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1. Introduction  

An increase in interconnection density, a reduction in packaging sizes and the quest for low-
cost product development strategy are some of the key challenges facing micro-opto-
electronics design and manufacture. The influence of high-density, small-sized products has 
placed significant constraints on conventional electrical connections prompting various 
fabrication methods, e.g. photolithography, being introduced to meet these challenges and 
ameliorate the rapidly changing demand from consumers. While high-power solid state 
lasers are fundamental to large scale industrial production, excimer laser on the other hand 
has revolutionised the manufacturing industry with high precision, easy 3D structuring and 
less stringent production requirements. Micro-structuring using excimer laser, best known 
as laser ablation, is a non-contact micro- and nano-machining based on the projection of 
high-energy pulsed UV masked beam on to a material of interest such that pattern(s) on the 
mask is transferred to the substrate, often at a demagnified dimension with high resolution 
and precision. The use of mask with desired patterns and beam delivery system makes the 
fabrication in this case accurate, precise and easily controllable. The first part of this chapter 
introduces the fundamentals of laser technology and material processing. In the second part, 
optical interconnects as a solution to ‘bottlenecked’ conventional copper interconnections is 
introduced with emphasis on excimer laser ablation of polymer waveguides and integrated 
mirrors. Key research findings in the area of optical circuit boards using other techniques 
are also briefly covered.  

2. Introduction to laser technology  

The word ‘laser’ has been part of the lexis of the English language since its invention in 1960 
and subsequent commercialisation few years later. It is an acronym that stands for Light 
Amplification by Stimulated Emission of Radiation, which is considered a modified version 
of its predecessor - ‘maser’ (Microwave Amplification by Stimulated Emission of Radiation); 
in other words, laser is an optical maser. The first laser, ruby, emitted red-coloured light at λ 
= 694.3 nm. Just over five decades later, laser (and laser technology) controls a remarkable 
market share in various applications ranging from research and medicine, to manufacturing 
and domestic applications. One of the sectors that have seen dramatic advancement with the 
advent of lasers is medical surgery (e.g. ophthalmology, cosmetic surgery and dentistry). 
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Laser generation has been extensively covered in the literature, but essentially, but 
essentially there are three principles that must first take place: (i) stimulated emission to 
defeat spontaneous emission and absorption, (ii) population inversion to temporarily 
disturb normal distribution - these two processes require movement of species from a lower 
energy level to a higher one, and (iii) a feedback system to amplify the photon population.  

2.1 Laser micromachining (or material processing) 

Laser material processing is generally, though not technically, referred to as laser 
micromachining of engineering materials e.g. polymer, metals, glass and ceramics. This 
definition thus excludes applications of lasers to, for example, human tissues even though 
the mechanism is similar. The possible reason for this exclusive usage might be because 
early laser candidates found application in engineering sectors such as drilling and cutting 
of materials where high energies are needed. For laser micromachining, there are four key 
processes of importance (Figure 1).  
 

 
Fig. 1. Schematic diagram showing key stages of a typical laser material processing. 

Beam generation 
This is the first stage and the backbone of any material processing; its output determines the 
components of the remaining stages. For example, if a ceramic material is to be processed 
then the output at this stage should be a high-powered laser. Furthermore, if the ceramic is 
to be processed with minimum thermal damage then the output beam should, for example, 
be a pulsed laser with short pulse duration to provide a minimum time interaction between 
the beam and the material.  
Beam delivery or propagation 
This involves transporting the output beam to the site of processing or workpiece. What 
constitutes the beam delivery system depends on the application. In general, the elements of 
the stage, whose number and arrangement varies, include various optical devices such as 
mirrors, lenses and attenuator among others. It is therefore imperative that careful 
combination is made to achieve optimum result without losing much power as a small 
fraction of beam energy is lost per element. Also to be considered is the length of the path 
between the laser chamber output window and the workpiece. This needs to be kept to a 
minimum in order to avoid beam profile distortion and divergence. Excimer laser usually 
has the longest beam path with the highest number of optical components while a CO2 laser 
employs the least. 
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Laser beam monitoring  
Many of the laser beam properties are essential for an optimum process. However, three of 
these - energy, beam diameter and beam profile – are highly important in micromachining. 
There are two methods of obtaining the beam energy. In the first approach, the beam is 
sampled during the processing; this provides an accurate account of beam energy utilised 
during a particular process. It is pertinent to note that this task is in some way difficult and 
risky. Three methods of beam sampling: static beam splitter, rotating chopper mirror and 
leaky resonator mirror are discussed in [Crafer & Oakley, 1993]. The second approach is by 
total beam measurement; this approach involves measuring the energy at the workpiece 
using a power meter. Although the method might not totally account for what happens 
during a process, it is easier than the sampling method [Crafer and Oakley, 1993]. A 
common way of examining both the beam diameter and profile is by using low energy to 
irradiate a suitable material; the etched sample is then analysed to measure the diameter 
and observe the profile. This is an indicative method especially when the process is thermal. 
Alternatively, beam profile and homogeneity is monitored using a beam profiler which 
shows the shape of the beam, in real-time, during a process. 
Laser-matter interaction (Laser processing) 
The wave-particle duality concept is quite useful in treating laser-matter interaction. For 
example, laser generation is better described using the quantum (or particle) approach while 
propagation and delivery is suitably described using the wave concept. For laser-matter 
interaction, it is appropriate to use quantum physics. Thus viewing the beam as a packet of 
photons hitting the matter with which it is interacting. When the laser beam strikes the 
material, the photon energy is transferred to the material and subsequently converted to 
other forms of energy depending on the material. With metals, this is transferred to the 
mobile electrons which results in the heat energy that can cause vaporisation and 
disintegration of the metal. However, with non-metals, the energy can either be converted to 
chemical energy required for bond-breaking or heat energy for vaporization. These two 
possibilities depend on the type of material, its bond energy and the wavelength of the laser 
or more precisely the photon energy. Essentially, there are two common mechanisms for 
laser material interactions, which can occur at varying degrees while processing a material. 
 Thermal (photothermal or pyrolytic): This is an electronic absorption in which the 

