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The Benefits of IVUS Dynamics for Retrieving
Stable Models of Arteries

Aura Hernàndez-Sabaté and Debora Gil
Computer Science Dept. and Computer Vision Center, Universitat Autònoma de Barcelona

Bellaterra, Spain

1. Introduction

Artery diseases are mainly caused by the accumulation of plaque (made up of a combination
of blood, cholesterol, fat and cells) inside arterial walls (Fuster, 1994). Such plaque
accumulation narrows the artery blood flow (stenosis) and makes arteries inflaming and being
less flexible (atherosclerosis). Artery blood flow reduction is measured by the percentage of
obstruction in vessel sections and is a usual measurement previous to decide which is the best
treatment (either surgical or pharmacological) for an atherosclerotic lesion. Depending on the
histological composition of the plaque, its (bio-mechanical) physical behavior will be different,
making it more or less unstable (vulnerable plaques) and, thus, resulting in a different risk for
the patient (Kakadiaris et al., 2006). Early detection of plaque composition is a main step
for planning the most suitable treatment (angioplasty, stent apposition, ...) and might prevent
further thrombosis potentially leading to a fatal heart attack. Tissue bio-mechanical properties
play an important role in the diagnosis and treatment of cardiovascular diseases. The main
mechanical properties currently under study are radial strain, which is related to plaque type
and vulnerability (Céspedes et al., 2000), and shear stress, which influences the probability of
plaque accumulation (Wentzel et al., 2001). Both measures can be computed by means of the
study of vessel tissue deformation along the cardiac cycle.
IntraVascular UltraSound (IVUS) is the best choice to study, both, vessel morphology and its
bio-mechanical properties. On one hand, inspection of a single IVUS image gives information
about the percentage of stenosis. Manual stenosis measurements require a manual tracing
of vessel borders (the internal layer, intima, and the most external one, adventitia). This is
a very time-consuming task and might suffer from inter-observer variations. On the other
hand, inspection of longitudinal views provides information about artery bio-mechanical
properties. The assessment of bio-mechanical properties requires exploring the evolution of
vessel walls and structures along the sequence. Dynamics due to heart pumping (among
others) introduces a misalignment of sequence frames, preventing any feasible volumetric
measurement or 3D reconstruction. In particular heart dynamics produce two types of
motion: longitudinal motion along the catheter pullback and in-plane motion of each single
cross section. Longitudinal dynamics produces a sequence block with spatially shuffled
frames, which hinders any analysis along the sequence. Heart pumping also introduces a
periodic rotation and translation in IVUS cross-sections, which hinders proper evaluation
of tissue bio-mechanical properties. Both 3D reconstructions and bio-mechanical properties
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assessment require a compensation of artery dynamics, either by sampling the sequence
synchronized with a cardiac phase or by in-plane sequence stabilization.
Since the early years of IVUS imaging, many algorithms for a reliable intima detection (Bouma
et al., 1997; Brathwaite et al., 1996; Brathwaite & McPherson, 1998; Brusseau et al., 2004;
Dijkstra et al., 2001; Gil et al., 2000; Hansen et al., 2002; Luo et al., 2003; Mendizabal-Ruiz
et al., 2008; Sonka et al., 1996; von Birgelen et al., 1996; 1997) and plaque characterization
(de Korte et al., 2000; Escalera et al., 2008; Granada et al., 2007; Nair et al., 2002; Okubo et al.,
2008) have been proposed. Most of them are based on the appearance of structures in images.
Adventitia modeling has been a delicate issue hardly addressed e.g. (Dijkstra et al., 1999; Gil
et al., 2006; Haas et al., 2000; Klingensmith et al., 2000; Olszewski et al., 2004; Plissiti et al.,
2004; Pujol & Radeva, 2005; Sonka et al., 1995; Takagi et al., 2000), though it is crucial for
stenosis measurement. This is due to its weak appearance in IVUS images, which makes
appearance-based techniques fail to produce optimal results and forces ad-hoc elaborated
strategies. Also, image-based cardiac phase retrieval strategies are based on image appearance
and extract cardiac phase by exploring its temporal changes across the sequence (Barajas et al.,
2007; Matsumoto et al., 2008; Nadkarni et al., 2005; Sean M. O’Malley, 2006; Zhu et al., 2003).
Speckle, texture and morphology introduce non-cardiac irregular variations in appearance
patterns that must be carefully filtered.
So far, dynamics has only been considered as an artifact which is, at most, corrected
(Hernàndez-Sabaté et al., 2009; Rosales et al., 2004). We claim that rigid motion estimation
is a useful tool for exploring, both, vessel structures and cardiac dynamics. The main concern
of this chapter is to show the benefits of cardiac dynamics for adventitia segmentation and
image-based cardiac phase retrieval.
The general scheme for adventitia segmentation can be split in three main steps sketched in
figure 1.

