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IVUS Radio-Frequency Time Echoes 
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1. Introduction 

The reported yearly worldwide death tolls and especially in the US about cardio-vascular 

disease is the leading factor that motivated scientists to invest time and money in order to 

find innovative ways that enable accurate and early detection of such diseases (American 

Heart Association [AHA], 2006; AHA, 2008). Since CVD occurs within the human body, 

imaging modalities were invented to present a picture of the artery as close as possible to its 

real status. These imaging methods accompanied with continuous developments have 

helped tremendously in the improvement of proactive health care and early interventions 

before aggravations. Intravascular Ultrasound (IVUS) is one of the cost effective modalities 

that have been extensively used for diagnostics purposes (Gaster et al., 2003; Mueller et al., 

2003). Although IVUS has the advantage of differentiating between all the artery cross-

section components in terms of geometry (Nissen & Yock, 2001), the composition and 

mechanical properties of each component is still a subject of discussion and research. In fact, 

an objective classification of plaques based on both mechanical and acoustic properties is not 

reached yet. For instance, echogenicity of luminal tissue in most cases is the same for a 

plaque composed of high lipid depositions (Stary, 1992; Stary et al., 1994; Stary et al., 1995). 

Thus ultrasound wave propagation and transmission should be studied fundamentally in 

the human tissues and specifically through the artery cross-sections. The only way these 

ultrasonic waves could be studied meticulously is by solving the propagation governing 

equations, i.e., through the wave equation. Finding the analytical solution of these waves 

contributes definitely in understanding the propagation fashion and behavior inside the 

medium. Finding analytical solution of the wave equation is highly dependent on the 

medium. In the case of artery cross-section in a human body, there exist numerous 

geometric irregularities. These irregular shaped components of the artery make the wave 

equation unsolvable analytically. Consequently numerical methods are employed to find 

discrete solutions of the ultrasound waves.  

The inability of discriminating most plaque types from the grayscale images has fostered 

researchers to think about the content and information that the IVUS backscattered radio-

frequency (RF) ultrasound waves could offer. Studies have shown that RF signals possess 

valuable information in terms of plaque composition (Normal, fatty, fibro-fatty, fibrous, 

fibrous with calcification). It has been noticed that there is a difference between these RF 

echoes coming from various plaque types (Urbani et al., 1993). 
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Integrated backscatter IVUS (IB IVUS) was introduced and calculated based on these RF 

signals. Despite the accurate differentiation between all plaque types (calcification, mixed 

lesion, fibrous tissue, lipid core and thrombus) using IB IVUS, the angle dependency 

between ROI’s and catheter axis makes this classification unstable and sensitive (Urbani et 

al., 1993; Picano et al., 1983; Sarnelli et al.,1986; Landini et al., 1986; Barzilai et al., 1987; De 

Kroon et al., 1991; Picano et al., 1994). Moreover the high resolution dictated for plaque 

detection necessitates high frequency ultrasound signals which affect the penetration depth 

of these transmitted ultrasonic pulses.  

In addition to the use of IB as a determinant parameter by which plaques were classified, 

new research directions has been inspired from the elastic property that could characterize 

each plaque type. This gave rise to what is called intravascular elastography (also known as 

IVUS elastography) (Cespedes et al., 1991). In fact, investigators have taken advantage of 

the possibility of recording the RF echoes to use them for displacements or strain 

determination (Ryan & Foster, 1997; De Korte et al., 1998; Schaar et al., 2003; Saijo et al., 

2004; Shapo et al., 1996). Despite the striking difference of the strain values for various 

plaques, most of the studies were performed in vitro where the temperature is different 

from in vivo case. Additionally excised arteries were used after freezing and thawing which 

influences the values of elastic modulus. Elastography has also been criticized for its 

inability of discriminating between normal artery and Fibrous caps (De Korte et al., 2000). 

The use of the RF echoes content has also been used further. A method called virtual 

histology (also called VH IVUS) based on these IVUS-RF-ultrasonic waves has been 

developed. This tissue characterization technique is based on the frequency spectrum 

analysis (Koenig & Klauss, 2007; Nair et al., 2002). Several limitations accompanied the 

development of VH IVUS. In fact, virtual histology gives an axial resolution which is too 

low to detect fibrous cap thickness. In addition the detection between soft plaque material 

and thrombus is not possible. 

Despite this simplicity of image construction from IVUS and the development of some 

signal processing procedures to overcome the lack of plaque characterization, there are 

significant challenges which limited the accuracy and clarity of the images produced via 

IVUS. These challenges are always present in the imaging process. For example, the 

omnipresence of noise related to the acquisition of the ultrasound waves (due to electronic 

devices) plays an important role on hiding useful information during the detection process. 