photon energy is used to heat up the material to be processed and thus part of the 
material is removed as a result of molecule vaporization, such as in CO2 laser cutting. 
This type of process is broadly referred to as laser micromachining. 

 Athermal (photochemical or photolytic): This is a photochemical process whereby the 
material is ablated by direct breaking of molecular bonds when hit by photons (energy) 
of the incident beam. In principle, this is only possible if the photon energy is equal or 
greater than the bond energy of the molecules of the material to be processed. During 
this process, a particular area of the surface of the material is removed with minimum 
(or without any, theoretically) thermal damage to the surrounding material. This 
process is generally called ablation, though photothermal processes are also referred to 
as ablation. Ablation is generally used in reference to polymer and/or soft materials, 
but laser ablation is also possible with other materials such as ceramic and glass. 
However higher fluencies are required in their case. 

The etch rate – the amount of material removed per pulse – is mainly a function of the 
photon energy and the material being processed. However, it is impractical to model laser-
matter interactions based on the aforementioned two quantities as the mechanism is also 
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influenced by numerous other factors (e.g. thermal diffusion, absorption saturation, 
surrounding medium, etc.) such that the measured ablation depths seldom agree with these 
predictions; this necessitates more complex ‘models’ often based on these two quantities 
[Tseng, et al., 2007]. Equations 1 & 2 provide two often referenced mathematical 
representations: Beer’s law and the Srinivasan-Smrtic-Babu (SSB) model [Shin, et al., 2007], 
which are based on pure photochemical and combination of photochemical and 
photothermal mechanisms respectively. The two formulae are similar except that SSB’s adds 
a photothermal part to Beer’s model where L, β, f and fth are the etching depth per laser 
pulse, coefficient of absorption (cm-1), laser fluence per pulse (J/cm2) and threshold fluence 
(J/cm2) respectively.  

 詣 = 	 な 紅斑 健券	 岾血 血痛朕斑 峇 	血剣堅	血	 > 	 血痛朕  (1) 

 詣 = 	 な 紅斑 健券	 岾血 血痛朕斑 峇 + 喧ℎ剣建剣建ℎ結堅兼欠健	血剣堅	血	 > 	 血痛朕	 (2) 

2.1.1 Beam profile  

The most common laser beam profile is the Gaussian beam (TEM00 or fundamental mode) 
schematically shown in Figure 2a. Its beam intensity variation can be described according to 
equation 3, where I0 = Imax = intensity at the centre of the profile, I is the intensity at any 
other point, and r is the radius of the beam taken at a point where the beam axis intensity 
has fallen to な 結態⁄  of its maximum. Although this Gaussian profile is better than and 
preferred to higher order modes, its intensity variation is still a source of concern in laser 
material processing and particularly in laser ablation. For this reason, a modified version - 
which is thought to improve the tapering of the beam profile - is generated with uniform 
intensity across the entire profile similar, in principle, to that shown in Figure 2b. This is 
described as a ‘top-hat’ (or ‘flat-top’) profile perhaps due to the ‘flatness’ of the top of the 
profile. As shown in Figure 2c, a top-hat profile is obtained from its Gaussian counterpart by 
taking the energy from the weak intensity region, where beam intensity distribution is lower 
than な 結態⁄  (i.e. 13.5 %) of the centre and folding it back into the region within the beam 
waist. A point should be made here: saying that a laser operates in a single mode e.g. TEM00, 
simply means that this is the dominant mode of operation just like a given wavelength 
implies the fundamental (i.e. dominant) wavelength of operation. 