Fig. 1. Pipeline for Adventitia Segmentation

The poor image quality as well as large variety of IVUS artifacts (calcium, side-branches,
shadows, catheter guide and blood back scatter) force an elaborated pre-processing step
for enhancing adventitia appearance. In order to ensure a good compromise between
preservation of the adventitia weak appearance and speckle smoothing, a filtering carefully
driven for each image is compulsory (Gil et al., 2006; Unal et al., 2006). This makes the
pre-processing stage to be one of the most computationally expensive tasks of the whole
scheme. We claim that IVUS (in-plane) rigid motion can significantly improve the smoothing
step, since vessel structures follow a periodic motion (induced by heart beat) clearly different
from the chaotic random behavior of textured and blood areas. We propose using the mean
of stabilized sequence blocks in order to enhance vessel structures while blurring texture and
speckle.
Concerning image-based ECG-gating, existing strategies (Barajas et al., 2007; Matsumoto et al.,
2008; Nadkarni et al., 2005; Sean M. O’Malley, 2006; Zhu et al., 2003) follow the scheme
sketched in figure 2.
First, a signal reflecting cardiac motion is computed from IVUS sequences. Second, the signal
is filtered (in the frequency domain) in order to remove non-cardiac phenomena and artifacts.
Finally, a suitable sampling of the filtered signal retrieve cardiac phase. All authors agree in
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The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries 3

Fig. 2. Pipeline for Image-based Cardiac Phase Retrieval

using a band-pass filter in the second step and the extrema of filtered signals for sampling at
end-systole and diastole. The main differences among existing algorithms and thus, the clue
for an accurate cardiac phase retrieval, lie in the signal computed from the sequence. Given
that in-plane and out-of-plane cardiac motion are coupled, we propose using the periodic
component of in-plane motion as the signal reflecting cardiac motion.
In this chapter we propose an integrative framework for retrieving vessel morphology and
cardiac phase from IVUS rigid dynamics. Vessel structures extracted from IVUS sequences
and stabilized by correcting cardiac dynamics produce stable models of arteries containing
deformation along all cardiac cycle and, thus, useful for exploring biomechanics. The
collection of vessel structures at frames synchronized at the same fraction of the cardiac
cycle provide static models for computing 3D measurements. The pipeline of our integrative
framework is sketched in figure 3 where the three clinical tools presented in the chapter are
highlighted in orange.

Fig. 3. Pipeline for the Integrative Framework

The remainder of the chapter is structured as follows. In section 2 we sketch the method used
to compute rigid in-plane motion (Hernàndez-Sabaté et al., 2009). Section 3 is devoted to
detail the three steps which constitute the integrative framework we propose. In section 4 we
explain the validation protocol while results are given in section 5. Finally, discussions about
the advantages and limitations of using rigid in-plane dynamics compared to appearance
methods will be given in the last section of the chapter.

2. Rigid in-plane motion estimation

Different factors such as heart pumping, blood pressure or artery geometric properties mainly
contribute to the dynamics of coronary arteries (Holzapfel et al., 2002; Mazumdar, 1992;
Nadkarni et al., 2003). The first order approximation to vessel in-plane dynamics is given by a
linear transformation combining translation, rotation and scaling (Waks et al., 1996). Dilation
is inherent to the elasticity of the vessel itself and it does not preserve the metric. The rigid
part of this approximation can be modeled as a rigid body motion and is given by a rotation
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followed by a translation. Figure 4 shows the physics-based model of the rigid motion of an
artery. The computation of the translation and rotation angle is as follows (Hernàndez-Sabaté
et al., 2009).

Fig. 4. Physics-based model: rigid solid motion

2.1 Translation

In body dynamics, the point describing the object response to external forces and torques is
determined by means of its center of gravity or mass (Goldstein et al., 2002). The difference
between its position and the origin of coordinates is identified to the object translation. We
note it as VCM which is computed from IVUS frames as follows.
Since grey level reflects tissue mass density due to IVUS images reconstruction, the center
of mass given by the image intensity, namely ICM, corresponds to the physical center of
gravity of the vessel. However, some acquisition devices allow interactive tuning of the image
brightness in order to enhance tissue and vessel structures appearance (Mintz & Nissen, 2001).
Given that such intensity gain is radial (Caballero et al., 2006), tissue close to the catheter might
look brighter and, for vessels not centered at the catheter, intensity gainings might deviate the
position of ICM from the true center of mass. Vessel geometric center, namely GCM, coincides
with the vessel center of gravity only in the case of uniform tissue density. However, it serves
to compensate the deviation of ICM for non centered vessels. We define the center of mass of
the vessel, VCM, by a combination of ICM and GCM achieving a good compromise between
vessels whose intensity gain has been tuned and vessels with uniform tissue density.
The center of mass of the image intensities is given by:

ICM =

(
∑

n
i=1 i ∑

m
j=1 I(i, j)

∑
n
i=1 ∑

m
j=1 I(i, j)

,
∑

m
j=1 j ∑

n
i=1 I(i, j)

∑
n
i=1 ∑

m
j=1 I(i, j)

)

The geometric center of mass of a set of N points roughly lying on the adventitia (the most
stable structure along the sequence) (xk, yk) is computed as follows:

GCM =
1

N

(
N

∑
k=1

xk,
N

∑
k=1

yk

)
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The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries 5

Finally, the following formula weights both centers of mass, taking into account the deviation
of the vessel from the center of the image (Hernàndez-Sabaté et al., 2009):

VCM = DR · ICM + (1 − DR) · GCM (1)

where DR is the vessel-catheter deviation rate (i.e. the deviation of the vessel from the center
of the image). If we consider the maximum, Rmax, and minimum, Rmin, distances of the set
(xk, yk)k to the image center, DR is defined as:

DR =
mink(

√
x2

k + y2
k)

maxk(
√

x2
k + y2

k)
=

Rmin

Rmax

Fig. 5. Computation of the Vessel Center of Mass

We note that in case the artery is centered at the catheter, DR measures its eccentricity. Figure
5 shows the computation of the Vessel Center of Mass from computation of the Image and
Geometric Centers of Mass given by formula (1).

