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1. Introduction  

Olive oil is a natural product of Olea europaea. It contains triacylglycerols of unsaturated and 
saturated fatty acids as well as free acids and numerous other biologically active 
components. Modern pharmaceutical industries are turning to natural herbal sources in 
order to find effective, low allergenic and non-irritating components that can be used in 
drug delivery systems or as recipients for both hydrophobic and hydrophilic active agents. 
Combining hydrophobic compounds with olive oil components is not problematic at all. 
However, this is quite different for hydrophilic compounds. One possible way for 
overcoming this problem is by mechanochemical treatment. This method has become 
widespread for preparing powdered solid materials in a large variety of compositions and 
involves the use of a conventional high-energy ball mill to initiate chemical reactions and 
structural changes of materials in solid-phase processes. Mechanochemical activation 
appears to be an environmentally friendly method, since it does not require organic solvents 
(Grigorieva et al., 2004; Margetić, 2005; Lugovskoy et al., 2008; Lugovskoy et al., 2009). It 
was shown that the mechanochemical method enabled some olive oil components to 
covalently attach to talc or to titanium dioxide - the solid ingredients of creams, ointments 
and powders (Nisnevitch et al., 2011). The remaining components were deeply absorbed by 
solid phases. New solid-phase composite materials which combined useful properties of 
various components with a different nature were thus created. Talc combined with olive oil 
exhibited good antioxidant properties scavenging ca. 40% of free radicals. Olive oil phenols 
with one or two hydroxyl groups, such as hydroxytyrosol, caffeic acid, photocatechuic acid, 
syringic acid, derivatives of elenolic acid, derivatives of oleuropein, tyrosol and some others 
are among the olive oil components responsible for its in vitro antioxidative activity 
(Papadopoulos & Boskou 1991; Briante et al., 2001; Lesage-Meessen et al., 2001; Tovar et al., 
2001; Vissers et al., 2004). These compounds retain their antioxidant properties when 
combined with talc by a mechanochemical method. Furthermore, the possibility of 
combining water-soluble ascorbic acid (vitamin C) with olive oil on a talc or titanium 
dioxide support using mechanochemical activation has been reported (Nisnevitch et al., 
2011). These triple mixtures (support-olive oil-ascorbic acid) scavenged free radicals 
instantly and totally due to the presence of ascorbic acid, which is a well-known effective 
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antioxidant (Cathcart, 1985). The scavenging ability in the triple mixtures after 
mechanochemical treatment was as good as that of the double mixtures of ascorbic acid with 
the supports. Mechanochemical inclusion of ascorbic acid into composites of olive oil with 
talc or olive oil with titanium dioxide successfully combined hydrophobic and hydrophilic 
components and provided high antioxidant properties to the entire system despite the 
covalent bonding between the components (Nisnevitch et al, 2011). 

New olive oil-based composite materials exhibit pronounced bactericidal properties. The 

antimicrobial activity of the mechanochemically treated triple mixtures which were pressed 

into pellets was examined against the Gram-positive S. aureus and the Gram-negative E. coli 

bacteria. Samples containing ascorbic acid on a titanium dioxide support were more 

effective against both bacteria than a talc support, probably because of weaker bonding of 

ascorbic acid to titanium dioxide than to talc, which contributed to better diffusion of the 

ascorbic acid out of the pellets. Gram-positive S. aureus was more sensitive to all the ascorbic 

acid-containing samples than the Gram-negative E. coli, but E. coli responded to addition of 

olive oil into both talc-ascorbic acid and titanium dioxide-olive oil mixtures. In the latter 

case, the inhibitory activity of the triple composites was higher than that of double ascorbic 

acid-support composites. The antimicrobial activity of all the ascorbic acid-containing 

samples depended on the ascorbic acid content in the pellets. Olive oil, olive fruit and olive 

leaf extracts are known to exhibit a broad antimicrobial, antimycoplasmal and antifungal 

spectrum due to the presence of long chain unsaturated aldehydes, phenolic glycoside 

oleuropein and several other phenol compounds (Fleming et al. ,1973; Kubo et al., 1995; 

Bisignano et al., 2001; Furneri et al., 2002; Medina et al., 2007; Covas et al., 2009; Kampa et 

al., 2009). Mechanochemical combination of natural antimicrobial agents from olive oil with 

ascorbic acid, which is a strong bacterial suppressor, enabled the production of highly active 

solid-phase antibacterial composites. 