Moreover uncertainties due to sound speed variation, eccentricity of the transducer as well 

as scattering (related to small particles such as cells, and irregular surfaces) are important 

factors which contribute to the limitations of the developed IVUS techniques for the 

identification of vulnerable plaques. This certainly influences the issues of resolution and 

inability to adequately discriminate between fibrous and lipid-rich plaques. 

The nature of this imaging modality (irregularities in the geometry of the tissues and 

movement of the catheter tips) and the sensitivity of the recorded RF echoes have motivated 

other research groups to work on modeling the ultrasound wave propagation in biological 

tissues and specifically IVUS.  

Since the IVUS imaging method is based on ultrasound wave propagation, the only way to 

sketch a model for this propagation will be dictated from the constitutive laws that govern 

these waves. To know the complete behavior of the waves towards each tissue component, a 

solution should be found in time and space for these signals. 
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Nonlinear propagation mathematical models have been introduced. The most widely used 

model for modeling finite amplitude sound beam propagation is the so-called Khokhlov, 

Zabolotskaya and Kuznetsov (KZK) equation (Kuznestov, 1971). Numerous methods to 

solve this non-linear model have been proposed (Lee & Hamilton, 1995; Tavakkoli et al., 

1998). One of the difficulties for these numerical models was the computational aspect. 

Huge memory and supercomputing machines have to be allocated for the implementation 

of such nonlinear models. Even using advanced equipments in terms of performance, the 

computation process of these models can take several hours and even days. This is far from 

simulating a real time propagation of the ultrasonic waves. 

Given the complexity in solving these nonlinear models, other groups of researchers have 

resorted to the adoption of simple linear wave equation models (Kendall & Weimin, 2001). 

In fact ultrasound that is propagating in biological tissues generates small fluctuations. The 

propagation of these fluctuations is governed by what is called the wave equation. The 

closed form solution of the wave equation here above is unavailable. Thus two main 

numerical methods were proposed; which are the finite differences and the finite element 

methods (Guenther & John, 1996; Kendall & Weimin, 2001). The complexity of the models 

presented problems in terms of real time simulation and computational burden.  

A reduced order model called Transmission Line matrix (TLM) method is developed in this 

chapter to simulate the ultrasound wave propagation. The foundation of the computational 

method (Transmission Line Matrix Method) that is used to model IVUS in a simple regular 

medium (rectangular shape) is first developed. A new TLM model in polar coordinates 

(circular shape to model the artery cross-section) is then outlined. The TLM model will 

subsequently be modified to model IVUS. The system identification methodology used to 

construct a parametric model that characterizes a plaque for specific mechanical and 

acoustic properties is demonstrated in the last part of the chapter. 

2. TLM model 

Transmission Line Matrix concept was based on transmission lines (Fig. 1).  
 

 

Fig. 1. A simple transmission line circuit between points x and x+Δx 

The idea of using electrical circuits for TLM came from the analogy that was established 

between the current or voltage propagating in this line from one point to another and the 

electromagnetic field (EMF) governing equations (Christos, 1995). Besides this analogy, TLM 

was based on the Huygens principle where each point of a wave front is regarded as a 

secondary wave source point and the surface tangent to the secondary wave fronts is used 

to determine the future position of wave front (Fig. 2).  
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Fig. 2. Schematics of the Huygens principle for wave propagation (CliffsNotes. Wave Optics, 
2010)  

TLM models this physics principle by discretizing the medium into a mesh grid and replacing 
the wave amplitudes by voltages and currents traveling from one node to another (Fig. 3).  
 

 

Fig. 3. Propagation in TLM model 

2.1 Rectangular TLM 

The 2-D TLM method has been widely developed and studied in the literature because of its 

importance in terms of treating wave propagation in the two dimensional space (Christos, 

1995; De Cogan et al., 2006). As mentioned previously the use of TLM method for wave 

propagation purposes was first inspired from the analogy that was found between the 

electric circuit variables and the EMF problem. A two dimensional element of a medium of 

dimensions u and v , is represented by a node intersected by two transmission lines in the x

and y directions (Fig. 4).  
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Fig. 4. Shunt TLM node 

If C 	is the total capacitance of this element and xL , yL  are the total inductances for the two 

lines in x and y  directions respectively, then the voltage/current differential equations are 
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where xI and yI are the current traveling in the lines in x and y  directions respectively and 

zV is the total voltage in the element. Recall that the governing equations for EMF and 

Sound wave problems in the 2-D configuration are the following. 
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Where E and H are the Electric and magnetic fields, µ and ε are the permeability and 

permittivity of the space. P is the pressure, xU and yU  are the pressure velocity components 

in x and y directions, ρ is the density of the medium and σ is the compressibility of the 

medium. 
The system of equations in (1) is transformed to equation (4)  
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Here w is an arbitrary distance inserted to retain the correct dimensionality when dividing

xI and yI by v and u 	respectively (Al-Mukhtar & Sitch, 1981). Comparing equations (2), (3) 

and (4), the analogy between EMF, sound propagation and electric circuits is established in 

Table 1. From this analogy the electric and magnetic fields of the EMF problem could be 

solved through the TLM method by considering them as the transmission line voltage and 

currents respectively. The same thing applies for the sound wave problem (wave equation), 

where the amplitudes are calculated via the voltages traveling in the TLM model. 
 