2.2 Rotation

Once vessel translation has been compensated, two global motions still remain: rotation and
radial scaling. In the polar domain with origin VCM, they convert into a horizontal translation
(corresponding to rotation) and a vertical scaling (corresponding to radial scaling). In the case
of human coronary arteries, scaling is very close to 1 (Ramírez, 2005), so λ = 1 + ε becomes
a perturbation of identity given by ε (Hernàndez-Sabaté, 2009). The horizontal translation is
estimated by means of the computation of the phase of the ratio of Fourier transforms of every
two consecutive frames (Hernàndez-Sabaté et al., 2009).
That is, if I1, I2 are two functions (images) that differ in a pure translation:

I2(i, j) = I1(i − t1, j − t2)

189The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries
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the first order approximation to I2 can be computed by applying the Fourier transform

(Oppenheim & Willsky, 1997) and using phase correlation (Kuglin & Hines, 1975). Let Î1,

Î2 be the Fourier transforms of I1 and I2, respectively, then they are related via:

Î2(ω) = Î1(ω)e−i〈ω,t〉

for �ω = (ω1, ω2) the Fourier frequency,�t = (t1, t2) and 〈�ω,�t〉 = ω1t1 + ω2t2 the Euclidean
scalar product.
If we consider the phase, ρ(ω), of the ratio between the two Fourier transforms (Alliney, 1993),
then we have that:

ρ(ω) = ρ

(
Î2(ω)

Î1(ω)

)
= ρ

(
e−i〈ω,t〉

)
= 〈ω, t〉 = ω1t1 + ω2t2

so that the points (ω1, ω2, ρ(ω)) lie on a plane, Π, with the slopes given by the translation
components:

Π : ρ(ω) = t1ω1 + t2ω2

In practice, noise and texture introduce a scatter in the set (ω1, ω2, ρ(ω)), especially for

Fig. 6. Regression plane approximating Fourier phase correlation between two shifted
images.

those frequencies with smaller amplitudes. We reduce noise-scatter by only considering
those frequencies common to both images with an associated amplitude larger than a given
percentile. Such frequencies with the phase ρ yield a point cloud, like the one shown in figure
6, which regression plane provides a least-square estimator of the plane Π. The first slope of
that regression plane, t1, estimates the angle of rotation between two consecutive frames.

3. Stable models of arteries

Tissue bio-mechanical properties (like strain and stress) are playing an increasing role in
diagnosis and long-term treatment of intravascular coronary diseases. Their assessment
strongly relies on estimation of vessel wall deformation along the cardiac cycle. On one hand,
image misalignment introduced by vessel-catheter motion is a major artifact for a proper
tracking of tissue deformation. On the other hand, longitudinal motion artifacts in IVUS
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The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries 7

sequences hinders a properly 3D reconstruction and vessel measurements. Furthermore,
vessel plaque assessment by analysis of IntraVascular UltraSound sequences is a useful tool
for cardiac disease diagnosis and intervention. Manual detection of luminal (inner) and
medial-adventitial (external) vessel borders is the main activity of physicians in the process of
lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as
well as, shades, artifacts, and blurred signal response due to ultrasound physical properties
trouble automated adventitia segmentation.

Fig. 7. Images extracted from an IVUS pullback. The left image is a block of 16 IVUS
consecutive frames from a constant pullback. The right top image is a single cross-section of
the vessel. The right bottom image is a longitudinal view obtained by intersecting 401 frames
with the grey plane at the same angle.

Figure 7 shows a block of IVUS images obtained from a pullback (on the left) and the two
kind of images derived from them (on the right). Each sequence frame (on the top right)
shows a cross-section of the vessel under study with a complete detail of its morphology. The
frames on the left can be intersected by a longitudinal plane including the catheter trajectory
(grey plane on fig.7, left graphic), defined by a fixed angle on cross sections. The image
obtained in this way is called longitudinal cut of the artery (bottom-right image). The image
misalignment can be appreciated in the echo-shadowing calcified plaque of the upper profile
of the longitudinal cut.
A framework integrating the solution for the three limitations of IVUS (image misalignment,
longitudinal motion and adventitia segmentation) should be of utmost importance for clinical
practice. In the above section, we have presented a method for assessing IVUS rigid in-plane
motion. This estimation allows us to compute the following three steps for achieving an
integrative framework of stable models of arteries useful for clinical practice. On one hand,
translation and rotation estimation serves to stabilize the sequence by removing cardiac
dynamics. On the other side, we present the potential of rigid motion estimation for
approaching cardiac phase retrieval from coronary IVUS sequences without ECG signal for

191The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries
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correction of longitudinal motion artifacts. Finally, we show the benefits of using stabilized
sequences for improving the computational time of automatic adventitia segmentation
algorithms.