 荊 = 	 荊待結貸岫追 追轍斑 岻鉄 		 (3) 
 

 
Fig. 2. Typical laser bean profile (a) Gaussian beam profile, (b) overlapping of Gaussian 
profile to generate ‘top-hat’, and (c) 'Top-hat' beam profile.  
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2.1.2 Ablation threshold 

The ablation threshold is the point at which the applied energy density is enough to cause 
ablation either photolytic or pyrolytic. The value of this varies from polymer to polymer 
depending on the nature and strength of the bonds in the polymer and also on laser 
wavelength (Tables 1 & 2). An ablation threshold can be obtained from a plot of etch rate 
against a logarithmic scale of fluence at zero ablation rate [Jackson, et al., 1995; Tseng, et al., 
2007]. Zakariyah (2010) obtained a threshold as the x-intercept value on a graph of ablation 
rate against incident fluence. Irrespective of the base of the logarithmic scale taken, the two 
approaches are found to produce the same value. Table 2 shows a list of common bonds in 
polymers with their respective bond energies, which need to be overcome during any laser 
ablation regardless of the nature of the mechanism. For photochemical ablation, the laser 
wavelength has to be carefully chosen such that the photon energy obtained from the laser is 
equal or greater than the bond energy of the polymer to be processed. When working below 
this threshold, no ablation is expected to occur, however, the chemical properties of the 
materials are subject to certain changes. Furthermore, operating at well above the threshold 
can cause or increase the heat-affected zone (HAZ) and debris deposition. The former is due 
to high energy while the latter is as a result of bombarding the ejected materials. It should be 
noted that intense bombardment of ejected particles above the ablation zone can retard the 
ablation rate. This is because the ejected materials might absorb fractions of the incoming 
beam thus reducing the effective fluence at the ablation zone. Wavelength is one of the 
factors that determine the thresholds of ablation. For example, the ablation threshold for 
PMMA  (PolyMethyl MethAcrylate) is ~150 mJ/cm2 at 193 nm and ~500 mJ/cm2 at 248 nm – 
this is a 3-time increase in value between the two wavelengths. The rule-of-thumb for laser 
ablation of polymers is to have lower threshold fluences for ablation at shorter wavelengths 
[Pfleging, 2006]. 

 

Material Fluence 

(mJ/cm2) 

λ 
(nm) 

 Material Fluence 

(mJ/cm2) 

λ 
(nm) 

PS 15.3 193 PMMA 1501  193 

PET 18.4 193 Silicon nitride 195 - 

Truemode™ acrylate 

polymer 

20 248 SiO2 350 - 

PC 21.5 193 PMMA 500 248 

PI 25.1 193 Nd:glass 500 193 

Photo resist 30 - Nd:YAG 800 193 

PC 40 - Glass, metal 

oxide 

700-1200 - 

PI ~ 40  248 Nd:YAG 1200 248 

PI 50 308 Nd:glass 1600 248 

PI 100 355    

Table 1. Ablation threshold fluence for some selected material [Chen, Y-T., et al., 2005, 
Jackson, et al., 1995; Meijer, 2004; Pfleging, 2006; Yung, et al., 2000; Zakariyah, 2010; Zeng, et 
al., 2003]. 
                                                                 
1 A threshold of 33.8 mJ/cm2 is reported for PMMA at 193 nm by Chen, Y-T, et al. (2005) 
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Group Bond Energy (eV) Group Bond Energy (eV) 

C = C 7.0 O-H 4.5

C = O 6.7, 4.2 H-H 4.6

Si-Si, Cl-Cl 1.8 – 3 O-O 5.1

C-H 3.5 C-C 6.2

C-N, C-C 3 – 3.5 C-O 11.2

-N = N 3.5, >4.8 Benzene Ring 4.9, 6.2, 7.75 

Table 2. Table showing typical bonds in photopolymers and their respective bond energies 
[Basting, 2005; Crafer & Oakley, 1993; Meijer, 2004; Tseng, et al., 2007]. 

2.2 Industrial laser – Excimer  
Lasers can be classified based on a number of factors e.g. active medium (solid, liquid and 
gas), output power (low, medium and high power lasers), excitation method (electrical, 
optical and chemical), operating mode (continuous wave, pulsed mode and Q-switched 
output mode), efficiency and applications. CO2, Nd:YAG and excimer lasers, with Ti-
Saphire following suit, are the key lasers in material processing due to their relatively high 
power. These three form a complete laser assembly in PCB (printed circuit board) 
manufacturing processes. Excimer laser is described here as it is the prominent laser 
candidate for polymer waveguide fabrication; however, a UV Nd:YAG has recently been 
reported [Zaakriyah, et al., 2011] as a competitive alternative. 
An excimer laser - a commonly used gas laser and the halide of noble gases – obtained  its 
name from the contraction of the term ‘EXCIted diMER’. Because a dimer strictly refers to a 
molecule composed of two similar subunits (ions, monomers, etc.), it is therefore more 
technical to refer to excimer as ‘exciplex’ meaning EXCIted comPLEX. The wavelengths of 
excimer lasers vary from about 190 nm (deep UV) to 350 nm (near UV)2 (Figure 3) but ArF, 
KrF and XeCl are the most commonly used. F2 (λ = 157 nm) laser is sometimes classified as a 
gas laser and sometimes as an excimer laser as implied in [Basting, et al., 2002; Tseng, et  
 

 
Fig. 3. A graph of photon energy (eV) against excimer laser wavelengths. 
                                                                 