EMF 

parameters 

Sound wave 

parameters 

Electric Circuit Parameters for the 

Transmission Line (TL) 

zE  P  zV
w  

yH−  
xU  xI

v  

xH  yU  yI
u  

µ  ρ  yL u
vw or xL v

uw  

ε  σ  Cw
uv  

Table 1. Analogy between EMF, Sound wave and TL parameters 

In a regular mesh, each node is characterized by equally spaced nodes related to each other 

by four lines (in the x and y directions) as illustrated in Fig. 4. This shunt node in a Cartesian 

regular mesh is presented by four transmission line segments each of characteristic 

impedance , 1,2,3,4iZ i = . These four lines have the same length (i.e. same impedance). The 

scattering is calculated based on the incident ( )I
k iV and reflected ( )R

k iV pulses to the node 

and the relationship between them. This relationship between ( )I
k iV and ( )R

k iV is derived 

using a general approach based on replacing each of the line segment by its Thevenin 

equivalent (U.A. Bakshi & V.U. Bakshi, 2009). For each segment, this consists of a voltage

2 I
k iV in series with the impedance iZ

 
(Fig. 5). 
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Fig. 5. Thevenin equivalent circuit for the 4 lines intersecting the shunt node of the mesh 

The scattering matrix for the shunt node 
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V V

V V

V V

            =               

. (5) 

There are applications, such as arteries, when the medium geometry is complex (curved or 
circular shapes), where the use of the regular TLM method is not appropriate to solve 
numerically the sound wave equation. This restriction on the shape and size of the mesh 
affects the capability of the conventional regular TLM method. Moreover the employment of 
the conventional TLM where the shape is irregular necessitates the use of finer meshes to 
represent these irregularities accurately. This represents a burden in terms of memory use 
and run time for numerical computations. Hence a new TLM mesh and model will be 
developed for the whole artery cross-section in the next section.    

2.2 Cylindrical TLM 

A two dimensional element of a medium having differing dimensions   u and  v , is 

represented by a node intersected by two transmission lines in x and y  directions (Fig. 6). 

 

 

Fig. 6. Irregularly spaced element 

From Table 1, the following relationships are obtained 

 x

y

uv
C

w
uw

L
v

vw
L

u


= σ




= ρ



= ρ

. (6) 

Time synchronism is conserved in the TLM (Christos, 1995). In fact, the transmitted pulse 
from one node must reach its surrounding nodes at the same time regardless the lines 
lengths linking these nodes in all direction ( x  and y  directions in the 2-D case). This means 

that the velocity of propagation of the voltage is dependent on the lines lengths. Since the 

velocity is function of the total inductance and capacitance of the line (
1

V
LC

= ), the 

inductance term is fixed and capacitance is calculated for each direction by taking into 
account the relationship between inductance, capacitance and velocity. 
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Given the inductances in both directions, the capacitances per unit length in these lines are 
obtained. 

 

0
2

0
2

x
r

y
r

v
C

u h w

u
C

v h w

σ
= ρ


σ =

 ρ

. (7) 

Due to the irregular mesh grid, the total capacitances found in x and y directions, xC  and 

yC  are sometimes less than the total capacitance of the element C . A residual capacitance 

sC  is defined and modeled by an open-circuit stub at each node of the mesh (Fig. 7). 

 

( )2 2
0

s
r

u vuv
C

w uvh w

σ +
= σ −

ρ
 

(8)

 

 

 

Fig. 7. Stub represented by a new line at each node 

The artery cross-section is presented by a disk. The coordinates system is characterized by 

the angle θ  and the radial position r (polar coordinates). In the TLM method, the 

discretization process of the medium will lead to an irregular gridding (Fig. 8). 

 

 

Fig. 8. Irregular structure of a circular element of the cylindrical TLM model 

In general for an arbitrary node that has a radial position r the element is characterized by 

the following lines lengths 

 
ru dr

u rdθ

=


= θ
 (9) 
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Obviously the nodes in this case are not equally spaced. Therefore the TLM model 
corresponds exactly to the same formulation. Consequently a stub line must be added to 
compensate for the residual capacitance caused by the length difference of the radial and 
angular lines of each element in the mesh. The element is characterized by radial and 

angular impedances and a stub admittance rZ , Zθ and 5Z . 