3.1 Sequence stabilization

The rigid motion that cardiac vessels undergo is a complex dynamical process which results
from the combination of several contributions. In general, it presents a geometric component
related to the artery 3D shape and a dynamic one induced by breathing and cardiac
movements (Rosales et al., 2004). Depending on the particular problem to approach, each
of the terms should have a specific treatment. Exploring artery geometry might be derived
by analyzing the geometric component (Rotger et al., 2006), whereas extraction of cardiac
dynamics concerns the cardiac dynamical contribution (Zhu et al., 2003). In the case of vessel
biomechanics analysis, the goal is to produce a static model allowing a better tissue tracking
along the segment. Firstly, the reader should note that, without further analysis, the geometric
component does not reach a reliable 3D representation of the vessel geometry, which might
lead to wrong static models. Secondly, even if one could infer the true 3D geometry from
it, by compensating vessel tortuosity there is no guarantee of a better alignment of vessel
plaque. This suggests only correcting the dynamical terms of the translation and rotation for
stabilizing the sequence.
For that, the signal obtained is decoupled in the Fourier domain into geometric, breathing and
cardiac component and the last component serves to stabilize the images along the sequence
(Hernàndez-Sabaté, 2009). The translation and rotation parameters are functions of the time
s. If the geometric term of a motion parameter is denoted by the subindex g, the cardiac
term, induced by heart beating, is denoted by the subindex c and breathing contributions are
denoted by the subindex b, the angle and translation decompose into:

t(s) = tg(s) + tb(s) + tc(s) (2)

θ(s) = θg(s) + θb(s) + θc(s)

Focusing on the Fourier series of these components, breathing and cardiac terms are
periodic and, thus, have a discrete Fourier spectrum, whereas geometry has a broad-band
(non-discrete) spectrum (Oppenheim & Willsky, 1997). As usual, Fourier transforms are
indicated by a hat ( ˆ ) over functions. Principal harmonics have been learned by supervised
classification of the spectrum of a training set of 30 patients without apparent lesions used
in a study for assessment of myocardial perfusion in contrast angiography (Gil et al., 2008).
Confidence intervals of the 95% yield the expected ranges for the principal frequency of each
of the periodic components. For breathing it is (10, 45) repetitions per minute (rpm), while
for cardiac motion it is (45, 200) rpm. Thus, cardiac motion principal harmonic, ωc, is defined
as the first local maximum in Iωc = (45, 200) rpm and the term is approximated by the first
10 harmonics, (kωc)k=1:10. For the sake of an efficient algorithm, ωc is approximated by the
global maximum of Fourier transform amplitude for frequencies in the range Iωc. It follows
that the cardiac motion term of a sequence lasting NSec seconds is given by:

tc(s) =
1

T

k=10

∑
k=1

t̂(kωc)e
ikωcs θc(s) =

1

T

k=10

∑
k=1

θ̂(kωc)e
ikωcs

where the period T = NSec/60 is the sequence length (in minutes) and defines the domain of
integration.
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Since, even in healthy cases, the heart rate varies along the pullback, the peaks in the Fourier
series are spread around the theoretic harmonic frequencies. The more irregularities in
periodicity are, the more spread around the theoretic harmonic the Fourier development is.
The harmonics less corrupted by noise are obtained by optical filtering (Klug & D.J.DeRosier,
1966). Optical filtering is a technique widely used in electron crystallography in order
to discard harmonics corrupted with noise. Optical filtering selects only those harmonics
presenting a prominent peak. The peakedness of an harmonic is given by the normalized
difference between the amplitude achieved at the harmonic and an average of amplitudes in
a neighborhood Ikωc

centered at the harmonic:

OF(kωc) =
|F(kωc)|

S
− 1

N × S ∑
x∈Ikωc \kωc

|F(x)| (3)

where F stands for either t or θ, S = ∑x∈Ikωc
|F(x)| and N is the number of harmonics in Ikωc

.
Harmonics selected by optical filtering are the only contributions to the sums in (3).

Fig. 8. Motion Decomposition. Rotation angle and its Fourier decomposition on the left;
geometric, breathing and cardiac terms on the right.

Figure 8 shows the Fourier terms decoupling for the rotation angle in the top left plot. Vertical
lines in the Fourier spectrum of the signal (bottom left plot) indicate the ranges defined for the
3 phenomena. Dots mark the 10 cardiac harmonics and squares the ones selected after optical
filtering. The 3 components of the angle are shown in right plots.
Finally, the linear application mapping the artery at a given time to the artery at time zero is
given by: (

x̃
ỹ

)
=

(
cos(θc) − sin(θc)
sin(θc) cos(θc)

)(
x − VCMx

c

y − VCM
y
c

)
(4)
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for VCMc = (VCMx
c , VCM

y
c ) the cardiac component of the position of the vessel center of

mass and θc the cardiac component of the angle of rotation in degrees.