2 Basting, et al., (2002) put the range between 126 nm and 660 nm (visible region). 
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al., 2007]. The pulse duration and repetition rate are in the ranges of 5 – 50 ns and 1 – 100 Hz 
respectively.  
Since its discovery and introduction into the market in 1970 and 1977 respectively, the 
excimer laser has turned out to be a multi-purpose, multi-featured laser with increasing 
market shares in industrial and medical applications. Its first commercially available 
product from Lamda Physik is called EMG 500 [Basting, et a1., 2002]. Although other lasers 
such as YAG and CO2 lasers are also extensively used in High Density Interconnection 
(HDI) technology, the excimer laser ablation is indispensable when it comes to ‘fine’ finish 
micro- and nano-fabrications. This is particularly true for hard and delicate materials. This is 
largely due to its wavelength, pulse duration, and of course its pulse energy allowing for 
what is generally termed as a ‘cold ablation’ process. The excimer laser also excels others in 
its ability to ‘mask-project’ patterns, using stencil or metal-on quartz masks [Tseng, et al., 
2007], on to a sample with a minimal HAZ. The minimal HAZ is argued to be due to the 
short interaction between the laser beam and the material. In addition, the short pulse 
duration of the excimer is also a contributing factor. Nevertheless, picosecond and 
femtosecond lasers are now available today. These classes of lasers are designed to further 
reduce the HAZ. They are also characterized by higher etch rate, strong absorption by the 
material, improved surface roughness and lower ablation thresholds [Li, L., et al., 2011; 
Sugioka, et al., 2003]. 
These aforementioned features of the excimer laser have attracted and favoured its use not 
only for polymers [Wei & Yang, 2003] but also with other materials such as ceramics 
[Ihlemann, 1996], glasses [Tseng, et al., 2007] and silicon [Li, J. & Ananthasuresh, 2001] 
which are often hard to machine. Besides, excimer lasers are now used for surface 
modification of various materials. Pfleging, et al. (2006) have used excimer at fluences below 
the ablation threshold to fabricate single mode optical waveguides in PMMA similar to that 
employed using CO2 laser in [Ozcan, 200 8]. Thomas, et al. (1992) also used an excimer laser 
to effect changes to the chemical structures of materials (polymer and ceramic) with 
potential application in enhanced material adhesion and surface wettability among others.  

3. Polymer waveguide fabrication for optical interconnect on PCB  

3.1 Optical Interconnects (OI) 

The miniaturisation in consumer electronics, dictated by the rise in demand for more 
features and the change in the manufacturing technology, has caused an increase in the data 
rate on the micro-levels such as backplane, board-to-board, and chip-to-chip. The bottleneck 
for copper transmission in PCB with high interconnection density and high-frequency is 
more pronounced at the 10 Gb/s limit where problems such as crosstalk, electromagnetic 
interference (EMI) and power dissipation, inter alia, cannot be tolerated [Holden, 2003; 
Offrein, 2008; Shioda, 2007]. To overcome this barrier, optical interconnect – as it has been 
successfully used for long haul communication - is being considered. The deployment 
suggested here is not to overhaul traditional copper technology but to create a hybrid 
electric-optical interconnect.  
To address the bottleneck caused by the inherent problems in the copper transmission used 
in backplanes and boards, the last two decades have witnessed vigorous research input and 
output from researchers around the world to deploy OI on PCB. Japan, the EU and Asia-
Pacific/North America, who led in the microvia technology, are also key figures in the OI 
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deployment [Holden, 2003; Lau, 2000; Shioda, 2007]. Undoubtedly, the cost-effectiveness of 
OI is a major consideration if it is to be implemented [Huang, et al. 2003]. Hopkins & Pitwon 
(2007) asserted that at higher bandwidth for current and near future requirements for 
telecom and datacom systems, the application of OI at the backplane is unavoidable. It was 
argued that the cost of solving the bottleneck of copper transmission will surpass that of 
implementing OI at ~ 6.25 Gb/s (Fig. 4). Furthermore, the total power loss, commonly 
referred to as power budget, is also a consideration and is currently being investigated. It is 
written in [Uhlig & Robertson, 2005] that a ~20 dB would be an acceptable total loss for an 
optic link at the backplane; Dangel, et al. (2006) put this at 12 – 15 dB for board-to-board 
optical link of 30 – 100 cm. Uhlig and Robertson (2005, 2006) argued that at some point along 
the transmission, optical amplification would be needed for a realistic OI on PCB to be 
implemented. While optical loss is important, reliability (thermal cycling, athermal aging, 
high temperature reflow, environment, humidity tests, etc.) is another key characteristic and 
requirement for the deployment of the polymer waveguide [Dangel, 2006; Hwang, et al., 
2010].  
 
 

 
Fig. 4. Relative cost of copper technologies as compared to optical technologies on PCB 
[Adapted from Hopkins & Pitwon, 2006]. 

The two OI approaches under consideration are either unguided or guided; both having 
their pros and cons. The latter can be further divided into fibre- and polymer-based 
technologies with silicon-based waveguides also gaining momentum (Figure 5). Current 
literature reports suggest that a polymer-waveguide is the favoured candidate. This is 
because: (i) polymers are relatively cheap, (ii) low acceptable loss is achievable with 
polymer, (iii) they are easily available, and (iv) most importantly, polymer waveguide 
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fabrication which is being considered, is compatible with the standard processes employed 
in PCB manufacturing such as soldering temperature, Coefficient of Thermal Expansion 
(CTE) matching, thermal stability and stress during lamination [Tooley, et al., 2001].  