Hydrophilic and hydrophobic components can also be combined by encapsulating 

hydrophilic constituents in lipid vesicles called liposomes. Such lipid-based formulations 

are actually possible carriers for both hydrophobic and hydrophilic active components and 

can be applied as drug delivery systems. Liposome formulations possess enhanced abilities 

to penetrate the skin, thus improving the delivery process. Lipid-based drug administration 

can increase treatment efficiency in cases of skin infections and inflammations caused by 

bacterial invasion.  

2. Olive oil-containing liposomes 

Liposomes (nano or micro-scale vesicles) can be obtained using phospholipids' property of 
self-assembly in the presence of an aqueous phase. Phospholipids spontaneously form a 
closed spherical phospholipid bilayer such that phosphate groups are in contact with the 
aqueous phase on the internal and external surfaces, and lipid chains are hidden within the 
membrane. Such a phospholipid assembly results in large multilamellar liposomes, which 
are constructed from alternating concentric lipid and aqueous layers. Treatment of 
multilamellar liposomes by ultrasound, membrane extrusion or other methods leads to the 
formation of unilamellar liposomes which consist of a single lipid bilayer (Chrai et al., 2001). 
Liposomes are convenient carriers of both hydrophilic and hydrophobic molecules, where 
the former can be incorporated into aqueous layers of multilamellar liposomes or 
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encapsulated in the inner space of unilamellar ones, and hydrophobic compounds can be 
incorporated into the lipid bilayers (Chrai et al., 2002).  

 

Fig. 1. Structure of a triacylglycerol. R – various residues of fatty acids.   

 

Fatty acid Structure 

% in Virgin Olive Oil
(Hatzakis et al., 

2008) 

% in 
EPC 

(Ternes, 
2002; 

Sigma 
aldrich. 

com) 

% in DPPC 
(northern 

lipids.com) Triacylgly-
cerols 

Phospho
-lipids

 
Oleic acid 72.0-81.6 72.5-82.9 26-31 - 

 
Linoleic 
acid  

4.6-11.0 2.7-12.0 13-19 - 

 
Palmitic 
acid      

12.3-19.7 11.2-19.4

27-33 100 

 
Stearic 
acid     

13-15 - 

 
α-Linolenic
acid   

0.08-0.53 0.11-0.47 0-0.2 - 

Table 1. Main virgin olive oil, egg phosphatidylcholine and dipalmitoyl 
phosphatidylcholine fatty acids. (Nichols & Sanderson, 2002; oliveoilsource.com)  

Liposomes can be exploited as carriers for controlled drug delivery and targeting to cells. 

Liposome formulations of drugs have several advantages over the use of drugs in their free 

form: liposomes guarantee delivery of a highly concentrated drug, liposomes protect the 

drugs from degradation during the delivery process, liposomes are applicable for polar as 

well as for nonpolar drugs, and ingredients of the liposomes themselves are nontoxic and 

biodegradable (Chrai et al., 2002). Liposome components participate in drug delivery, but 

not in drug function, such that liposomes actually play the role of excipients (Chen, 2008). 

Additional ingredients can be incorporated into the phospholipid bilayer in order to impart 

needed properties to liposomes, as indicated by the following examples: negatively charged 

phosphatidylinositol or positively charged stearylamine can be incorporated into the 

phospholipid bilayer in order to obtain charged liposomes (Robinson et al., 2001); addition 

of cholesterol provides rigidity to the liposome structure (New, 1994). The latter example is 
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explained by an increase in the gel-to-liquid crystalline phase transition temperature (Tc) of 

the lipid liposome layer upon the addition of cholesterol (Beaulac et al., 1998). 