3.2 Cardiac phase retrieval

The first step for modeling longitudinal motion in IVUS sequences is retrieving information
about the cardiac phase. Following the general scheme shown in figure 9, our image-based
algorithm to approach ECG sampling (Hernàndez-Sabaté et al., 2011) splits in the following
three steps.

Fig. 9. Pipeline for Image-based Cardiac Phase Retrieval

1. Extraction of Signal Reflecting Cardiac Motion:

By the physical coupling (Nadkarni et al., 2003), luminal area evolution is synchronized
to other vessel cardiac phenomena, such as tissue motion or rigid motion. It follows that,
since rigid in-plane motion comes from artery motion due to heart pumping, the angle of
rotation is also synchronized to cardiac phase. In particular the periodic component, θc,
given in Section 2 is a signal reflecting (pure) cardiac motion.

2. Signal Filtering for Cardiac Profile Extraction: Even in healthy subjects, cardiac frequency
does not remain constant along the sequence. This artifact introduces (among other
phenomena) irregularities in the Fourier transform of the cardiac motion profile. The
irregularities distort the cardiac signal and corrupt the location of local extrema in the
signal reflecting cardiac motion. Following the literature, we filter the cardiac profile with
two families of band-pass filters centered at the cardiac frequency ωc: Butterworth (B)
(Zhu et al., 2003) and Gaussian-based (g) (Matsumoto et al., 2008).

The Butterworth filter is defined as:

B(ω) =
1√

1 +
( |ω|−ωc

0.6∆ωc

)2n

where n is related to the filter decay and ∆ω = δωc to its support. Meanwhile, the Gaussian
filter is defined as:

g(ω, σ) =
1

σ
√

2π
e−(|ω|−ωc)2/(2σ2)

In this case, the decay cannot be handled (it is always exponential) and only its support
might be tuned by its deviation σ.

Figure 10 shows a signal reflecting cardiac motion filtered by a Butterworth filter with
parameters n = 2, δ = 0.1. In the top left image, we present the original filter. The Fourier
transform is computed and shown in the bottom left image. The result of the product
between its Fourier transform and the filter is shown in the bottom right image. The final
result is shown in the top right image.

The real part of the inverse Fourier transform of the filtered cardiac profile is a smooth
signal suitable for cardiac phase retrieval. Regardless of the filter used we will denote it by
Filt.
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The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries 11

Fig. 10. Signal filtering with a Butterworth filter with parameters n = 2; δ = 0.1

Figure 11 plots the rotation motion profile on a longitudinal cut (on the left) and the profile
filtered on the same cut (on the right). Note that the most prominent minimums and
maximums of the cardiac profile, on the left, correspond to the minimums and maximums
of the filtered signal on the right, though it is necessary to filter the signal in order to extract
the cardiac phase.

Fig. 11. Original rotation motion profile and the corresponding filtered one.

3. Cardiac Phase Retrieval: Maximums and minimums of the filtered signal give a sampling
at end-systole and end-diastole and, thus, retrieve cardiac phase for each selected pixel.
Extrema positions are computed in the Fourier domain using the equation:

f̂ ′ = 2πiω f̂

for speeding up the process, since f̂ has already been computed.

195The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries
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3.3 Vessel structures detection

The strategy for media-adventitia (simply adventitia from now on) segmentation we suggest
follows the general scheme presented in (Gil et al., 2006) summarized in figure 12. First, a
pre-processing step simplifies the appearance of adventitia, as well as, enhances significant
structures while removing noise and textured tissue. Second, the feature extraction task
computes two different masks and, by combining them, we obtain those points that most
probably correspond to the adventitia layer. Finally, a closing stage delineates the adventitia
layer.

Fig. 12. Adventitia Detection Flow (Gil et al., 2006)

In the pre-processing step, in order to enhance significant structures while removing noise
and textured tissue, some kind of filtering is necessary. The most extended way of preserving
adventitia thin structure (Gil et al., 2006; Takagi et al., 2000) is by using anisotropic filtering,
like the Structure Preserving Diffusion (SPD) introduced in (Gil et al., 2010). Given that such
diffusions are computed by means of iterative schemes, the filtering step is, generally, the
most time consuming task of the algorithm. For instance, the SPD filtering used in (Gil et al.,
2006) takes about the half of the total time and it can consume up to 1.54 seconds per frame.
We observe that, after rigid motion compensation, image pixel intensity, which is related
to tissue density of mass, remains more uniform along frames. It follows that the mean of
stabilized sequence blocks enhances vessel structures, while blurring texture and speckle. We
propose replacing the SPD by the mean of stabilized sequences, namely MSS. The remaining
steps of the process are the same reported in (Gil et al., 2006). Figure 13 shows the same image
given in the general scheme of fig. 12 filtered using SPD diffusion and MSS. For a better
comparison across filters, we show images in cartesian (top) and polar (bottom) domains.

