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1. Introduction  

Sex hormone-binding globulin (SHBG) is a sex steroid binding protein, originally described 

in humans as the major binding protein for estrogens and androgens in plasma (Anderson, 

1974; Avvakumov, et al, 2010). By governing equilibrium conditions in plasma between 

bound and free sex steroids, SHBG regulates the availability of the latter to hormonally 

responsive tissues. Along with regulating free steroid concentrations in plasma, it is 

increasingly evident that SHBG also participates in other biological processes. These 

include, but are not limited to- activation of a rapid, membrane based steroid signaling 

pathway in tissues such as the prostate and breast (Rosner et al, 2010); spermatogenesis 

(Selva and Hammond, 2006); and a yet to be determined consequence of co-localization with 

oxytosin in brain cells (Caldwell et al, 2006).  

Plasma based SHBG is extensively studied, especially in the context of its regulation of 

free steroid concentrations and epidemiologic associations. The origin of plasma SHBG is, 

for all intents and purposes, the liver (Khan et al, 1981; Pugeat et al, 2010) (a differentially 

glycosylated isoform, androgen binding protein (ABP) is synthesized in the testis 

(Vigersky et al, 1976)). However, we now know that SHBG is also synthesized, albeit to a 

much lesser degree, in certain hormonally responsive tissues (Kahn et al, 2002). Early 

studies demonstrated immunoreactive SHBG in the prostate and breast (Bordin & Petra 

1980; Tardivel-Lacombe et al, 1984; Sinnecker et al, 1988; 1990; Meyer et al, 1994; Germain 

et al, 1997), though its origin (local synthesis vs. import from plasma) was unclear. Other 

studies demonstrated SHBG mRNA in certain nonhepatic tissues (Larrea et al, 1993; 

Misao et al, 1994; 1997; Moore et al, 1996; Murayama et al, 1999), and one reported both 

SHBG protein and mRNA together in fallopian tube tissue (Noé, 1999). In 2002, we 

reported that human prostate tissue expresses both SHBG mRNA and protein, as do 

prostate cancer cell lines (Hryb et al, 2002), suggesting that SHBG is indeed locally 

                                                 
* Corresponding Author 

www.intechopen.com



 
Sex Steroids 

 

36

expressed by prostate cells. We therefore set out to ascertain the biological functions 

associated with locally expressed SHBG in the prostate. High on our list was that locally 

expressed SHBG could regulate the prostate cellular response to androgen signaling by 

modulating the expression of androgen responsive genes, referred to herein as the 

“androgenome”.  

In this chapter, we first present an overview of human SHBG gene expression, as recent 

studies from our group and Pinós et al, have shown it to be far more complex than 

previously thought. We then review our work on the effects of SHBG on the prostate 

androgenome, along with our most recent findings on how SHBG modulates the 

expression of specific and noteworthy androgen receptor (AR) responsive genes. We 

conclude by addressing how SHBG, through its effects on the androgenome, might affect 

prostate biology, and how altered SHBG expression may influence prostate cancer 

progression.  

2. SHBG gene structure and expression  

2.1 Introduction 

In plasma, SHBG exists as a homodimer, whose subunits are derived from an eight-exon 

long transcript as a 402 amino acid precursor protein that is glycosylated (sometimes 

differentially) and cleaved at its amino terminus to remove a 29 amino acid signal peptide 

(Hammond et al, 1987; Gershagen et al, 1989; Joseph, 1994; Avvakumov et al, 2010). The 

same eight-exon long transcript also encodes androgen binding protein (ABP) in the testis, 

an alternatively glycosylated form of SHBG (not a topic of this review). The human SHBG 

gene is located on chromosome 17p13.1, ~30Kb from the p53 tumor suppressor gene. As a 

result, in most instances where hemizygous deletions of this oft-targeted chromosomal 

region occur in prostate tumors, it is likely that DNA sequences involving both genes  

are lost.  