 
 

 

Fig. 9. Added stub line to a circular element 

In Fig. 9, the radial line [2,4] , the angular line [1,3] and the stub line are characterized 

respectively by rZ , Zθ and 5Z .The radial, angular impedances and the stub admittance can 

be derived by replacing u by dr and v by rdθ . 

 

( ) ( ) ( ) ( )( )
( )( )

2 2 2 2
0

5
0

2

r
r ref

r
ref

r

r

wdr
Z Z

rd

wrd
Z Z

dr

dr rd h dr rd
Z

dr rd w

θ


 ρ

=
θ




θρ
=





  σ θ ρ − σ + θ   =
 θ σ ρ

, (10) 

where
0

r

ρ
ρ =

ρ
is the ratio of a line inductance with respect to the smallest line inductance 

and 0

0
ref

h
Z

ρ
=

σ
is the characteristic impedance of the smallest line in the mesh grid of the 

artery cross-section. 0ρ and 0

h

σ
are the inductance and capacitance of the reference line (i.e. 

smallest line). 

For both Cartesian and cylindrical geometry, each TLM element is thus characterized by a 

circuit structure of five transmission lines (Fig. 10). 
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Fig. 10. Shunt node for irregular TLM 

The equivalent Thevenin circuit is composed of five Thevenin sources in series with five 
equivalent impedances corresponding to the five lines (Fig. 11). 
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Fig. 11. Thevenin equivalent circuit for the 5 lines intersecting an arbitrary node of the 
irregular mesh 

The scattering matrix equation in this case is 
 

 

1 11 2 3 4 5

2 21 2 3 4 5

1 2 3 4 53 3

1 2 3 4 54 4

1 2 3 4 5
5 5

2 2 2 2 2

2 2 2 2 2
1

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

R I
k k

R I
k k

R I
k k

R I
k k

R I
k k

V VZ D Z Z Z Z

V VZ Z D Z Z Z

Z Z Z D Z ZV V
D

Z Z Z Z D ZV V
Z Z Z Z Z D

V V

   −        −     −=       −     −       

. (11) 

R
k iV and I

k iV are the reflected and incident voltages to  an arbitrary node of the line i at time 

k  and
5

1
i

i

D Z
=

= is the sum of the impedances of the four lines and the stub admittance. 

3. TLM IVUS model 

Ultrasound waves have the same properties as sound waves. They obey the same wave 
propagation law. In this section a physics-based numerical model is developed using TLM 
method to mimic the ultrasound wave propagation inside the arterial wall. Both rectangular 
and cylindrical TLM models will be employed to model IVUS. The first TLM model is used 
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by considering a small portion of the artery cross-section that has a rectangular shape (Fig. 
14). However the second TLM model (cylindrical) takes into account the whole artery cross-
section geometry. These codes were developed in Matlab. In order to construct the TLM 
models many basic parameters should be provided. The size of the medium, the gridding 
rate, the boundary termination, the wave source location and the traveling process are the 
most important data to be known in the modeling process.  
The medium is automatically generated from the developed TLM codes once the 
dimensions are specified. Given the inner and outer radii of the artery cross-section, an 
automated mesh is generated. Since TLM model is based on the nodes and lines of the 
discretized medium, the number of nodes in both directions as well as the lines lengths are 
function of the indicated gridding rates. In the cylindrical TLM model, the choice of the 
gridding rate is essential for capturing the propagation of the ultrasound wave. The wave 
should reach the outer edge of the artery cross-section. In fact for an arbitrary mesh the 
propagation trend of the ultrasound wave is more pronounced in the angular direction of 
the circular medium. The choice of the mesh grid must be generated in a way that 
guarantees a conic wave propagation of the TLM method. This means that the propagation 
should occur in a conic way in the radial direction. The propagation as developed 
previously in the TLM model depends on the scattering matrix which is function of the lines 
impedances. These impedances are function of the gridding rates in both radial and angular 
directions. Thus a specific mesh grid should be developed to ensure this numerical stability. 
The propagation of the sound wave is expected to be like the one illustrated by Fig. 12.  
Investigations have shown that the angular deviation of the propagation occurs when the 

radial position is characterized by 0.633rZ

Zθ

= . Since
( )

( )

2

2
r drZ

Z Rdθ

=
θ

, after this radial position, 

the ratio between the gridding rates has this condition 0.8
dr

Rd
<

θ
. The mesh grid is designed 

such that 0.8
dr

Rd
≥

θ
. By imposing this numerical condition on the mesh grid, the 

propagation occurs in a conic fashion as illustrated in Fig. 12. 
 