4. Validation protocol

4.1 Sequence stabilization

The quality of sequence stabilization exclusively relies on the accuracy of the estimated
parameters of rigid in-plane motion. Given that their accuracy has been assessed

196 Intravascular Ultrasound
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The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries 13

Fig. 13. Enhancement of vessel structures by using a diffusion filter (center images) and the
mean of stabilized sequences (left images).

in (Hernàndez-Sabaté et al., 2009), we prefer only to visually illustrate the quality of
stabilizations. Cardiac motion introduces a misalignment in IVUS images, as well as, irregular
profiles in longitudinal cuts. Therefore, the quality of stabilizations will be visually checked
by longitudinal cuts obtained from original sequences and after sequence stabilization.

4.2 Cardiac phase retrieval

For the assessment of cardiac phase retrieval, we have compared the automatic phase
retrieval to a manual sampling of the sequence. Automatic samplings were compared to
the frames achieving extrema lumen areas. These extrema were manually detected by
exploring longitudinal cuts by selecting minimums and maximums of intima/lumen and
media-adventitia transition profiles. The distances between each manual detected frame and
the automatic one most close to it were computed. That is, if sk and s̃k are frame positions in
the sequence for a manual and automatic sampling respectively, we define their distance as
the absolute differences between their positions:

Ek = |sk − s̃k|

The distances of all frames provide a distance map for each patient. As for in-plane dynamics,
we retrieve a single quantity for each sequence (seq) by averaging Ek over all sampled frames
(N):

E1
seq =

1

N

N

∑
k=1

Ek

Statistical ranges (given by the mean ± the variance, µ ± σ) of errors for all patients indicate
the accuracy of each of the method.
In order to detect if there are any significant differences among smoothing filters (that is, a
best/worst performer), we have used the multiple comparison methodology (Nemenyi test)
proposed in (Demsar, 2006). For each sequence (trial) the M filters (there are 12 in our case and
might be considered as classifiers) are ranked according to their errors. The ranking assigns 1
to the best performer and M for the worst one. The average ranks are statistically compared
to find out if there are any significant differences. The significance level for computing and
comparing ranks in the Nemenyi test is 0.1.
Finally, we have checked the benefits of using dynamic quantities by comparing results
to the ones obtained using gray-intensity cardiac signals (Hernàndez-Sabaté et al., 2011).
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Therefore for the sake of a faithful comparison, the experimental set is the same used
in (Hernàndez-Sabaté et al., 2011): 22 vessel segments 420-690 frames long (7-11.5 mm
approximately) recorded with a Galaxy-BostonSci device at 40 MHz, with a rotating single
transducer and constant pullback speed of 0.5 mm./s. The digitalization rate was 30 fps.

4.3 Vessel structures detection

The goal of this experiment is checking wether the rotation angle can produce accurate enough
adventitia segmentations, while significantly reducing computational time. Therefore, we
have compared segmentations obtained using MSS filtering to SPD diffusion (Gil et al., 2006)
in terms of quality of the segmentations and computational cost.
In this case, ground truth is given by manual identification of the adventitia in IVUS images.
Since discrepancies among experts provide a non-unique ground truth, we follow the same
protocol described in (Gil et al., 2006), based on comparisons of inter-observer variability to
manual segmentations. The accuracy has been assessed by means of absolute (in millimeters)
and relative (in percent) distances. If p = (xp, yp) denotes the points corresponding to an
automatic contour, its absolute distance to the manual contour is defined as:

D(p) = minq∈γ

√
(xp − xq)2 + (yp − yq)2 (5)

and relative distances correspond to the ratio:

RelD(p) = 100 · D(p)

d(q, O)

for the origin O the center of mass of the manual contour and q the point achieving the
minimum in (5). Absolute distances are given in mm and relative ones in percentages.
For each distance error, we compute its maximum and mean values on the automated contour
to measure accuracy in positions.

• Maximum distance errors:

MaxD = maxp(D(p) · PixSze))

RelMaxD = maxp(RelD(p))

• Mean distance errors:

MeanD = meanp(D(p) · PixSze))

RelMeanD = meanp(RelD(p))

for PixSze denoting the image spatial resolution and p is any point on the automatically traced
adventitia. The interval given by the mean ± standard deviation computed over the 4 experts
contours indicate the statistical range of values for each of the automated errors (MaxD,
RelMaxD, MeanD, RelMeanD). Inter-observer variability is obtained by computing the error
measures for the models made every two independent observers and it, thus, quantifies
discrepancy among experts.
Concerning computational time, we have considered maximums and ranges for the following
tasks: Rigid In-plane Motion Estimation (RME), adventitia segmentation by means of Mean
of Stabilized Sequences (MSS), adventitia segmentation by means of Structures Preserving
Diffusion (SPD). For a better quantification of time improvement, we have also considered
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the ratio between both segmentation techniques (SPD/MSS) and the ratio taking into account
the time computation for Rigid In-plane Motion Estimation (SPD/(MSS+RME)).
Since we want to compare MSS filtering to the anisotropic filtering used in (Gil et al., 2006),
the experimental setting is the same reported in (Gil et al., 2006). A total number of 5400
images extracted from 22 vessel segments of a length ranging from 4 to 6 mm (200-300 frames).
Sequences were recorded with a Boston Scientific Clear View Ultra scanner at 40 MHz with
constant pull-back at 0.5 mm/s and a digitalization rate of 25 frames/s.