2.2 The human SHBG gene transcription pattern. 

Bolstered by recent reports (Nakhla et al, 2009; Pinós et al, 2009), we now know that 

transcription of the human SHBG gene is highly complex, as well as tissue dependent. The 

eight-exon long SHBG transcript is derived from a downstream promoter, designated here 

as PL. In addition to the SHBG transcript, we found that at least five different mRNA species 

are generated through alternative splicing of exons 4-7 from the primary PL derived 

transcript (Nakhla et al, 2009). Adding to the overall complexity of human SHBG gene 

transcription, we and others have detected at least five independent first exons in novel 

SHBG gene transcripts (Gershagen et al, 1989; Nakhla et al, 2009; Pinós et al, 2009). These 

additional first exon sequences are all located upstream of the PL promoter, indicating that 

the SHBG gene utilizes at least six different promoters. We characterized transcripts derived 

from two of these upstream promoters, and found that they, too, undergo alternative 

splicing of exons 4-7. In total, from PL and these two upstream promoters alone, we 

identified 19 different SHBG gene transcripts (Nakhla et al, 2009); Pinós et al. describe 

additional transcripts arising from other SHBG gene promoters (Pinós et al, 2009). However, 

apart from the singular transcript encoding SHBG itself, it is unclear whether any other 

SHBG gene transcript encodes a functional protein in humans, or whether they might act to 

regulate expression of the SHBG transcript. 
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2.3 SHBG expression in normal prostate tissue and the LNCaP prostate cancer  
cell line 

Our analyses also included a detailed look at the SHBG expression patterns in normal 
human prostate tissue and the LNCaP prostate cancer cell line (Nakhla et al, 2009). Focusing 
on PL, we found that only the eight exon long SHBG transcript is generated in normal 
prostate tissue. This suggests that alternatively spliced PL–derived species are either not 
present, that they exist at levels undetectable by our RT-PCR assay, or that they are 
synthesized in minor cellular populations within normal prostate tissue. Compared to 
normal liver tissue, quantitative PCR analysis revealed that normal prostate expresses only 
1/1000th the abundance of total PL-derived transcripts. Even taking into account the relative 
complexity of the PL-transcript expression pattern in normal liver, with the SHBG transcript 
being most abundant, these findings are in concordance with hepatic SHBG being 
synthesized for global use (plasma), and prostate SHBG being synthesized for local, or 
intracellular use. Normal prostate revealed a low abundance of transcripts derived from the 
two upstream promoters we examined. In striking comparison, the LNCaP prostate cancer 
cell line exhibited a dramatic relative increase in both the number of alternatively spliced 
transcripts and transcripts from upstream promoters. The reasons behind these differences 
in SHBG gene transcription profiles are unclear, they could reflect the clonality of LNCaP 
cells vs. whole prostate tissue, dysregulation of global RNA processing in LNCaP, and/or 
changes in specific SHBG mRNA processing elements, among other possibilities. Taken 
together, the SHBG gene may be a valuable provider of diagnostic, prognostic, and 
predictive biomarkers for individuals with prostate cancer. 

3. SHBG and its effects on the prostate “androgenome” 

3.1 Introduction 

Because SHBG binds androgens, we hypothesized that a major function of locally expressed 
SHBG in prostate cells might be to regulate the androgenome. We set out to investigate two 
different scenarios by which SHBG could influence androgen signaling. First was that locally 
synthesized SHBG could modulate the binding of androgen to the androgen receptor (AR) by 
acting as a steroid sequestering agent. For example, in the same way that plasma SHBG 
regulates the concentrations of plasma free steroids, intracellular SHBG could regulate 
intraprostatic free testosterone and dihydrotestosterone (DHT). Perhaps relevant to prostate 
cancer progression, this model predicts that diminished intracellular SHBG would allow for 
increased free intracellular DHT and hence increase the effect of intracellular androgens. 
The second scenario envisions that locally expressed SHBG can participate, in an 
autocrine/paracrine manner, in a rapid, membrane based signaling pathway in prostate 
cells (Kahn et al, 2002; Kahn et al, 2003; Rosner et al, 2010). The initial steps of this pathway 
are well established biochemically, however little is understood about its biologic functions. 
Briefly, SHBG, in its steroid-free configuration, binds to a high affinity, but yet to be cloned 
membrane receptor (RSHBG), forming a bipartite complex (SHBG-RSHBG). Subsequently, DHT 
binds to and activates the SHBG-RSHBG complex causing a rapid induction of cAMP and the 
activation of protein kinase A. This occurs independently of the AR.  

