design environment, the latest version of which is 
convectorWare2010. It runs on PCS and work Stations based on sun Solaris and windows  
This package consists of four main parts; Designer, Architect, Analyzer and Integrator. 
Designer is concerned with design specification and modeling of the MEMS Structure 
including two-dimensional layout, process emulation and finite elements meshing. It 
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includes a full- featured layout editor, foundry access kits , 2D and 3 D import/export 
capabilities, mesh generator and a library of 3D models of standard MEMS packages. It is 
tightly integrated with the other two modules ARCHITECT and ANALYZER, but it can also 
be used as stand- alone package to be integrated with other third-party FEA tools.  

i. ARCHITECT 3D: This module creates schematic models of MEMS designs using 

MEMS component Library, perform fast system level simulations with finite 

elements accuracy and significantly reduce product development time by mean of 

fast simulation speeds.  

ii. ANALYZER: This Module provides a single unified interface to a complete suite of 

3D field solver such as coupled Electro-Mechanics, Piezo–Electric or 

Microfluuidics. With this module the designer can perform: parametric studies to 

optimize design, Incorporate packaging effects such as ambient temperature and 

peruse, Predict and validate experimental measurements, Investigate 

manufacturing effects such as residual stress. 

iii. INTEGRATOR: This module extracts reduced-order models of physics effects for 

use in ARCHITECT. For Example it can be used to add gas damping effects on a 

ARCHITECT model. Similarity it can extract mechanical stiffness of structural 

components such as tethers that can be modeled as a linear or non linear 

mechanical springs a electro statistic forces between electrodes and combs that can 

be modeled as electrostatic springs.  

b. IntelliSuite: 

This is an integrated design environment specifically developed to link the entire MEMS 

organization together. It enables designers to manage their MEMS product throughout it life 

cycle. Intellisuite consists of a number of advanced tools that work together, each covering a 

certain MEMS development stage. The main components of Intellisuite are: 

i. Synble: that allows the designer to capture MEMS at a schematic level, explore 

his/her design, then optimize and synthesize. It has a powerful schematic editor 

specifically developed for MEMS and other multiphysics modeling. 

ii. Synthesis: these are sophisticated algorithms that automatically convert schematics 

into mask layouts or a meshed structure for multiphysics analysis. 

iii. Blueprint: a physical design tool that includes advanced layouts, cross section 

exploration and automated mask to hex mesh. 

iv. CleanRoom: used for creation of process flow and mask set before entering the 

physical clean room thus allowing visual prototype before actual fabrication. 

v. Fastfield: a collection of multiphysics tools featuring coupled electrostatic, 

electromagnetic  and electromechanic engines. 

vi. Extraction: collection of techniques that capture electromechanical and damping 

behavior into compact models. 

c. COMSOL Multi-physics  

COMSOL Multiphysics is a simulation software specifically designed to tackle multi physics 

problem, usually encountered all disciplines in Engineering Design starting from the 

definition of geometry, through meshing and material property definition and ending with 

solving and visualization of results. It is based on solution of the partial differential 

equations that given different physical phenomenon be it electromagnetic, heat transfer, 

structural mechanics, magnetostatics, simultaneously or sequentially solved using finite 

element analysis. 
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By its very nature of structure it is particularly appropriate module for MEMS, modeling 

and simulation, and in addition , it has a specialized module for MEMS, called MEMS 

Module that simulates standard MEMS problems, such as piezoelectric and thin film 

damping problems. 

Finite difference time domain tools 

a. XFDTD Package: 

This is based on finite difference time domain technique (FDTD), for the solution of vector 

Maxwell's equations developed by REMCOM Inc. It is an easy to use package, but it does 

not have the capability of dealing with multidomain (multiphysics) problems.  

5.3.3 Other tools  

In addition to the above mentioned main MEMS Simulation software tools, there are other 

tools most important of which is the hybrid approach in which both system-level and field 

solvers in circuit simulation environment. They rely on a new class of parameterized 

behavioral method that can automatically access relational databases that contain field 

software solution results. These models have been successfully used for analyzing 

packaging effects of inertial sensors and design of PZR pressure sensors (Lorenz G., Greiner, 

K., & Breit S. 2006). 