 

 
 

Fig. 5. Hierarchical classification of optical data communication system based on medium of 
transmission. 

3.2 Deposition of optical polymer  

The stages involved in laser ablation of a polymer waveguide are typified in Figures 6 and 7. 
In the first stage, liquid optical polymer is spun on FR4 substrate and subsequently UV 
cured to form both the lower cladding and the core layers. The samples were then dried in 
an oven (at 80 0C – 100 0C for about for about 60 minutes for Truemode™ acrylate polymer, 
∆n ≈ 0.03 variable @ 850 nm) to ensure they were moisture-free. Laser ablation is carried out 
in the second stage to machine channels such that a ridge of polymer is left in-between the 
channels to form the waveguide. For one or more adjacent waveguides, the number of 
grooves required is equal to (n+1), where n is the number of adjacent waveguides. Finally, a 
layer of upper cladding is deposited using spin coating (or any other suitable coating 
technique) and then UV cured.  
A single layer of waveguide fabrication is common as this is currently enough to provide 
the data rate requirements for OI, but a multilayer waveguide has also been demonstrated 
[Hendrickx, et al., 2007a, 2007b; Matsuoka, et al., 2010]. Multimode waveguides are also 
common; dimensions such as 20 µm × 20 µm, 30 µm × 30 µm, 35 µm × 35 µm, 45 µm × 45 
µm, 50 µm × 50 µm, 50 µm × 20 µm, 70 µm × 70 µm, 75 µm × 75 µm, 85 µm × 100 µm have 
already been reported [Albrecht, et al., 2005; Bamiedakis, et al., 2007; Dangel, et al., 2004; 
Immonen, et al., 2005, 2007; Liang, et al., 2008; Tooley, et al., 2001; Van Steenberge, et al., 
2004; Zakariyah, 2009, Zakariyah, et al., 2011]. Two or more adjacent waveguides with a 
pitch of 250 µm [Albrecht, et al., 2005; Horst, 2009; Hwang, et al., 2010; Kim, et al., 2007; Van 
Steenberge, et al., 2004] is preferred as it is the pitch used for Vertical Cavity Surface 
Emitting Lasers (VCSEL) and photodector arrays, but other pitch sizes such as 80 µm 
[Dangel, et al., 2007], 100 µm [Dangel, et al., 2004] and 125 µm [Matsuoka, et al., 2010; Van 
Steenberge, et al., 2006] have also been used. Since the optical link required for OI is 
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relatively short, loss due to multimode is acceptable and that alignment between various 
optical components would be relaxed. However, single mode waveguides is much suitable 
with silicon-based waveguides due to their high refractive indices, though they still pose 
alignment challenges [Horst, 2009]. Papakonstantinou, et al. (2008) reported a low cost 
method of achieving high alignment accuracy. 
 

 
Fig. 6. Schematic diagram (side view) of the three major stages in the fabrication of optical 
waveguides by laser ablation. 

 

 

Fig. 7. (a) Flow diagram of the processes involved in patterning optical polymer waveguides 
using laser ablation, and (b) Schematic flow diagram showing procedure for depositing 
optical polymer on an FR4 substrate. 

3.3 Laser ablation of polymer waveguides  

Polymer waveguide fabrication for optical-PCB applications has been reported using a 
number of techniques, and more methods are still emerging. Selviah, et al. (2010) reported 
the use of four techniques - photolithography, laser direct writing, inkjet printing and laser 
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ablation - in a flagship entitled ‘Integrated Optical and Electronic Interconnect PCB Manufacture 
- OPCB’. However, excimer laser ablation of optical waveguides is an emerging and 
competitive approach as it involves fewer steps when compared to others with great 
flexibility in pattern design. Furthermore, laser micromachining is currently being used for 
the drilling of vias for blind, buried and through holes in PCB manufacturing making it a 
more suitable choice when compatibility issues are taken into consideration. The key feature 
of this class of laser i.e. excimer is its wavelength and pulse duration. The latter reduces the 
degree of thermal diffusivity while the former is a key to high-energy intensity, high 
resolution and absorptivity of the laser beam not only in the polymer but also in tough 
materials such as glass [Tseng, et al., 2007]. The pulse duration of excimer laser is of 
significance when it comes to quality because shorter pulse width lasers give better 
machined quality though it is a costly task quality though it is a costly task [Chen, X. & Liu, 
1999]; it also helps in reducing the ablation threshold [Ihlemann, 1996]. In fact most of the 
close competing lasers, for example YAGs and Ti-Sapphire, are found to operate in the UV 
regions and/or with very short pulse duration, thus intensifying competition.  
The suitability of a UV laser (e.g. excimer) for a photochemical ablation over any other laser 
operating in the IR (or visible) region of wavelengths, such as CO2, could be demonstrated as 
follows. The photon energy is given by 継 = ℎ荒, which is inversely proportional to its 
wavelength, thus a CO2 laser operating at 10.6 µm will produce an energy more than 40 times 
less than that produced by a 248 nm KrF laser. Obviously, this is not in the order of magnitude 
of the energies for chemical bond scission of typical polymers, usually between 3 – 8 eV 
[Tseng, et al., 2007]. Increasing the number of pulses to match the required bond energy will 
merely result in a cumulative heat effect on the polymer surface. It is thus clear that excimer 
lasers have the right order of photon energy to athermally ablate polymers, while on the other 
hand, IR laser sources have photon energies much lower than 3 eV causing the dominance of a 
thermal mechanism. Therefore, in principle using the aforementioned assertion, laser of a 
maximum wavelength of 414 nm is required in order to photochemically ablate a polymer 
material with a bond energy of 3 eV. There would be a shift in the dominance of the 
mechanism by changing the wavelength of the laser source. For example, a shorter wavelength 
e.g. 355 nm would guarantee or increase the dominance of a photochemical process. On the 
other hand, a longer wavelength e.g. 1064 nm in the IR would not only reduce the dominance 
of photochemical but also initiate thermal process for the same polymer.  
 