3.2 Functional microarray analysis 

We developed a functional microarray approach to ascertain the effects of SHBG on the 
androgenome of LNCaP cells (Kahn et al, 2008). Using an inducible system that enabled 
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SHBG overexpression in an engineered human LNCaP prostate cancer cell line, we 
specifically addressed the two scenarios described above. Using appropriate controls, SHBG 
effects on AR-mediated signaling would be evident by the altered expression of genes that 
are responsive to DHT treatment. And, those genes whose expression was sensitive to RSHBG 
signaling would show changes only under conditions that activate RSHBG (SHBG followed 
by DHT binding), but not in the presence of either SHBG or DHT alone.   

3.3 Generation of the inducible L5S2 and vector control L5V4 clonal cell lines 

The two clonal cell lines, L5S2 and L5V4, formed the core of our studies. The inducible L5S2 

clonal cell line, which reproducibly overexpresses SHBG in response to Ponasterone A 

(PonA), was indirectly derived from LNCaP cells through an intermediate cell line, L5. L5 

was generated by stably transfecting LNCaP cells with the plasmid, pVgRXR (Invitrogen, 

Carlsbad, CA). pVgRXR encodes a hybrid transactivator that is activated by PonA. This 

transactivator recognizes and directs transcription from a promoter within a second 

plasmid, pINDhygro (Invitrogen). L5S2 was generated by stably transfecting L5 cells with a 

pINDhygro construct that contains the full length human SHBG cDNA coding sequence 

cloned directly downstream of the inducible promoter. The L5V4 vector control cell line was 

generated by stably transfecting L5 cells with the empty vector, pINDhygro. As such, L5S2 

and L5V4, both being derived directly from the L5 subclone, were considered nearly 

isogenic. Titration experiments revealed maximal SHBG induction was approached in L5S2 

cells upon treatment with 10 M PonA for 24 hrs, similar treatment of L5V4 cells had no 

effect on SHBG expression (data not shown). 

Table 1 shows the effect of treatment conditions on SHBG expression in the L5S2 inducible, 

and L5V4 vector control cell lines. L5S2 cells treated for 24 hrs with 10 M PonA 

reproducibly exhibit an 80+-fold induction over basal L5S2 levels in either the absence or 

presence of 10 nM DHT. The inducing agent, PonA by itself has only a very slight effect on 

SHBG expression.  

3.4 Effects of SHBG overexpression on the LNCaP androgenome 

The global effect of SHBG overexpression on gene expression in LNCaP cells following 10 

nM DHT treatment is summarized in Table 2. L5S2 cells were induced with PonA for 24 hrs, 

then treated with 10 nM DHT for another 24 hrs (this being the same DHT treatment 

condition that induces RSHBG signaling). Approximately 3000 genes displayed at least a 20% 

difference in expression when compared to similarly treated L5V4 vector control cells, with 

slightly over 1700 genes showing at least a 50% increase in expression, or a 33% decrease in 

expression. Thus, SHBG, when expressed at high levels in LNCaP cells, does affect the 

androgenome.  