 

Component Structure 

Dipalmitoyl phosphatidylcholine 

(DPPC) 

 

Egg phosphatidylcholine (EPC)* 

Cholesterol 

 

*Alternative fatty acids residues are listed in the Table 1. 

Table 2. Compounds used as a basis for liposome preparations. 
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The major ingredients of olive oil are triacylglycerols (Fig. 1) of unsaturated and saturated 

fatty acids (Table 1), mainly of oleic acid, but it also contains mixed triacylglycerols of 

palmitic-oleic-oleic, linoleic-oleic-oleic, palmitic-oleic-linoleic, stearic-oleic-oleic, linolenic-

oleic-oleic and other acids (Nichols & Sanderson, 2002; oliveoilsource.com ).  

Olive oil also contains a small amount of free fatty acids and several minor constituents 

necessary for health – tyrosol, hydroxytyrosol and their derivatives such as oleuropein, 

oleuropein aglycone, dialdehydic form of oleuropein aglycone, decarboxymethyl form of 

oleuropein aglycone and ligstroside aglycone; phenolic acids, for example, 4-

hydroxybenzoic acid, protocatechuic acid, syringic acid and 4-hydroxy-phenylacetic acid; 

flavonoids and lignads, for instance, apigenin, luteolin, pinoresinol and acetopinoresinol; 

squalene, -tocopherol, vitamins E and K, pigments chlorophyll, pheophytin, carotenoids 

and other compounds (Boskou et al., 2006a,b; Boskou 2009a,b). In addition, olive oil includes 

phospholipids at a concentration range of 11-157 mg/kg in virgin olive oil (Hatzakis et al., 

2008) and 21-124 mg/kg in cloudy (veiled) virgin olive oil (Koidis & Boscou, 2006).  

 

Component DPPC liposomes, 

% (w/w) 

EPC liposomes 

% (w/w) 

Dipalmitoyl phosphatidylcholine 62 - 

Egg phosphatidylcholine - 64 

Olive oil 30 28 

Cholesterol 8 8 

Table 3. Weight compositions of olive oil based liposomes.  

The liposomes used in this work were composed of dipalmitoyl phosphatidylcholine 

(DPPC, Northern Lipids Inc., Canada) or egg yolk phosphatidylcholine (EPC, Sigma, USA) 

also named L-α-lecithin. These phospholipids are constructed based on the 

phosphatidylcholine. However, DPPC has a homogeneous composition and contains only 

saturated palmitic acid residues, contrary to the heterogeneous composition of EPC, which 

includes several saturated and unsaturated fatty acid residues (Table 1). EPC liposomes are 

composed of two different fatty acid residues, where one residue is usually saturated and 

the other is unsaturated, as demonstrated in Table 2 (Kent & Carman, 1999). The most 

common fatty acids incorporated into the EPC structure are presented in Table 1. 

Phosphatidylcholine, the major membrane phospholipid in eukaryotic cells, is the source of 

the bioactive lipids lysophosphatidylcholine, phosphatidic acid, diacylglycerol, 

lysophosphatidylcholine, platelet activating factor and arachidonic acid. It also plays a role 

as a reservoir for several lipid messengers (Kent & Carman, 1999). 

We incorporated virgin olive oil (Yad Mordechai, Israel) into the lipid bilayer in order to 

enhance the biocompatibility of liposomes and enrich them with natural salubrious 

components. For this purpose, organic solutions of DPPC or EPC together with olive oil 

were prepared, and the organic solvent was evaporated in a round-bottom flask to dryness 

in a vacuum rotary evaporator to obtain a thin lipid film which was vigorously agitated 

with buffer solutions with or without water-soluble active agents.   
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Fig. 2. A schematic representation of unilamellar olive oil including liposome. Phospholipid 
molecules are orange coloured, olive oil components are green, cholesterol molecules are 
grey coloured. Internal liposome volume containing water-soluble active components is 
pink coloured.  