 

Fig. 12. Conic propagation of the sent wave through the circular medium 

As the TLM is a numerical method, the medium should be of a finite size. This is known as 

medium termination. This is presented by a wall that is characterized by the same acoustic 

impedance of the terminated medium. For example if the external medium that comes after the 

artery is air, then the wall that models the termination of air is characterized by the acoustic 

impedance of the air. For all the developed simulations the surrounding media impedances will 

be taken in such a way the boundary reflection effect is attenuated so that these reflected 

components do not influence the wave propagation inside the artery cross-section. 
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The design of the wave source has been widely studied for the IVUS. In the TLM model, 

flexibility is given in the code to design any kind of source waves. Since Matlab is the 

platform where the code was developed, SIMULINK toolbox is used for the source wave 

specifications. This toolbox offers a variety of signals some of them are illustrated in Fig. 13. 

In addition to the wide range of source waves, this model gives the possibility of specifying 

any location in the mesh to be the source point where the ultrasonic wave starts to 

propagate. For instance the source could be in one node of the edges of the medium, inside 

the medium or in different nodes at the same time.  

 

 

Fig. 13. Examples of different source waves designed by Simulink 

The propagation process is based in the Huygens principle where for a given node in the 

mesh, the reflected amplitudes going out at time 倦 will serve as the incident waves to the 

surrounding nodes at time 倦 + な. For the rectangular and cylindrical TLM models, it is given 

by equations (12) and (13). 
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The IVUS TLM models can represent both healthy and abnormal artery cross-sections. In 

the healthy case the TLM model is described by a medium that has constant acoustic 

impedance (傑 = 貢潔, 貢 is the medium density and	潔 is the acoustic speed in the medium). 

However the abnormal artery is modeled by an inclusion that is inserted in the healthy 

medium. This inclusion is characterized ban acoustic impedance that is different from the 

one of the healthy medium. Illustrated in Fig. 14 is the case where artery contains a plaque 

(Yellow colored region).  

 
 

 
 

Fig. 14. Plaque in the artery 

The TLM model will consider the plaque as a rectangular object that is inserted inside the 

artery portion presented by the rectangular medium. The plaque (inclusion) that is formed 

inside the artery is characterized by different acoustic properties. In fact the ultrasound 

speed and density are not the same as of the normal tissue (i.e. different acoustic 

impedances). This will produce a boundary between the healthy portion of the artery and 

the abnormality edge. This boundary characterizes a change in impedances. A 

reflection/transmission phenomenon takes place due to this change along the four edges of 

the plaque. Considering Plaque Plaque PLaqueZ c= ρ and Artery artery ArteryZ c= ρ to be the acoustic 

impedances of the plaque and artery, then the reflection and transmission coefficients are 

 

1

Plaque Artery

Plaque Artery

Plaque Artery

Plaque Artery

Z Z
R

Z Z

Z Z
T

Z Z

−
=

+

−
= −

+

. (14) 

The transmission and reflection that occur on both sides of the boundary are function of 

these coefficients. Depending on the acoustic characteristics of the plaque the propagation of 

the wave will show different behavior. As an example to illustrate the effect of the plaque, 

three different acoustic impedances are taken. A swept sine wave is designed to be the 

source signal at the node (1st horizontal, 45th vertical). The medium is composed of 751 by 76 

nodes and the plaque is located between the 20th and 30th node in the horizontal direction 

and the 25th and 65th node in the vertical direction (Fig. 15). 
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Fig. 15. Plaque example generated by the developed 2-D rectangular TLM model 

Fig. 16 is an illustration of the plaque influence on the determination of the wave shape 
using regular TLM model. This model could be extended to study numerous cases where all 
combinations of abnormalities can be constructed.  
 
 

 
 

Fig. 16. Comparison of the time signals using the rectangular TLM model  
(Z滝叩嘆辰辿樽達狸探坦辿誰樽 = 7.4Z滝奪叩狸担竪湛叩嘆担奪嘆湛 and	Z託誰脱担辿樽達狸探坦辿誰樽 = ど.ど74Z滝奪叩狸担竪湛叩嘆担奪嘆湛) 

Also using the cylindrical TLM model, an inclusion was inserted in the circular medium 

between the 70th and 130th angular nodes and 20th and 30th radial nodes. A sine wave is 

injected from the inner radius (node (1st radial direction, 100th angular direction)) and the 

wave propagation is recorded. It can be shown from Fig. 17, the effect of the acoustic 

properties of the inclusions that form inside the artery. These models will be employed in 

the next section to analyze these recorded signals and build a lumped parameter model of 

the different tissues types based on their size and acoustic properties. 
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Fig. 17. Time signals record of the wave propagation at different locations having different 
inclusion ( healthy artery7.4ZHardinclsuionZ = and healthy artery0.074ZSoftinclsuionZ = ) 

4. Plaque characterization 

This section departs from the traditional approaches appearing in the literature by 

considering the inclusion within a medium to be a dynamic system. A system identification 

approach will be adopted to characterize the dynamics of the plaque (Soderstrom & Stoica, 

2001). Thus, the TLM models developed in the previous sections are used as a mean of 

acquiring the time signals transmitted and reflected in a region of interest within the 

medium (plaque or inclusion location). These signals will be considered as inputs and 

outputs to the dynamic system where digital signal processing techniques are employed to 

identify a parametric model for these plaques. 