6. Selected MEMS-based Modelling Examples 

Modeling and simulation can not only be acquired by reading and studying different 

methods and techniques, but through actual involvement in building models, simulating 

and practicing. This is similar to driving a car. Car driving can be learned through reading 

instructors notes, books and articles about car driving, but can only mastered by actually 

driving a car.  

In this section, we illustrate the process of modeling and simulation described in section 2.2, 

by going through an actual case carried out by the author and his coworkers, and highlight 

some few successful cases done by other research workers.  

6.1 Detailed illustrative example on modeling and simulation process 

Micromachined DC and high frequency power sensors 

In order to show how the modeling and simultion process described in section 3.3 is 

implemented in practice, modeling and simulation of micromachined power sensors at both 

the dc and high frequencies (microwave and millimeter waves) is presented. The sensor 

fabrication techniques is based on bulk and surface micromachining of AlGaAs/GaAs 

heterostructures, and the sensor concept is based on transduction principle that converts the 

RF  into thermal power, which is then measured by thermoelectric means (Mutamba et al., 

2001; Ali, I. Kabula M. & Hartnagel H., 2010)). 

Modeling and simulation is based on the solution of the coupled electromagnetic field and 

heat transfer equations, using hybrid finite-element/finite-difference techniques. The model 

can be used as an effective tool for adjustment of design parameters, such as geometric 

configuration of the sensor resistive element, and arrangement of thermocouples around the 

resistor for optimum sensitivity and noise figure.  
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Fig. 3. The structure of the power sensor. left-hand : top view, right-hand-side sectional view 
along A-A’. 

Step 1: Description of the Physical Problem: 

A sectional view of the configuration of the sensor to be modeled is depicted in Fig. 3. The 

sensor is composed of a thermally isolated thin (2 μm) AsGaAs/GaAs membrane region 

with a terminating resistor, in which heat generated by DC or RF power is dissipated and 

converted into heat. A high-thermally resistive membrane region is obtained by selective 

etching of the GaAs against AlGaAs. This helps to increase temperature gradient between 

the resistor region and the rest of the chip, thus leading to high sensitivity. Temperature 

increase in the resistor region is sensed by a set of Gs/Au-Cr thermoelements, whose dc 

output is proportional to the input RF power. Detailed description of technical realization of 

this sensor is given by Mutamba et al., (2001). 

Steps 2,3: The Governing Equations and Approximations: 

Here we consider both the thermal and the electric models. The mathematical model is 

required to be simple enough to be handled by known methods which demand reasonable 

time and cost, and at the same time give an adequate description of the physical problem 

under investigation.  

Thermal model 

A simplified pictorial view of the sensor is shown in Fig. 3 for the purpose of thermal 

modeling. Here the thermocouple wires are not shown, and heat generated by the NiCr 

resistor, is assumed to be distributed throughout the sensor structure mainly by conduction. 

Due to axial symmetry of the sensor structure about it longitudinal axis, we only consider 

half of its geometry as shown in Fig.4. We select Cartesian coordinates (x,y,z) with its origin 

at the sensor input and the direction of power transmission along the positive z-direction.  

In order to obtain a simple and manageable model, the following simplifying assumptions, 
are made: 
i. The presence of the thermocouples is ignored as the metallic part (gold) is very small 

compared to other dimensions.  
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Fig. 4. Simplified half-section used for modeling. 

ii. As a first approximation, heat distribution is assumed to be two-dimensional (in Y-Z 
plane). This assumption can be justified due to the presence of the thermally isolated 
thin membrane whose area dominates the horizontal dimensions of the sensor. 

iii. Constant thermal properties. Although thermal properties, especially thermal 
conductivity of GaAs vary with temperature, these properties were assumed to be 
constant due to the expected moderate temperature rise. 

iv. Radiation losses are ignored as the sensor were to work in a very confined region and 
the expected temperature rise is limited.  