As can be seen from Table 1, both used by us phospholipids are built from the same fatty 

acids as olive oil triacylglycerols and olive oil phospholipids, although in different 

proportions. This fact points to high compatibility between the used phospholipids and 

olive oil. Various combinations of phospholipids and olive oil were attempted, and it was 

found that a homogeneous lipid film could not be obtained with any combination of olive 

oil and EPC and at a high olive oil content added to DPPC. A small amount of cholesterol 

(Table 2) was added to the lipid mixture solution in order to increase the lipid film's 

rigidity. Even and homogeneous films were attained after this addition, which resulted in 

stable liposomes. The multilamellar liposomes were transformed into unilamellar 

liposomes by sonication, as described previously (Nisnevitch et al., 2010; Nakonechny et 

al., 2010). Final compositions found to be appropriate for liposome preparation are 

presented in Table 3.  

A schematic representation of the olive oil-based unilamellar liposomes is presented in Fig. 

2. Triacylglycerol olive oil components are organically incorporated into the phospholipid-

based structure, hydrophobic olive oil constituents such as polyphenols or vitamins are 

incorporated into the liposome bilayer and the aqueous solution is located in the inner 

liposome space. The prepared liposomes were used for encapsulation of active bactericidal 

factors as described in part 4. 

The prepared olive oil-based liposomes were characterized by average size, evaluated by 

measuring the turbidity spectra. This method is based on the determination of an equation 

of the turbidity spectra curves, estimation of the power “n” in the equation (1):  
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 log noI
K

I
  (1) 

where log oI

I
 – a measured turbidity value, Io – initial light intensity, I – light intensity and  

– wavelength, and the liposome average size evaluation with a calibration curve 

representing "n"-values’ dependence on vesicle sizes (Trofimov & Nisnevich, 1990; 

Nisnevitch et al, 2010). Higher "n"-values correspond to smaller vesicle sizes. Turbidity 

spectra of DPPC and EPC liposomes with and without addition of cholesterol and olive oil 

were measured (Fig. 3), and corresponding type (1) equations were found in each case. As 

can be seen from Table 4, "n" values in these equations and correspondingly, vesicle sizes, 

are different for DPPC and EPC liposomes, and vary when cholesterol and olive oil are 

incorporated into the phospholipid layers.  

As can be seen from Table 4, the DPPC-based liposomes are smaller than the EPC ones 
obtained using the same treatment conditions. This phenomenon can be explained by two 
factors – by the lipid structure and by the lipid phase state of the liposomes. The 
homogeneous composition of DPPC, which contains only saturated palmitic acid residues, 
enables dense lipid packing in the liposome bilayers, in contradistinction to the 
heterogeneous composition of EPC, which includes several saturated and unsaturated fatty 
acid residues (Table 1). Such a denser package leads to the formation of unilamellar DPPC 
liposomes with a smaller diameter. At the temperatures of our experiments (from room 
temperature to 37oC), DPPC exists in a gel phase state (Tc of DPPC is 41°C 
(avantilipids.com)), whereas EPC is found in a liquid crystal state (Tc of EPC is –10oC (Kahl 
et al., 1989)). Acyl chains of phospholipids are more disordered and bulky in a fluid state, 
thus causing an increase in surface area per phospholipid molecule which results in bigger 
liposomes in the case of EPC liposomes (New, 1994). 

 

Liposome composition DPPC-based liposomes EPC-based liposomes 

"n"-value in 

equation (1) 

Vesicle 

size, nm 

"n"-value in 

equation (1) 

Vesicle 

size, nm 

Phospholipid alone 2.44 200 1.57 > 400 

Phospholipid and cholesterol 2.50 190 2.00 > 400 

Phospholipid,  cholesterol and 

olive oil 
2.03 > 400 1.36 > 400 

Table 4. Turbidity spectra parameters and vesicle size for liposomes of various 
compositions. 