4.1 Persistency of excitation of the input signal 

Any input signal used in the context of system identification must meet certain condition. In 
particular, the input signal should be persistently exciting (Ljung, 1999). The frequency 
domain condition enforcing a persistency of excitation is: 

A signal ( )u t characterized by its spectrum ( )uΦ ω is said to be persistently exciting if 

                         ( ) 0uΦ ω >                   for almost all ω  

Thus the spectrum may be zero on a set of number of points (almost all definition). 

One classical frequency-rich signal is the swept sine signal which is also known as the  

“chirp signal”. The chirp signal is a single sine wave with a frequency that is changing 

continuously as a function of time. The general mathematical presentation of the swept sine 

wave is 

( ) ( )
( )1

sin 2
s

k
u k A k B

f

 −
= πβ ∗ + ϕ + 

 
 

( )
( )max min

min
arg

1

2 t et s

f f k
k f

t f

−  −
β = +  

 
where max2sf f≥  
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Where A is the wave amplitude, B is the signal bias term, ϕ is the phase angle of the wave 

and ( )kβ is the time varying frequency of the swept sine in Hertz. The frequency sf is the 

sampling frequency. The frequency ( )kβ in this case is a linearly varying frequency over the 

interval [ ]min max,f f . The target time, denoted as argt ett ,
 
is the time for which the upper 

bound of the frequency range is achieved. During the system identification process of the 

plaque and healthy tissue characterization, a swept sine will be designed as the source 

signal (the choice of the swept sign came from the fact that this wave was the only signal 

that was consistent in terms of constancy of the model structure). From literature, the 

frequency range used in the signal processing for the soft tissue is in the range of
5 710 ,10 Hz 

  . The swept sine is therefore designed such that the frequency covers this 

range. This signal will be combined with a zero-element vector. As illustrated in Fig. 18, a 

swept sine is designed to be the source signal of the simulation part for the TLM models. 

The sampling time of this signal is equal to 10-9 sec. 
 

 

Fig. 18. Constructed swept sine pulse  

4.2 System identification method 

This process is composed of two stages. In the first stage, the identification technique that is 
used for modeling purposes is the so-called Orthogonal Least Squares (OLS) method 
(Korenberg et al., 1988; Chen et al., 1989). This method is a discrete time domain based 
approach where the time signals are used for model determination. In fact, the transient 
time domain information generated from the TLM artery models and their delayed 
components will be used as possible input regressors. This method will determine the most 
significant regressors from a broad range of possible candidates to identify the best 
parametric model. The general model structure can be linear or nonlinear. However for this 
work, it is anticipated that only a linear model will be needed. 
A discrete time model generally resembles a polynomial structure. Considering a general case, 
a discrete system model with unknown coefficients (model parameters to be estimate) can be 
transformed into the linear-in-the-parameters representation by means of the expansion 

 ( ) ( ) ( )
1

,      1,...,
M

i i
i

z k p k k k N
=

= θ + ξ = , (15) 
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where ( )z k is the output, ( )ip k  are the monomials of the different inputs up to certain 

degree M , iθ are the unknown parameters of the model to be estimated, ( )kξ is the 

modeling error and N is the data length. Equation ,(15) can be transformed to the matrix 

form  

 Z P= Θ + Ξ . (16) 

Given this formulation, a linear least squares problem emerges. The proposed OLS method 
systematically searches the entire regressor space (monomials) as precised in equation (16) 
to find the best error reduction set, transforms these optimal regressors into orthogonal 
components, and then perform final regressor identification based on the new orthogonal 
system. These estimates will be mapped back to the original parameter estimates with their 
relative regressors given in equations ,(15) and .(16). This is called Parameter Estimation 
(PE). Structure Selection (SS) algorithm is then applied where it is anticipated that a linear 
model will emerge. This procedure takes the estimated parameters and statistically 
prioritizes these regressors into the most significant regressor, second most significant 
regressor and so on until accuracy of the model output is realized. 
The second stage is characterized by the estimation of the model coefficients. A second 
system identification technique called recursive least squares (RLS) is used (Ljung, 1999). This 
method departs from a system of linear equations in the matrix form 

 Y P= Θ , (17) 

where 1M×Θ∈ℜ is the unknown parameters of the model to be determined, 1NY ×∈ℜ is the 

output vector N MP ×∈ℜ is the information matrix which is function of the input and output 

vectors. 
The utility of this method is to calculate the inverse of the information matrix. Based on an 
algorithm that is composed of three equations, the inverse matrix is simply calculated by 
means of additions and multiplications. Finally once the inverse of the information matrix is 

found, the model coefficient vector Θ can be calculated from equation (17). 