 
Fig. 8. Samples machined at 30 Hz, 50 shots per point and 3.6 mm/min with different 
fluences of 80 mJ/cm2. 
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In Figure 8a above, a straight, shallow track is machined in an acrylate-based photopolymer 
while in Figure 8b above, two parallel tracks were etched leaving a ridge that constitutes a 
waveguide. In this case no upper cladding (as per stage 2, Figure 6) is applied. Sometimes, 
the ridge or waveguide may not be continuous. To examine this, light can be passed into 
one end of the guide for possible detection at the other end i.e. backlighting, as shown in 
Figure 9 where a single multimode waveguide of 50 µm × 35 µm and 60 mm long was 
illuminated from behind using a Flash™200 optical measuring device. The structure was 
made by ablating ~200 µm wide grooves in Truemode™ polyacrylate. Furthermore, 
waveguides can be ‘crossed’ at 90 degree (Figure 10) or other shapes may be desired. While 
excimer laser ablated waveguides is favoured, UV Nd:YAG (λ = 355 nm) [Van Steenberge, et 
al., 2004; Zakariyah, et al., 2011] and 10.6 µm CO2 [Zakariyah, 2010] have been demonstrated 
as promising candidates especially for mass production at a low-cost.  
 

 
Fig. 9. Excimer laser ablation of optical waveguide showing cross-section of a 50 µm x 35 µm 
multimode waveguide in Truemode™. 

 

 
Fig. 10. Waveguides crossed over at 90 degree to each other machined at 100 mJ/cm2, 45 
shots per point, 3.3 mm/min, 25 Hz and a single pass showing (a) a schematic diagram, and 
(b) an SEM image of an initial trial. 

3.4 Integrated mirror fabrication   

Optical signals on PCBs need to be routed to different parts of a device, such as between the 
boards of a backplane, if OI is to be fully utilised. Various proposals have been made on 
how to direct signals out of the plane of the board. These include 45-degree ended optical 
connection rods, microlens, 900-bent fibre connectors, 450-ended blocks, 450-ended I-shape 
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waveguides, optical coupler and microprism. These aforementioned concepts of out-of- 
plane coupling utilises blade cutting, laser ablation, moulding, dicing and RIE among others 
with each having its benefits and limitations [Byung, et al., 2004; Cho, et al., 2005; Cho, 2005; 
Teck, et al., 2009; Van Steenberge, et al., 2006]. To improve the coupling efficiency, Glebov, 
et al.(2005) proposed a curved micro-mirror instead of the flat 45-degree commonly 
employed.  
Coupling light in and out of the polymer waveguides could be achieved by relying on the 
air/vacuum refractive index which is capable of causing total internal reflection (TIR) 
(Figure 11a) at this interface as used in [Teck, et al., 2009], but this can be difficult in real 
application because: (i) a vacuum is not guaranteed in a typical electronics assembly, (ii) air 
content and temperature are subjects of the environmental conditions, and (iii) even if air 
refractive index is guaranteed to be constant, air reflectivity is not efficient for coupling. For 
these reasons, end facets of mirrors are coated with a metal to improve its reflectivity and 
for a good surface finish. The chosen deposition technique depends largely on the sample to 
be coated and adhesion adhesion inter alia. For example, the authors of [Glebov, et al., 2005] 
used sputtering to deposit a thin layer of gold on the mirror surface before filling the trench 
with upper cladding; similar process was used for laser ablated mirror [Van Steenberge, et 
al., 2006]. It should be noted that there is a potential of light scattering or reflection at the 
clad-core interface [Hendrickx, et al., 2007a, 2007b]. Furthermore, the inaccuracy of the 
fabricated mirror angle can cause a significant reduction in the amount of light emanating 
from the core-clad exit of the waveguide to that reaching the metallised mirror surface thus 
affecting the coupling efficiency; a short path with a minimum angle deviation can mitigate 
this challenge. 
 

 
Fig. 11. Mirror fabrication schemes (a) TIR is used to deflect incoming signal out of the 
waveguide at the waveguide-air interface, and (b) light is coupled from a metal deposited at 
the surface of mirror trench which is the trench filled with cladding material. 