The equation governing heat flow as a result of microwave or dc heating is the well-known 
heat conduction equation, also known as Fourier equation: 

 2 /
T

T Q C
t

 
  


 (5) 

where T is the temperature, α is thermal diffusivity , Q heat generation term, ρ is the density 
and C is the specific heat of the medium .  

Thermal boundary conditions 

These conditions can be obtained from the prevailing thermal conditions at the boundaries 
and the interface between different material layers of the sensor. 
i. Convective heat transfer at boundaries y=0 and y=a. 
ii. Specified temperature at boundaries z=0 and z=L. 
iii. At the interface between different sensor material layers: assuming perfect thermal 

contact leads to the continuity of heat flux and temperature at these interfaces between 
layers. 

iv. Assume initially that the sensor is at a constant temperature To. 
The heat source term, Q, in equation (5), is determined by solving either of two different sets 
of equations, depending on the operation mode of the sensor (dc or high frequency) as 
shown below.  

Electric model  

Here we consider the case of AC and DC case separately, because of their different 
governing equations. 

DC Operation Mode: 

In the case of the dc operation mode, the electrostatic potential equation is used: 
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 ( ) iV q    (7) 

where V is the electrical potential, σ is the electrical conductivity, and qi is the current 
source. In the case of constant electrical conductivity, equation (7) reduces to the simple 
Poisson’s equation: 

 2 /iV q     (8) 

Boundary conditions assumed for solution of equation (8) were that a constant voltage +V 
applied at one arm and –V at the other arm of the CPS With the symmetry condition along 
the longitudinal axis of the sensor, +V was assumed at one arm at input of the sensor and 
zero voltage at the end of the resistor (see Fig. 3). Having found V from equation (8), the 
heat generation term, Q, is obtained as: 

 2Q E  (9) 

where E is the electric field intensity, given by: 

 VE

    (10) 

High Frequency Mode: 

In the case of high frequency operation mode, the heat generation term, Q, is obtained from 
the solution of Vector Maxwell's equations: 

 X
t

HE 


 

  


 (11)  

 X
t
EH E 


  

  


  (12) 

in which E


 and H


 are electric and the magnetic field vectors, and ,  , are respectively 
the permittivity, the permeability and the conductivity of the material (medium) through 
which electromagnetic wave propagation takes place. 

Steps 4 & 5: Solution of Governing Equations: 

If the simplifying assumption (i) – (iv) are used, equation (1) with boundary conditions ii), 
iii) and iv) can be solved analytically using the method of separation of variables. However, 
in the more general case of three-dimensional form of equation (1) with boundary 
conditions (i) to (iv), the versatile numerical methods of finite difference in time-domain or 
finite elements are more appropriate, since they can deal with any sensor structure. 
Investigation of available software packages revealed that XFDTD package, based on finite 
difference time domain technique, is most appropriate for the solution of vector Maxwell's 
equations and FEMLAB, a package based on FEM for solution of the heat equation. As the 
two packages (XFDTD and FEMLAB) are based on different solution techniques using 
different simulation tools, it was necessary to have an interface that links the two packages. 
This was achieved by a special script file written using MATLAB built-in functions. Material 
properties used in the simulation are shown in table 1. 
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Material 
Thermal 

conductivity 
(W/m K) 

Specific 
heat  

(J/kg K) 

Density 
(kg/m3) 

Relative 
permittivity 

Electrical 
conductivity 

(mho) 

GaAs 44 334 5360 12.8 5x10-4 

NiCr 22 450 8300 - 9.1x105 

Au 315 130 1928 - 4.5x107 

Al/GaAs 23.7 445 3968 - 5x10-4 

Table 1. Electrical and thermal properties used in the simulation. 