4.3 Tissue characterization using regular and cylindrical irregular TLM models 

A set of inputs were designed. This set was composed of a swept sine, a Schroeder wave, a 

pulse and a band limited white noise. Swept sine and Schroeder wave signals were the more 

appropriate candidates since they are characterized by their frequency-rich content and their 

persistent excitation property. During the model structure identification all the considered 

inputs except the swept sine gave different model structure of the plaque while its 

properties were changed.  That is why, the swept sine signal was considered to be the best 

input that captures the dynamics of the studied plaques. The OLS algorithm is applied to 

the input/output sets of data and a discrete parametric model is established for the plaque. 

The following simple first order linear model is generated for the different plaques 

 ( ) ( ) ( )1 01y k a y k b u k= − + , (18) 

where ( )y k is the model output of the plaque and ( )u k is the input to the plaque. In order to 

investigate the effect of plaque acoustic properties variation on the model, a first order 

continuous model is derived from the input/output data sets 
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 ( ) ( ) ( )y t y t du tτ + = . (19) 

d is the DC gain and τ the time constant.  

The DC gain and the time constant are determined using different approximations of the 

first derivative of the output, ( )y t . These approximations calculations were performed to 

test the robustness of the model coefficients when recovering continuous model from 

discrete model. Multiple first time derivate approximations were performed to recover the 

continuous model calculations (Centered first order derivative approximation, Forward 

second order derivative approximation, Backward second order derivative approximation 

and Centered fourth order derivative approximation). The model coefficients were 

calculated and compared using these approximations and the error variation was negligible.  

The characterization of the plaque will be linked to the model coefficients and mainly the 

DC gain. The DC gain is expected to decrease if the impedance is increasing. This is 

explained by the fact that if the acoustic impedance is going up then the density of the 

plaque is increasing, meaning that this portion of tissue is getting harder and denser 

mechanically. A denser material has a repulsive effect and the transmitted signal into it is 

minor. This means that the denser the material is the more resistive effect it shows. 

Therefore if the impedance goes up then the DC gain is expected to decrease. 

In the TLM model, the plaque acoustic impedance is increased gradually and the 

input/output data sets to this plaque are recorded. The model coefficients (DC gain and 

pole location) are calculated.  

Table 2 illustrates the results of the first order model of the plaque that is obtained from the 

rectangular TLM model. This model is characterized by a medium that is composed of 90 by 

300 nodes in the horizontal and vertical directions respectively and a plaque that is located 

between the 10th and 30th horizontal nodes and 25th and 65th vertical nodes. The designed 

swept sine signal is composed of 600 data points with a sampling time that is equal to 10-9 

sec and a frequency range of 4 710 ,10 Hz 
  . This input was injected at the 1st horizontal and 

45th vertical node. The 45th vertical direction coincides with the middle line crossing the 

plaque. The input (10th radial position) and output (31st radial position) signals to the plaque 

were recorded. 

 
Acoustic Impedance [計訣兼貸態嫌貸怠] DC gain d  Time constant τ  

ZhealthyTissue=1559216 0.5634 22.15  

Z=1.2xZhealthyTissue 0.5171 21.95  

Z=1.4xZhealthyTissue 0.4778 21.81  

Z=1.6xZhealthyTissue 0.4442 21.71  

Z=1.8xZhealthyTissue 0.4149 21.64  

Z=2xZhealthyTissue 0.3893 21.61  

Table 2. Time constant and DC gain variation as function of the acoustic impedance of the 
plaque (rectangular TLM model)  
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Table 2 confirms that the DC gain is indeed decreasing when the acoustic impedance of the 
plaque in increased. Moreover, the time constant 酵 (indicator of the time response of the 
system) is decreasing likewise the DC gain when the acoustic impedance is increased. This 
is explained physically by the fact that the increase of the hardness of the tissue (the plaque) 
will affect the speed of the system response. The coefficients percentage variations are 
summarized in Table 3. 
 