While the out-of-plane coupling scheme is gaining impetus, there is no doubt that in-plane 
lateral routing of optical signals is also needed. A typical system architecture would require 
routing of signals not only from one layer to the other, but also within a layer; the latter 
would be extremely important if OI is extended to the board (and even chip) level as various 
roadmaps have laid down this possibility. Figure 12 is a schematic diagram of the in-plane 
mirror fabrication, which can be used to couple light between multiple components in the 
same layer. With this design, an effective turning angle of zero, 90-degree and multiples of 
90-degrees are possible; a scheme demonstrated in [Glebov & Lee, M-G., 2006; Lamprecht, et 
al. 2009; Zakariyah, 2010]. Glebov & Lee, M-G. (2006) placed a vertical terminator at the end 
of the waveguide to form the mirror with a loss of 0.5 – 1.0 dB recorded for this approach; 
however, Zakariyah (2010) employed excimer laser ablation to manufacture the 450 lateral 
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mirrors. It is argued [Zakariyah, 2010] that laser ablation is a more suitable fabrication 
technique as it allows for both the waveguide and the mirrors to be manufactured using a 
single process on the same system. The laser ablation approach was also used for out-of 
plane mirror coupling such as in [Teck, et al., 2009] for 3D out-of-plane coupling.  
 

 
Fig. 12. Proposed 2D in-plane scheme showing (a) 45-degree in-plane coupling mirror 
design with 180-degree effective turning angle, and (b) 45-degree in-plane coupling mirror 
design with zero-degree effective turning angle. 

3.5 Loss measurement 

Signals launched at one end of an optical waveguide are not ideally identical in many cases to 
those arriving at the receiving end, either due to attenuation (change in amplitude) or 
distortion (change in waveform). These losses (propagation, coupling, angular misalignment, 
etc.) are quantified using a logarithmic unit called decibels (dB) using equation 4, where P1 and 
P2 represent the input and output power respectively. For a loss, it is a negative dB while a 
positive value indicates a power gain, usually obtained in amplifiers or amplification circuits. 
Sometimes the negative sign is omitted but replaced with ‘loss’ to mean attenuation in signal. 

 詣剣嫌嫌	岫穴稽岻 = など log怠待 椎鉄椎迭 (4) 

Reports have shown different values for the waveguide propagation loss depending mainly 
on the materials and the fabrication process used; Teck, et al. (2009) put the loss values in 
the range of 0.05 – 0.6 dB/cm, and the loss at a datacom (λ = 840 nm) in the range of 0.01 
dB/cm – 0.8 dB/cm was given in [Holden, 2003]. Propagation loss of 0.24 dB/cm was 
recorded for a single mode waveguide in polyetherimide at 830 nm using laser ablation 
[Eldada, 2002]. A polymer waveguide manufactured by excimer laser ablation produced a 
propagation loss of 2 dB /cm at 1550 nm [Jiang, et al., 2004]; this high loss was attributed to 
the sidewall roughness of the guides. At 850 nm, propagation loss between 0.04 dB/cm and 
0.2 dB/cm and 0.04 dB/cm and 0.18 dB/cm are reported for flexible and rigid waveguides 
respectively measured for different polymers [Shioda, 2007]. Table 3 is a list, though not 
exhaustive, of recent optical waveguide reports. While propagation loss is dependent on the 
waveguide characteristics, it is possible to reduce the insertion loss by reducing the coupling 
efficiency. One way of achieving this is through a good alignment between the coupling 
device and the waveguide. Jiang, et al. (2004) proposed an excimer laser ablation of the end 
facets for efficient coupling of light which in turn can reduce the loss. 
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Material  Process 
Waveguide 
Dimension 

Loss Reference 

   Waveguide Mirror  

Custom 
multifunctional 
acrylate based 
photo-polymer  

UV Laser Direct 
Writing  
(He: Cd, 325 nm 
and 3 mW) 

50 µm ×  
50 µm 
multimode 

< 0.17 
dB/cm @ 
850 nm & < 
0.5 dB/cm 
@ 1300 nm 

- 

Tooley,  
et al., 2001; 
Walker,  
et al., 2008 

SU-8-50 epoxy 
(core) & MR-
L6100XP (cladding)

UV Lithography 
85 µm ×  
100 µm  

0.60 ± 0.03 
dB/cm at λ 
= 850 nm 

1.8 – 2.3 dB 
(estimated)

Immonen,  
et al., 2005 

Perfluorocyclobuta
ne (PFCB) 

Rubber molding 
47 µm × 
41µm 

0.4 dB/cm 
(1300 nm) & 
0.7 dB/cm 
(1550 nm) 

- 
Lee, B-T.,  
et al., 2000 

Photosensitive 
polymer  

UV 
photolithography

30 µm ×  
30 µm  

0.06 dB/cm 
(850 nm) & 
~ 0.25 
dB/cm 
(1310 nm) 

- 
Matsuoka, 
et al., 2010 

- Imprinting  
50 µm × 
50µm 

0.035 
dB/cm  
(850 nm) 

0.5 dB per 
each facet 

Hwang,  
et al., 2010 

Truemode™ 
acrylate-based 
photopolymer  

Excimer Laser 
Ablation  
(3 ± 0.5 J/cm2, 
200 Hz & 240 
µm/s ablation 
speed) 

50 µm ×  
50 µm 

0.13 dB/cm 
at 850 nm  

- 
Steenberge, 
et al., 2006 

Polycarbonate 
(cladding) epoxy 
resin (core) 