Step 6: Verification of Solution: 

Due to the small dimensions of the sensor structure, it was difficult to determine 
temperature distribution by direct temperature measurements. Therefore, a technique based 
on thermal imaging was used. The top surface of the test structures were coated with a thin 
film of liquid crystal (R35CW 0.7 from Hallcrest Inc, UK), that changes color with the 
changes in the sensor surface temperature. This change in temperature was monitored by a 
CCD camera connected to a microscope and a personal computer was used to store the 
recorded shots for later analysis. For dc operation mode, a stable current source was used, 
and both the input voltage and current were monitored for accurate determination of input 
power. For RF mode of operation, the current source was replaced by an RF probe that 
connected directly to the input pads of the CPS (see Fig.3). 
In order to show how closely the simulated results resemble the actually expected 
temperature distribution, we compare simulated current density distribution in Fig.5 with 
the an experimental shots of the sensor while it was burning shown in Figs 6,7; one with 
thermocouple (Fig. 6) and the other without thermocouples (Fig. 7). The experimental 
results were obtained by increasing the input power level at small increments until the 
resistor was destroyed at an input power level of about 80 mW. The accumulation of current 
density around the inner corner of the resistor in the simulated result (Fig. 5), explains the 
destruction of the resistor at one of its sharp inner corners. furthermore experimental results 
show that the degree of destruction is more severe ( as illustrated by the size of the elliptical 
shape surrounding the resister) when the thermocouples are removed (Fig. 7). This can be 
attributed to spreading of heat away from the resistive termination by thermocouples when 
they present, thus decreasing level of destruction.  
 

 

Fig. 5. Current density (J) at the inner corner of the resistive element 
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Fig. 6. Measured temperature distribution on the top surface of the sensor structure 
including thermocouple s 

 

Fig. 7. Measured temperature distribution on the top surface of the sensor structure without 
thermocouples 

Step 7: Using the Model 

2-D simulation 

Results obtained from 2-D simulation are shown in figure 8 through 11. Fig. 8 shows a 3D 
color plot of the normalized temperature distribution on the top surface of the sensor. It is 
shown here how temperature is concentrated in the Ni.Cr. resistor region with sharp 
decrease with distances from the resistor edges. In order to have a more quantitative picture, 
an enlarged view of the temperature contour around the resistor region is shown in Fig. 9. It 
can be seen that temperature decreases to about 67% of the peak value (at the resistor) at a 
distance of about 20 μm from the side arm of the resistor (y-direction). Further away from 
the resistor, temperature level reaches about only 33% of its peak value at a distance of 
about 180 μm. Along the x-axis away from the short arm of the resistor, the drop in 
temperature level is even more sharp reaching 67% at 10 μm, and 33% at 105 μm.  
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Fig. 8. Color plot of relative temperature distribution around the NiCr. Resistor. 

 

 

Fig. 9. Enlarged view of temperature distribution around the corner of the resistive 
termination 

3-D simulation 

The three-dimensional form of equations (5-8) were solved with the assumption of 
negligibly small resistor thickness. Fig. 10 shows a color plot of the temperature distribution 
on the top surface of a thin resistor on bulk substrate 150 μm thick. This figure compares 
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very well with the experimentally obtained result of Fig. 9. 6,7, and clearly illustrates the 
elliptic form of surface temperature distribution. To see the effect of the third, z-dimension, 
temperature distribution on a plane cut along the line y-y on Fig. 10 is plotted in Fig.11. This 
figure illustrates the diffusion of heat through the GaAs substrate with peak values of 
temperature directly under the two long arms of the resistor. Thus it shows the effect of the 
bulk substrate that leads to the spreading of temperature away from the resistor region and 
down into substrate. This reinforces the idea behind using thin membrane technology, in 
which case the bulk substrate is removed, in the construction of thermoelectric power 
sensors. 
 

 

Fig. 10. Pictorial color plots of temperature distribution on the surface of the sensor (initial 
temperature 293K) 

 

 

Fig. 11. Simulated temperature distribution on the top surface of the sensor structure along 
x-x 
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6.2 Other examples 
Table 2a,b show respectively selected double and triple physics illustrative examples 

showing the type of MEMS, physical phenomena on which their operations are based, type 

of equations involved in their model and the technique and/or software tools used for their 

simulation. Information given in these tables are only highlights on the main principles and 

the interested reader is advised to consult cited references for more details. 

Physical 
Phenomenon 

MEMS type 
Type of 

Equations 

Simulation Software 
tool/ 

technique 
Reference 

Electromagnetism 
and 

Thermal 

Thermal convertors 
for gas sensors 

Electric 
current flow 

+ heat 
equation 

IntelliSuite TM 
Ijaz et. al.  