3.5 SHBG effects on c-myc, TIMP2, GPR30, and STAMP4 expression 

Having demonstrated a global effect of SHBG on the androgen response of LNCaP cells, we 

performed a series of qPCR experiments to confirm our microarray results. We investigated 

a select group of four genes of potential importance in prostate cancer and hormonal 

signaling- c-myc, TIMP2 (tissue inhibitor of metalloproteinase 2), GPR30 (G protein-coupled 

receptor 30), and STEAP4 (six-transmembrane epithelial antigen of prostate 4, also known as 

STAMP2 (six transmembrane protein of prostate 2)), each of which displayed a sensitivity to 
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CELL LINE AND TREATMENT 
CONDITIONS 

EFFECT TESTED SHBG Fold 
expression 
change 

P.Value B value 

L5S2: 10uM PonA vs. L5V4: 10uM PonA Pon A induction 83.7 1.34E-19 38.3 

L5S2: 10nM DHT, 10uM PonA vs. L5V4: 
10nM DHT, 10uM PonA 

Pon A induction 
and DHT 

89.3 1.03E-19 39.8 

L5V4: 10uM PonA vs. L5V4: Mock 
treated 

Pon A effects alone 1.57 4.73E-05 7.02 

L5S2: Mock treated vs. L5V4: Mock 
treated 

Leakiness of L5S2 
cells 

4.82 5.53E-13 26.8 

L5V4: 10nM DHT, 10uM PonA vs. 
L5V4: 10uM PonA  

DHT on L5V4 cells N/D N/A N/A 

L5S2: 10nM DHT, 10uM PonA vs. L5S2: 
10uM PonA  

DHT on L5S2 cells N/D N/A N/A 

L5V4 vector control cells and inducible L5S2 cells were each seeded into two groups of multiple six well 

plates in RPMI-1640 medium (Mediatech, Herndon, VA) supplemented with 1mM sodium pyruvate 

(Mediatech), 100 units/ml of Penicillin-Streptomycin (Invitrogen), and 10% charcoal stripped fetal calf 

serum (Gemini Bio-Products, Woodland, CA) for 24 hours. One group was then treated with the 

inducing agent, PonA (10M)(Invitrogen), and the other treated with an equal volume of carrier 

ethanol, for 24 hr. Triplicate wells from the PonA-treated cells were then treated for an additional 24 hr 

with either carrier or 10 nM DHT, giving six treatment conditions- 

A. L5V4 vector control cells treated with carrier alone (mock treated) 

B. L5V4 vector control cells treated with 10uM PonA 24 hrs 

C. L5V4 vector control cells treated with 10uM PonA + 10nM DHT 24 hrs 

D. L5S2 inducible SHBG cells treated with carrier alone (mock treated) 

E. L5S2 inducible SHBG cells treated with 10uM Pon A 24 hrs 

F. L5S2 inducible SHBG cells treated with 10uM PonA + 10nM DHT 24 hrs 

Total RNA was isolated with Trizol (Invitrogen) followed by a Qiagen clean up procedure (Qiagen, 

Valencia, CA). RNA integrity was assessed using an Agilent 2100 Bioanalyzer and RNA 6000 Nano Lab 

Chip LabChips (Agilent, Palo Alto, CA). RNA samples showed a 260/280 ratio between 1.8 and 2.0 and 

28S:18S ratio of 1.5 and higher. Each triplicate RNA preparation was used in a single microarray analysis. 

First-strand cDNAs were synthesized from 5 µg of each RNA sample using a T7-Oligo(dT) promoter 

primer and SuperScript II. After RNase H-mediated second-stranded cDNA synthesis, double-stranded 

cDNAs were purified using a GeneChip sample clean-up module. Biotinylated complementary RNAs 

(cRNAs) were generated by in vitro transcription using T7 RNA Polymerase and a biotinylated nucleotide 

analog/ribonucleotide mix. Biotinylated cRNAs were cleaned up, fragmented, and hybridized to 

Affymetrix Human Genome U133 Plus 2.0 Array chips, representing 54675 transcripts (Affymetrix, Santa 

Clara, CA), at 45°C for 16 h with constant rotation at 60 rpm. Chips were processed using an Affymetrix 

fluidics station and scanned on an Affymetrix scanner 3000 with workstation. Images were processed with 

GeneChip Operating Software (GCOS) and raw data were analyzed with GeneSpring 7.2 software (Silicon 