Addition of cholesterol to phospholipids resulted in an increase in the "n"-value, which 

means that the vesicle size decreased upon the addition of cholesterol. The liposome size 

increased again after olive oil was incorporated into the membrane structure (Table 4). 

These facts can be explained by taking the correlation between liposome rigidity and size 

into account. Addition of cholesterol caused the liposome vesicles to become more rigid and 

respectively smaller, and further addition of olive oil led to disturbance of the lipid layer 

and to an increase in size (Table 4).  
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Fig. 3. Turbidity spectra of liposomes with and without additions of cholesterol (Chol) and 
olive oil (O-O). a – EPC-based liposomes, b – DPPC- based liposomes.  

3. Photosensitizers encapsulated in olive oil-containing liposomes 

Bacterial resistance to antibiotics has become a serious problem worldwide, causing an 

urgent need to develop new approaches and ways to overcome the evolution and spread of 

drug-resistant strains (Patterson, 2006; Maragakis et al., 2008; Moellering et al., 2007). One 

alternative to treatment of infections by antibiotics is photodynamic antimicrobial 

chemotherapy (PACT), which is based on the use of non-toxic compounds – 

photosensitizers, which can be activated by visible light. Excited photosensitizer molecules 

return to a ground level by transfering their energy to dissolved molecular oxygen with 

production of reactive oxygen species, which leads to direct damage of cellular components 

(Macdonald & Dougherty, 2001; Wainwright, 1998). This process is explained in Fig. 4. 
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Fig. 4. A scheme of photosensitizer (PS) activation upon illumination which visible light and 
its cytotoxic action. 

Photosensitizes refer to several chemical groups - porphyrins, phenothiazinium, 

phthalocyanines, xanthenes, chlorin derivatives and others. However, a feature common to 

all of these groups is the presence of conjugated double bonds, which allow effective 

absorbance of light energy. The history, mechanism of action and biomedical applications of 

PACT have been reviewed extensively (Nitzan & Pechatnikov, 2011; Malik et al., 2010; 

Reddy et al., 2009; Randie et al., 2011; Daia et al., 2009). Two photosensitizers, Rose Bengal 

and Methylene Blue, were used in this work. Rose Bengal relates to a xanthene (halogenated 

xanthenes) group of photosensitizers, and is negatively charged under physiological 

conditions. Methylene Blue represents a phenothiaziniums group and exists in cationic 

form. The structures of these compounds are shown in Fig.5. 

 

 

Fig. 5. Structures of photosensitizers Methylene Blue (upper) and Bengal Rose (lower).  

Both photosensitizes absorb visible light, and their absorption spectra are presented in Fig. 6. 
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Fig. 6. Absorption spectra of (a) Methyle Blue and (b) Bengal Rose. 

The described photosensitizers were encapsulated into DPPC and EPC liposomes with and 

without addition of olive oil as previously described by us (Nisnevitch et al., 2010). 

Liposomes with encapsulated photosensitizers were separated from free photosensitizers by 

centrifugation, and absorption of free photosensitizers was measured at the appropriate 

wavelengths (665 nm for Methylene Blue and 550 nm for Rose Bengal, Fig. 6). 

 100%o o

o o

A V A V

A V

  



 (2) 

where -  A0 - absorbance of the initial photosensitizer in the volume Vo and A- absorbance of 
the free photosensitizer in the volume V. The encapsulation rate reached 50±5% in all cases. 

The extent of the photosensitizers encapsulation in liposomes was estimated by formula (2) 

as the ratio of the encapsulated photosensitizer amount, taken as the difference between 

initial and free photosensitizer amount, and the initial amount. 