Hot-embossing  - 
0.5 dB at 
850 nm 

- 
Kim,  
et at., 2007 

Polysiloxane-based 
polymer  

Photolithography 
and dry etching  

8 µm × 8 µm 
single mode

0.17 dB/cm 
at 1310 nm 
& 0.43 
dB/cm at 
1550 nm 

- 
Usui,  
et al., 1996 

Truemode™ & 
ORMOCER  

Photolithography 
and Excimer 
Laser Ablation  

50 µm ×  
50 µm two 
layers 

0.12 dB/cm 
at 850 nm 

- 

Hendrickx, 
et al., 2007a, 
2007b; 
Steenberge, 
et al., 2006 

Proprietary to 
Mistui Chemicals 
Inc., Tokyo, Japan 

Excimer laser 
ablation (mirror) 

70 µm ×  
50 µm 

0.1 – 0.3 
dB/cm at 
850 nm  

< 4 dB loss 
for two 450 
82 mm long 
mirrors 

Teck,  
et al., 2009 
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Material  Process 
Waveguide 
Dimension 

Loss Reference 

   Waveguide Mirror  

UV curable resins 
(core) 

Hot-embossing  
60 µm ×  
60 µm 

~ 0.1 
dB/cm at 
850 nm 

- 
Yoon,  
et al., 2004 

Photopatternable 
polymer 

Photolithography 
(WGs) & 
Microdicing 
(mirrors)  

30 µm ×  
30 µm 

0.05 dB/cm 
at 850 nm  

0.5 – 0.8 dB 
at 850 nm  

Glebov,  
et al., 2005, 
2007. 

Photosensitive 
acrylate polymer 

Photolithography 

50 µm × 50 
µm (250 µm 
pitch) & 35 
µm × 35 (100 
µm pitch) 

0.035 – 0.05 
dB/cm at 
850 nm & 
0.12 dB/cm 
at 990 nm 

- 
Dangel,  
et al., 2004 

ORMOCER - 
≤ 50 µm ×  
10 µm 
multimode 

- - 
Uhlig,  
et al., 2006 

Truemode™ 
UV Nd:YAG 
Laser Ablation 

45 µm ×  
45 µm  

1.4 ± 0.5 
dB/cm at 
850 nm  

- 
Zakariyah, 
et al., 2011 

Polysiloxane 
Casting + Doctor 
blade  

- 
0.05 dB/cm 
at 850 nm 

- 
Kopetz,  
et al., 2004. 

Fluorinated acrylate 
polymer 

Soft molding 
(core) & spin-
coating 
(cladding) 

70 µm ×  
70 µm  

- - 
Liang,  
et al., 2008 

Epoxy resin Spin-coating  
50 µm ×  
50 µm  

0.15 dB/cm 
at 850 nm 

- 
Albrecht,  
et al., 2005 

Siloxane polymer Photolithography 
50 µm ×  
20 µm 

0.03 – 0.05 
dB/cm at 
850 nm 

- 
Bamiedakis, 
et al., 2007 

SU-8 (NANOTM 
SU-8-50) 

Photolithography
50 µm ×  
50 µm 

- - 
Chen, Y-M, 
et al., 2005 

Deuterated PMMA 
(core) & UV-cured 
epoxy resin 
(cladding) 

Spin coating, 
photolithography
& RIE  

40 µm ×  
40 µm 

< 0.02 
dB/cm at 
830 nm  

0.3 – 0.7 dB  
Hikita,  
et al., 1998 

Table 3. Optical polymer waveguide fabrication techniques 

4. Conclusion  

In this chapter, the author presented the need for OI for both intra- and inter-board 
applications due to prevailing limitations with electrical interconnection on the PCB despite 
the various rectifying measures being considered. For successful implementation of OI, the 
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following are needed: materials that would be compatible with PCB manufacturing 
procedures; fabrication techniques that would be easy, cost effective and efficient from the 
production point of view; and finally materials / waveguides that would satisfy the optical 
power budget requirement. A polymer-based waveguide is favoured for this technology 
primarily due to its low cost and compatibility. Multimode polymer waveguides with 
typical dimensions 50 ± 20 µm square are common as it relaxes alignment constrain thus 
lowering coupling. While various fabrication techniques have been reported with new still 
emerging procedures, laser ablation is a preferred approach since it is the technique 
currently being used for the drilling of µvias, which makes it a much compatible candidate. 
Furthermore, for the fabrication of integrated mirrors, either in-plane or out-of-plane, laser 
ablation using an excimer laser for example, is a much suitable option for this due to its 
excellent laser matter interaction, resulting in clean removal at micro-level scales. In 
addition, the mask projection available with excimer laser makes it possible for complex 
features to be easily defined. Although the cost and speed of excimer laser could be an issue 
from the production point of view at this stage of the deployment, other lasers such as UV 
Nd:YAG and CO2 can offer both prototyping and mass production opportunities as it has 
been demonstrated, thus making laser ablation an all-encompassing technique meeting 
required production speed, cost, efficiency and quantity. In light of this, the chapter also 
provides an overview of laser technology for material processing and in particular for 
polymer waveguide fabrication.  
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