Genetics, Redwood City, CA) to identify differentially expressed genes between conditions. Data were 

normalized to the 50th percentile of measurements taken from the chip to reduce chip-wide variations in 

intensity. Each gene was normalized to the average measurement of the gene throughout the experiment 

to enable comparison of relative changes in gene expression levels between different conditions. Data 

filtration was performed based on flags, present or marginal. Shown are the changes in SHBG gene 

expression between given cell lines and treatment conditions as determined by microarray analysis. B 

value: Bayesian log odds score. ND= none detected; NA= not applicable 

Table 1. Effect of treatment conditions on SHBG expression in L5V4 and L5S2 cells 
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Total Number of 

Induced Genes 

Total Number of 

Repressed Genes 

Genes Induced > 1.5-

fold 

Genes expressed <0.66-

fold (repressed) 

1250 1770 665 1068 

L5S2 inducible and L5V4 vector control cells were treated with 10M PonA for 24 hours, and then 
stimulated with 10nM DHT for an additional 24 hours.  Total number of induced and repressed genes 
include those displaying at least a 20% difference in transcript abundance between similarly treated 
L5S2 and L5V4 cells, as determined by microarray analysis. 

Table 2. Global effects of SHBG overexpression on DHT-treated (24 hr.) LNCaP cells 

SHBG overexpression in response to DHT, as detected by microarray analysis (data not 
shown). The qPCR results corroborated our microarray results for these four genes. DHT 
treatment of induced L5S2 cells resulted in nearly a one-third decrease in c-myc gene 
transcript abundance compared to mock-treated L5S2 cells, whereas similar DHT treatment 
caused a 20% increase in L5V4 vector control cells compared to mock-treated L5V4 cells. 
Given that elevated c-myc gene expression is a hallmark of many prostate tumors (Gurel et 
al, 2008), the effect of increased SHBG serving to decrease c-myc gene expression is 
intriguing and warrants further investigation. We note that slightly higher levels of c-myc 
are seen in unstimulated L5S4 vs. L5V2 cells, this observation requires clarification. DHT 
treatment also caused a decrease in the abundance of TIMP2 gene transcripts in L5S2 cells, 
whereas there was little change in similarly treated L5V4 cells. This result is of interest, as 
TIMP2 expression has been correlated with advanced prostate cancer stage and recurrence 
(Ross et al, 2003). SHBG overexpression markedly amplified the DHT-mediated decrease in 
cellular levels of GPR30 gene transcripts; GPR30 is a membrane receptor for estrogen that 
releases epidermal growth factor-related ligands, thereby inducing signaling via the 
epidermal growth factor receptor (Wang et al, 2010). And, SHBG overexpression displayed a 
dramatic effect on STEAP4 transcript levels in LNCaP cells- DHT treatment resulted in 1000-
fold higher levels in L5S2 cells than in similarly treated L5V4 cells. STEAP4 is an emerging 
player in metabolic syndrome and glucose transport (Wellen et al, 2007), and provocatively, 
SHBG has been linked to metabolic syndrome (Pugeat et al, 2007).  While its expression is 
often elevated in prostate cancer cells (Korkmaz, et al, 2005) it is still unclear how STEAP4 
expression may contribute to prostate cancer progression. This, and the exquisite 
responsiveness of STEAP4 expression levels to SHBG are areas that beg further 
investigation. 