4. Bactericidal properties of photosensitizers encapsulated in olive oil-based 
liposomes 

Application of liposomal forms of various drugs is widely used in cases of cancer and 
bacterial infection treatment. Treatment of tumours by liposomal forms of doxorubicin led 
to a manifold accumulation of the drug in the malignant cells (Drummond et al., 1999). 
Entrapment of photosensitizers into liposomes was also successfully applied for eradication 
of cancer cells (Derycke & de Witte, 2004). Liposome-encapsulated tobramycin, unlike its 
free form, was demonstrated to be highly effective against chronic pulmonary P. aeruginosa 
infection in rats (Beaulac et al., 1996). Drug administration using liposomes provided a 
delivery of active components in a more concentrated form and contributed to their 

a 

b 
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enhanced cytotoxicity. A mechanism of drug delivery by liposomes was examined for 
Gram-negative and Gram-positive bacteria. Gram-negative and Gram-positive bacteria 
differ in their cell wall structure. Gram-negative cells possess an outer membrane which 
contains phospholipids, lipoproteins, lipopolysaccharides and proteins, peptidoglycan and 
cytoplasmic membrane. Gram-positive bacteria do not have an outer membrane, and their 
cell wall consists of peptidoglycan and an inner cytoplasmic membrane (Baron, 1996). 

In Gram-negative bacteria, fusion between drug-containing liposomes and the bacterial 
outer membranes occurs, which results in the delivery of the liposomal contents into the 
cytoplasm. This mechanism was verified by scanning electron microscopy (Mugabe et al., 
2006; Sachetelli et al., 2000), and it is schematically shown on the Fig. 7a. 

 

 

 

Fig. 7. A schematic representation of liposome-encapsulated drug delivery to (a) Gram-
negative and (b) Gram-positive bacteria cells.  

In Gram-positive bacteria, liposomes are assumed to release their content after interaction 

with the external peptidoglycan barrier, enabling passive diffusion through the cell wall 

(Furneri et al., 2000). This drug delivery mechanism is demonstrated in Fig. 7b. Application 

of liposomal forms of drugs leads to prolongation of their action in infected tissues and 

provides sustained release of active components (Storm & Crommelin, 1998).   

Gram-positive and Gram-negative bacteria respond differently to PACT, with the former 

being more susceptible to the treatment. Gram-negative bacteria do not bind anionic 

photosensitizers (Minnock et al., 2000), unless additional manipulations facilitating 

membrane transport are used (Nitzan et al., 1992), due to the more complex molecular and 

physico-chemical structure of their cell wall. PACT is considered to have good perspectives 

in the control of oral and otherwise localized infections (Meisel & Kocher, 2005; O’Riordan 

et al., 2005). Local application of liposome-entrapped drugs can prolong their action in 

infected tissues and provide sustained release of active components (Storm & Crommelin, 

1998). It should be mentioned that bacterial resistance to phosphosensitizers has not been 

reported to date. 

Liposome formulations of photosensitizers showed high efficiency in eradication of both 

Gram-negative and Gram-positive bacteria. Liposome or micelle-entrapped hematoporphyrin 

and chlorin e6 were found to be effective against several Gram-positive bacteria, including 

methicillin-resistant S. aureus (Tsai et al., 2009). 

b 

a 
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Fig. 8. Eradication of S. aureus by various concentrations of Rose Bengal (RB) in a free form 
and encapsulated into EPC–olive oil liposomes under white light illumination at initial 
bacteria concentration of (a) 3.109 cells/mL and (b) 3.107 cells/mL.  

Encapsulation of photosensitizers into liposomes does not always result in enhancement 
compared to the free-form cytotoxic activity. The activity of m-tetrahydroxyphenylchlorin in 
liposomal form was comparable to the free form activity of PACT inactivation of a 
methicillin-resistant S. aureus strain (Bombelli et al., 2008). When tested against methicillin-
resistant S. aureus, chlorophyll a was reported to be more efficient in free form than in a 
liposomal formulation, whereas hematoporphyrin as well as a positively charged PS 5-[4-(1-
dodecanoylpyridinium)]-10,15,20-triphenyl-porphyrin were less effective in free form than 
upon encapsulation in liposomes. These results were explained by differences in 
photosensitizer chemistry which may influence their association with liposomal 
components, lipid fluidity and localization in liposome vesicles (Ferro et al., 2006; 2007). 
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We have previously shown that Methylene Blue encapsulated in liposomes composed of 
DPPC or EPC effectively deactivated several Gram-positive and Gram-negative bacteria, 
including S. lutea, E. coli, S. flexneri, S. aureus and MRSA, and that liposomal Rose Bengal 
also eradicated P. aeruginosa (Nisnevitch et al., 2010; Nakonechny et al., 2010; 2011). 