Acoustic Impedance 
[計訣兼貸態嫌貸怠] 

Acoustic 
impedance 
change [%] 

DC gain 穴 

DC gain 
change 

[%] 

Time 
Constant 酵 

Time 
Constant 

change [%] 

Z=1.2xZhealthyTissue 20 0.5171 -8.22 21.95 -0.90 

Z=1.4xZhealthyTissue 40 0.4778 -15.19 21.81 -1.50 

Z=1.6xZhealthyTissue 60 0.4442 -21.16 21.71 -1.99 

Z=1.8xZhealthyTissue 80 0.4149 -26.36 21.64 -2.30 

Z=2xZhealthyTissue 100 0.3893 -30.90 21.61 -2.44 

Table 3. DC gain and Time constant variation in percentage (rectangular TLM model) 

Using the cylindrical irregular TLM model, the same plaque size and location as of the 
regular TLM model is considered. The plaque is located between the 10th and 30th radial 
nodes and 25th and 65th angular nodes. The same designed swept sine signal is injected at 
the 1st radial and 45th angular node. The 45th angular direction coincides with the middle line 
crossing the plaque. The input (10th radial position) and output (31st radial position) signals 
to the plaque are recorded. To study the plaque type effect on the model coefficients, the 
variation of the DC gain and pole location is studied as function of the plaque density 
variation. Therefore the speed is set constant and the density of the plaque is varying with 
respect the healthy tissue density. The same approximations are used to determine the 
coefficients of the continuous model. As in the case of the regular TLM model section, it is 
expected that both the DC gain and the time constant to decrease when the acoustic 
impedance of the plaque is increased and this is what is presented in Table 4. 
 

Acoustic Impedance [計訣兼貸態嫌貸怠] DC gain 穴 Time Constant 酵 

ZhealthyTissue=1559216 0.5275 26.42 

Z=1.2xZhealthyTissue 0.5224 25.04 

Z=1.4xZhealthyTissue 0.5090 23.28 

Z=1.6xZhealthyTissue 0.4910 21.34 

Z=1.8xZhealthyTissue 0.4699 19.30 

Z=2xZhealthyTissue 0.4472 17.28 

Table 4. DC gain and Time constant variation as function of the acoustic impedance of the 
plaque (cylindrical irregular TLM model) 
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It can be seen from both models that a plaque could be characterized by a first order system. 

In fact the coefficients variation of this model is inversely proportional to the acoustic 

impedance variation. The coefficients variations are summarized in Table 5. 

 

Acoustic Impedance 
[計訣兼貸態嫌貸怠] 

Acoustic 
impedance 
change [%] 

DC gain 穴 

DC gain 
change [%]

Time 
Constant 酵 

Time 
Constant 

change [%] 

Z=1.2xZhealthyTissue 20 0.5224 -0.97 25.04 -5.22 

Z=1.4xZhealthyTissue 40 0.5090 -3.51 23.28 -11.88 

Z=1.6xZhealthyTissue 60 0.4910 -6.92 21.34 -19.23 

Z=1.8xZhealthyTissue 80 0.4699 -10.92 19.30 -26.95 

Z=2xZhealthyTissue 100 0.4472 -15.22 17.28 -34.60 

Table 5. DC gain and Time constant variation in percentage (cylindrical irregular TLM 
model) 

Considering the model structure found during the tissue characterization, the plaque can be 

viewed as a first order low pass filter. This first order filter illustrated in Fig. 19 is 

characterized by a DC gain and a time constant that decrease when the resistance 1R is 

increasing.  

 

 

Fig. 19. RL low pass filter 

The transfer function of this filter is the following 

 

2

1 2

1 2

1

R

R R
L

s
R R

TF +

+
+

= . (16) 

The resistance 1R and 2R  can be linked to the acoustic impedance of the medium. From the 

transfer function above, if 1R and 2R  increases the DC gain and the time constant decrease. 

5. Conclusions 

In this paper, ultrasound wave propagation through biological tissues and specifically 

through arterial wall was studied. This modeling work was twofold. First it departed from a 
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simple regularly-shaped medium (rectangular geometry) where a transmission line matrix 

(TLM) model was employed to capture the ultrasound wave propagation. In a second step 

an irregular TLM model was constructed based on a circular-shaped medium (disk) to 

simulate IVUS. Both of these models were based on the discretization of the medium where 

the Huygens principle was applied in the propagation process from one node to another. 

Moreover the propagating ultrasound waves were recorded in a digitized format in any 

location at any time specified during the numerical simulation.  

Advanced system identification techniques were, then, introduced and applied to 
characterize tissues. This approach used specific simulated waves in terms of locations to 
serve as the input/output data sets for the dynamic identification of these regions of 
interest. This characterization was based upon the construction of parametric models in the 
form of transfer function where its coefficients are directly related to each plaque type. A 
first order structure was, thus, found for all plaque types with different DC gain and time 
constant values depending on the properties of these inclusions. 
Finally, a quantitative study was performed to link the variation of these two parameters 
with respect to acoustic properties. It has been shown consequently that these plaque 
characteristics were identified quantitatively based on the ultrasound waves using the 
system identification approach. 
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