5. Results

5.1 Sequence stabilization

Figure 14 shows two longitudinal cuts taken at the white lines on the IVUS left image
and the same cut after sequence alignment. Each IVUS image cuts present the two main
artifacts induced by vessel dynamics in in vivo pullbacks. The upper longitudinal cuts
show the saw-tooth-shape pattern of the vessel intima wall (dark line) introduced by relative
vessel-catheter translation. The profile of bottom cuts presents a structure misalignment due
to the relative vessel-catheter rotation for an echo-shadowing calcified plaque. After sequence
stabilization, the vessel wall profiles of upper cuts are straight and continuous, whereas
calcium shows a uniform appearance.

5.2 Cardiac phase retrieval

As in (Hernàndez-Sabaté et al., 2011), the set of filters scanned, Gi for gaussian filters and Bi

for Butterworth ones is the following.

G1 : {σ = 0.001}; G2 : {σ = 1.5}; G3 : {σ = 10}

B1 : {n = 1, δ = 0.5}; B2 : {n = 1, δ = 0.05}; B3 : {n = 1, δ = 0.005};
B4 : {n = 2, δ = 0.5}; B5 : {n = 2, δ = 0.05}; B6 : {n = 2, δ = 0.005};
B7 : {n = 4, δ = 0.5}; B8 : {n = 4, δ = 0.05}; B9 : {n = 4, δ = 0.005}

As well, we have added the results of the angle output without filtering. Two Nemenyi tests
have been performed, one (labeled TN1) to detect differences across filters and another one
(labeled TN2) to compare the impact of the filtering with the angle itself. The first one only
includes errors for Bi and Gi, while the second one incorporates the errors obtained by the
angle θc. Tables 1 and 2, report the average ranks (the smaller, the better) reflecting each filter
performance (table 1) and its comparison to the sampling obtained without filtering (table 2).

Filter Param. G1 G2 G3 B1 B2 B3 B4 B5 B6 B7 B8 B9

Rank 8.12 5.53 6.15 5.71 5.24 7.47 6.06 5.44 7.94 5.56 6.68 8.12

Table 1. TN1: Average rank of the filters set performance

Filter Param. G1 G2 G3 B1 B2 B3 B4 B5 B6 B7 B8 B9 θ
Rank 8.29 5.65 6.27 5.82 5.35 7.59 6.18 5.56 8.06 5.68 6.79 8.29 11.47

Table 2. TN2: Comparison of performance between the filters set and the sampling without
filtering
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Fig. 14. Longitudinal cuts for sequences of two patients. The first column corresponds to a
representative original frame, for each patient, with the angle of the longitudinal cuts. In the
second column, the original longitudinal cut and the corrected one in the third column.

The Nemenyi critical difference (CD) for TN1 is 3.75, while for TN2 is 4.11. The test detects
that the sampling without filtering is significatively worst than the filtered ones. However,
the Nemenyi test also reports that there is not enough evidence of a significantly different
performance among the filtered methods.
Figures 15 and 16 show the rank of samplings from left to right (the best is on the left) together
with the critical difference in order to visually compare them. In figure 15 we can note that
there is no significative difference among the filters. However, in figure 16, we can appreciate
that the sampling without filtering is clearly separated from the rest.

Fig. 15. Visually comparison of different filters using NT1.

Table 3 reports the ranges, by the mean ± the variance (µ ± σ) of the 8 filters of the set with
better ranks. Values in the first column are in frames, the ones of the second column are in
seconds and the last column correspond to the values in millimeters. As figure 15 shows,
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Fig. 16. Visually comparison of different filters to the sampling without filtering using NT2.

there is no significative difference between them. The Butterworth filter with n = 1 and
δ = 0.05 achieves the best results with an error within 3.55 ± 1.80 frames, which corresponds
to 0.06 ± 0.03 mm.

Method Frames Seconds Millimeters

G2 3.5601 ± 1.9804 0.1187 ± 0.0660 0.0593 ± 0.0330
G3 3.6974 ± 1.8520 0.1232 ± 0.0617 0.0616 ± 0.0309
B1 3.6416 ± 1.8747 0.1214 ± 0.0625 0.0607 ± 0.0312
B2 3.5498 ± 1.7998 0.1183 ± 0.0600 0.0592 ± 0.0300
B4 3.6824 ± 1.8478 0.1227 ± 0.0616 0.0614 ± 0.0308
B5 3.7468 ± 1.5738 0.1249 ± 0.0525 0.0624 ± 0.0262
B7 3.6660 ± 1.8423 0.1222 ± 0.0614 0.0611 ± 0.0307
B8 4.0192 ± 1.6035 0.1340 ± 0.0534 0.0670 ± 0.0267

Table 3. Average Errors of the best set of filters

In order to compare the ranges of the approach proposed in this chapter to the ones presented
in (Hernàndez-Sabaté et al., 2011) table 4 reports the ranges of the filters presented in table 3
in frames (1st column), seconds (2nd column) and millimeters (3rd column). We can observe
that there is no significative difference as a Nemenyi test proves.