3.6 SHBG effects on the expression of AR co-regulators, including FKBP5 

We next turned our attention to whether SHBG might indirectly affect AR activation by 
modulating the expression of AR co-regulators in response to DHT. Working with a detailed 
list of 186 AR co-regulators kindly provided by Dr. Donald Tindall and Dr. Hannelore 
Heemers (for review, see Heemers and Tindall, 2007), we examined our microarray data for 
those whose expression was affected by SHBG overexpression following 24 hr. DHT 
exposure. AR co-regulators displaying at least a 20% difference are listed in Table 3.  
Of the 20 AR co-regulators whose expression was markedly changed by the presence of 
SHBG, eight were upregulated and 12 were downregulated. The greatest difference was in 
expression of the FKBP5 (FK506 binding protein 5) gene, which was elevated 3.77-fold. 
Because FKBP5 is a known early androgen responsive gene whose expression is rapidly 
induced by DHT treatment (Jääskeläinen et al, 2011), we examined its expression level in 
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PonA-treated L5S2 and L5V4 cells after only 4 hrs of incubation with DHT. Indeed, in L5V4 
cells, FKBP5 was induced to high levels at this earlier time point, whereas its induction was 
dampened by the presence of SHBG in L5S2 cells (data not shown). This suggests that SHBG 
overexpression not only diminishes the amplitude of DHT-mediated FKBP5 induction, it 
also shifts the response curve to the right. This is an intriguing finding, as FKBP5 has been 
shown to be a limiting component of the HSP90 chaperone supercomplex that maintains the 
AR in its ligand binding state (Ni et al, 2010).  
 

Gene Gene name Fold change 

(L5S2 vs. L5V4) 

FKBP5 FK506 binding protein 5 3.77 

HIPK3 homeodomain interacting protein kinase 3 1.55 

APPBP2 
amyloid beta precursor protein (cytoplasmic tail) binding 

protein 2 
1.49 

NCOR1 nuclear receptor co-repressor 1 1.46 

RNF14 ring finger protein 14 1.45 

HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 1.41 

NCOR1 nuclear receptor co-repressor 1 1.39 

CDC37 CDC37 cell division cycle 37 homolog (S. cerevisiae) 1.36 

SRA1 steroid receptor RNA activator 1 1.28 

   

TADA3L transcriptional adaptor 3 (NGG1 homolog, yeast)-like 0.78 

CDK7 
cyclin-dependent kinase 7 (MO15 homolog, Xenopus laevis, 

cdk-activating kinase) 
0.76 

BAG1 BCL2-associated athanogene 0.73 

RAN RAN, member RAS oncogene family 0.72 

NONO non-POU domain containing, octamer-binding 0.72 

MMS19L MMS19-like (MET18 homolog, S. cerevisiae) 0.69 

SMARCA2 
SWI/SNF related, matrix associated, actin dependent regulator 

of chromatin, subfamily a, member 2 
0.68 

UBE1C ubiquitin-activating enzyme E1C (UBA3 homolog, yeast) 0.65 

RBM9 RNA binding motif protein 9 0.63 

JDP2 Jun dimerization protein 2 0.62 

CRSP2 
cofactor required for Sp1 transcriptional activation, subunit 2, 

150kDa 
0.59 

Table 3. Effect of SHBG on AR Co-regulator gene expression following 24 hr. DHT treatment 
of LNCaP cells. 
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These results support the view that endogenously expressed SHBG plays a significant role 
in orchestrating the LNCaP androgenome. It is noted that our experimental strategy utilized 
unusually high SHBG concentrations, thus we need to investigate further how normal levels 
of SHBG expression influence the LNCaP androgenome. More detailed time course analyses 
are also necessary to ascertain how SHBG affects the timing of AR activation, and how 
perturbations in SHBG expression might affect androgen induced events. This is especially 
critical considering that SHBG influences the expression of specific AR co-regulators, which 
could impact the timing of events required for AR activation. 
 

  
 

 

Taqman assay qPCR amplifications were performed in triplicate, using primers specific for the 
indicated genes. cDNA templates were generated from the same RNAs as were used for microarray 
analysis. Assays were run in an ABI PRISMR 7700 Sequence Detection System machine. Data were 
extracted and amplification plots generated with ABI SDS software. Threshold cycle (Ct) scores were 
averaged for subsequent calculations of relative expression values. Specific gene Ct values were 
normalized to GAPDH Ct values for each cell line and treatment condition, and standard deviations 
were calculated. Specific gene expression comparisons (fold change) are presented as the ratios of 
normalized Ct values for L5V4 or L5S2 cells under given treatment conditions to the normalized Ct 
value of the specific gene in mock-treated L5V4 vector control cells. 