(2005) 

Microwave power 
sensors 

Maxwell’s + 
heat  

equation 

XFDTD+ 
FEMLAB 
( FDTD+ 

FEM method) 

Ali, I.et. al. 
(2010) 

Fingerprint sensors
Maxwell’s + 

heat  
equation 

∝  ݓ݋݈ܨ−
Ji-Song, et. al., 

(1999) 

Electromagnetism 
and 

Mechanics 

Parallel-plate 
capacitors 

Maxwell’s + 
Transport 
equation 

FDTD method 
Bushyager et. 

al. (2002) 

Stub tuners 
Maxwell’s + 

equation  
of motion 

FDTD method 
Bushyager et. 

al. (2001) 

Antennas with 
moving parts 

Maxwell’s + 
equation of 

motion 
FDTD method 

Yamagata, 
Michiko 

Kuroda & 
Manos M. 
Tentzeris  

(2005) 

Magnetostaticts 
And 

Mechanics 

Magneto- sensitive 
Elastometers 

Stress tensor 
+ magnetic 

field  
equation 

COMSOL 
Multiphysics 

(F.E.M) 

Bohdana 
Marvalova 

(2008) 

Magnetostrictive 
thin-film actuators

Stress tensor 
+ magnetic 

field  
equation 

Shell–Element 
Method 

Heung-Shik Lee 
et. al.  
(2008) 

Optics 
And 

Mechanics 

Ring laser and fiber 
optic gyroscopes 

  
Riccardo & 

Roberto  
(2008) 

Table 2.a. Double-Physics Problems 
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Physical 

Phenomenon 
MEMSMEMS type Type of Equations 

Simulation 

Software tool/

technique 

Reference 

Electromagnetism 

Thermal and 

Mechanical 

Electrothermal 

Actuators (ETA) 

Electric current flow 

(Jule heating)+  

heat equation+ 

Mechanical 

deflection 

COMSOL 

Multiphysics 

(F.E.M) 

Fengyuan 

& Jason 

Clark 

(2009) 

Electrical, Thermal 

and Mechanical 

Self –Buckling of 

Micromechanical 

beams  

under resistive 

heating 

Voltage equation + 

heat equation + 

Mechanical 

deformation 

Analytical+ 

F.E.M 

Chiao, Mu 

& David 

Lin, 

(2000) 

Table 2.b. Triple-Physics Problems 

7. Concluding remarks and future outlook 

In this chapter we carefully looked at all MEMS features and nature which make their 

modeling and simulation a challenging task have been identified and summarized in the 

following: 

1. Multidomain nature of MEMS calls for consideration of many interacting physical 

phenomena, thus leading to involvement of many types of equations that are coupled 

weakly or strongly depending on the type of MEMS. 

2. Miniaturization: MEMS are by their nature tiny systems, sometimes with very large 

aspect ratios that make meshing a challenging task and demand considerable computer 

resources. 

3. MEMS are very much affected by environmental conditions and need proper 

packaging, which in turn, complicates their modeling and simulation.  

Different types of simulation techniques, as well as software tools based on these 

techniques, have been considered with advantages and limitations of each type. A detailed 

case study that illustrate proper modeling and simulation steps was made and some other 

successful modeling and simulation examples have been highlighted with proper reverence 

to their sources for interested reader. 

The field of MEMS is very promising and much work is needed in the following areas: 

1. The interdisciplinary nature of MEMS and the difficulties that face researchers and 

designers in this ever expanding field, calls for collaborative group work that comprises 

scientists and engineers with different background, such as electrical, mechanical, 

structural (civil) engineers and material scientists together with IT specialists in 

computer modeling and simulation. 

2. Modified Finite difference time domain (FDTD) as well as the multiresolution time 

domain (MRTD) considered among the simulation techniques in this chapter, are 

promising due to their simplicity and efficiency compared to more mature finite 

element technique and more work is needed in development of software tools based on 

these techniques and specifically targeted to MEMS modeling and simulation. 
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