Method Frames Seconds Millimeters

G1 3.8644 ± 1.7497 0.1288 ± 0.0583 0.0644 ± 0.0292
G2 3.8929 ± 1.6648 0.1298 ± 0.0555 0.0649 ± 0.0277
B1 4.0240 ± 1.6105 0.1341 ± 0.0537 0.0671 ± 0.0268
B2 3.8972 ± 1.8001 0.1299 ± 0.0600 0.0650 ± 0.0300
B3 4.4488 ± 1.9458 0.1483 ± 0.0649 0.0741 ± 0.0324
B4 3.8570 ± 1.7338 0.1286 ± 0.0578 0.0643 ± 0.0289
B5 4.1506 ± 1.8597 0.1384 ± 0.0620 0.0692 ± 0.0310
B7 3.8680 ± 1.7279 0.1289 ± 0.0576 0.0645 ± 0.0288
B8 4.2071 ± 1.8385 0.1402 ± 0.0613 0.0701 ± 0.0306

Table 4. Average Errors of the best set of filters for the image-grey level evolution approach

Figure 17 shows the performance of our method for the Butterworth filtering in 4 large
longitudinal cuts. The original cuts are in the left, while the cuts sampled at end diastole
rate are in the right. For the first segment, we can notice the continuous profile for the lumen
contour, while in the second and third segments, we can follow up the calcium plaques present
in the vessel. In the four segment we can appreciate the continuous profile of two bifurcations
at the upper side of the cut.

5.3 Vessel structures detection

Table 5 reports the inter-observer variability (INT-OBS) to ranges of automatic errors for SPD
and MSS computed for all segments. The results for the MSS algorithm are slightly worse
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Fig. 17. Results of Image-based ECG sampling for two different longitudinal cuts.

than the ones from the SPD approach. However, note that they are still in the range of
inter-observer variability.

INT-OBS SPD MSS

MaxD (mm) 0.5386 ± 0.3075 0.5715 ± 0.2296 0.5988 ± 0.2047
RelMaxD (%) 0.4697 ± 0.2664 0.5122 ± 0.2344 0.5369 ± 0.1953
MeanD (mm) 0.2206 ± 0.1126 0.2265 ± 0.0688 0.2604 ± 0.0879
RelMeanD (%) 0.1888 ± 0.0945 0.1972 ± 0.0662 0.2387 ± 0.0808

Table 5. Performance Evaluation of the Adventitia Segmentation Strategies

Table 6 reports the computational times required for each task: Rigid In-plane Motion
Estimation (RME), adventitia segmentation by means of Mean of Stabilized Sequences
(MSS), adventitia segmentation by means of Structures Preserving Diffusion (SPD), the ratio
between both segmentation techniques (SPD/MSS) and the ratio taking into account the time
computation for Rigid In-plane Motion Estimation (SPD/(MSS+RME)). We can observe that
the new approach proposed is almost 27 times faster (in average) than the vessel appearance

RME MSS SPD SPD/MSS SPD/(MSS+RME)

Max 0.5412 0.0909 2.4379 32.2131 5.5228
Mean 0.3575 ± 0.0673 0.0797 ± 0.0057 2.1282 ± 0.1279 26.8792 ± 2.9042 4.9484 ±0.6193

Table 6. Times comparison of Adventitia Segmentation Strategies for each frame (in sec.)
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diffusion approach. Although rigid in-plane motion estimation is useful for the whole
integrative framework, we could take into account the time needed for computing it. Still,
the new approach is 5 times faster (in average).

6. Discussions and conclusions

In this chapter we proposed an integrative framework for exploring vessel dynamics and
structures, so that to obtain stable models of arteries. We showed the potential of vessel
in-plane rigid dynamics to analyze and correct vessel in-plane rigid dynamics, retrieve cardiac
phase and aid the automatic segmentation of adventitia layer.
In (Hernàndez-Sabaté et al., 2009) we already proved that rigid in-plane dynamics estimation
contributes in a proper image misalignment correction. In this chapter we also showed
the usefulness of this estimation for retrieving cardiac phase and we compared the method
proposed to other vessel appearance-based models. There are two main advantages in using
a dynamic quantity instead of the usual signals computed from image grey-level evolution
(Barajas et al., 2007; Hernàndez-Sabaté et al., 2011; Matsumoto et al., 2008; Nadkarni et al.,
2005). Firstly, since θc does not include non-cardiac phenomena (such as breathing) it requires
less specific tuning of the band-pass filtering. Secondly, it is computationally faster. Although
errors ranges seem to be worse for the new approach, a Nemenyi test reports that there is no
significative differences. Concerning the usefulness of rigid dynamics for the contribution to
the adventitia segmentation, the main improvement is the computational time. Nevertheless,
the accuracy errors still keep within the range of inter-observer variability.
For that reasons, we can conclude that rigid in-plane dynamics estimation has a high potential
for developing useful techniques for clinical practice, and reducing drastically the time
computation, since they can be parallelizable.
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