Fig. 1. Effect of SHBG on the expression of selected genes involved in prostate cancer 
progression and hormone signaling following 24 hr. DHT treatment of LNCaP cells - qPCR 
analysis of L5S2 and L5V4 cells. 

3.7 SHBG overexpression and the RSHBG pathway 

Finally, our functional microarray strategy provided a means (overexpression of SHBG 

followed by DHT treatment) to detect genes whose altered expression is consistent with 

having been activated via the RSHBG pathway. Just over 1000 genes displayed a pattern of not 

showing a significant response to either elevated SHBG expression or 24 hr. DHT treatment 

alone, while changing expression (a >50% induction or > 33% reduction) when SHBG was 
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induced in L5S2 cells, followed by the addition of DHT in a manner consistent with the 

activation of RSHBG signaling (data not shown).  However, before we can assign any biologic 

function to RSHBG signaling in prostate cells, we need to confirm these results in order to 

differentiate between the activation of RSHBG signaling and a delay in AR mediated 

expression changes for specific genes in response to SHBG overexpression, as was the case 

for FKBP5. 

 

 

See legend to Figure 1 

Fig. 2. Effect of SHBG on FKBP5 gene transcript levels following 24 hr. DHT treatment of 
LNCaP cells 

4. Conclusions 

The human SHBG gene is expressed at the mRNA and protein levels in prostate cells. 
Considering its sex hormone binding properties, we examined its ability to affect the 
androgenome of prostate cells. Using a functional microarray approach, we have obtained 
evidence that indeed, SHBG does affect the expression of DHT-responsive genes. In LNCaP 
cells, SHBG overexpression exerts global effects that include genes involved in prostate 
cancer (eg. c-myc and TIMP2), hormonal signaling (eg. GPR30), and the expression of AR 
co-regulators (eg. FKBP5), among others.  
The scope of SHBG’s influence on the androgenome appears to be broad and complex, 
involving many aspects of AR activation. Two possible mechanisms include the binding and 
sequestering of intracellular androgen, and the indirect modulation of AR co-regulator 
expression.  It remains to be determined whether signaling through RSHBG is also involved.  
Given the ability of prostate cells to greatly ramp up their expression of endogenously 

synthesized SHBG (we have overexpressed SHBG in LNCaP, PC3, and DU145 cells), this 

raises the question of whether they regulate their androgenome by modulating intracellular 

SHBG levels. It is likely that a decrease in intracellular SHBG levels results in an equilibrium 

shift towards increased free intracellular testosterone and free intracellular DHT. We speculate 

that in those prostate cancer cells which undergo deletions of the SHBG/p53 locus, SHBG 

expression will be reduced. Deletions of the SHBG/p53 locus could thus provide a genetic 

means by which prostate cancer patients placed on current androgen ablation therapies can 

progress- enabling cells to survive under conditions of diminished androgen due to the 

relative increase in free intracellular androgen available to activate AR-mediated signaling. If 

this speculation is confirmed, it will be of interest to see how such patients respond to newer 

therapies that target testosterone and DHT biosynthesis, such as abiraterone.  
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It is intriguing to also speculate that, in addition to the prostate, locally expressed SHBG 
plays a functional role in the hormone response of other tissues. We have preliminary 
evidence that endogenously expressed SHBG can modulate the estrogen response of human 
breast cells (Kahn et al, 2008). And, if plasma SHBG levels provide a clue into how altered 
SHBG expression may contribute to the disease state at a cellular level, it will be of great 
interest to investigate whether there is a connection between tissue specific SHBG 
expression and Type 2 diabetes. This does not detract in any way from the importance of 
plasma SHBG levels on androgen and estrogen responsiveness in humans. Instead, it serves 
to broaden the scope of SHBG influence on the response to sex steroids to the individual 
tissue and cellular level. 
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