Olive oil-containing liposomes loaded with photosensitizers were tested for their antimicrobial 
activity under white light illumination against two Gram-positive bacteria of the genus 
Staphylococcus – S. aureus and S. epidermidis. Although S. epidermidis is part of the normal skin 
flora, it can provoke skin diseases such as folliculitis, and may cause infections of wounded 
skin, in particular around surgical implants. S. aureus is defined as a human opportunistic 
pathogen and is a causative agent in up to 75% of primary pyodermas, including carbuncle, 
ecthyma, folliculitis, furunculosis, impetigo and others (Maisch et al., 2004).  

  

 

Fig. 9. Eradication of S. epidermidis by various concentrations of Rose Bengal (RB) in a free 
form and encapsulated into EPC–olive oil liposomes under white light illumination at initial 
bacteria concentration of (a) 3.108 cells/mL and (b) 3.106 cells/mL. 
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The water-soluble photosensitizers Rose Bengal and Methylene Blue were encapsulated in 

the above-described unilamellar liposomes at various concentrations and were examined 

under white light illumination against various cell concentrations by a viable count method 

as described previously (Nakonechny et al., 2010) and the number of bacterial colony 

forming units (CFU) was determined. This number characterized the concentration of 

bacterial cells which survived after a treatment.   

The antimicrobial effect of liposomes incorporated with olive oil and loaded with Rose 

Bengal was strongly dependent on its concentration (Fig. 8 and 9). As can be seen from Fig. 

8a, treatment of S. aureus with EPC-based liposomes caused a million-fold suppression of 

the bacterial cells at 0.25 M of Rose Bengal and total eradication at a concentration of 2 M 

when tested at an initial cell concentration of 3.109 cells/mL. Total eradication of S. aureus at 

an initial concentration of 3.107 cells/mL occurred already at a liposome-encapsulated Rose 

Bengal concentration of 0.5 M (Fig 8b).  

A principal similar trend was observed for S. epidermidis. It was necessary to apply 

liposome-encapsulated Rose Bengal at a concentration of 0.25 M for total eradication of 

bacteria at an initial concentration of  3.108 cells/mL (Fig. 9a), and it was enough to apply 

0.02 M encapsulated photosensitizer for killing bacteria at 3.106 cells/mL (Fig. 9b). S. 

epidermidis exhibited a higher sensitivity than S. aureus for the liposome formulation of Rose 

Bengal compared with its free form. For S. aureus, liposomal Rose Bengal was only twice as 

effective as its free form – at each Rose Bengal concentration its liposomal form caused two-

fold higher suppression of the bacteria. In contradistinction, S. epidermidis was suppressed 

three to twelve times more effectively by Rose Bengal encapsulated in liposomes than by the 

free photosensitizer.   

Bacterial eradicating ability of the encapsulated as well as of the free Rose Bengal was 

demonstrated to depend on the initial concentration of the bacteria. When tested at the same 

Rose Bengal concentration, a suppression of both bacteria varied from partial to total. As can 

be seen from Fig. 10a, a 0.25 M concentration of Rose Bengal encapsulated in EPC-olive oil 

liposomes caused a decrease of up to 6.102 cells/mL in the S. aureus concentration when 

taken at an initial concentration of 3.109 cells/mL (corresponding to 6.7 log10 CFU/mL) and 

up to zero cell concentration when taken at 3.107 or 3.106 cells/mL. In the case of S. 

epidermidis, 0.01M encapsulated Rose Bengal induced bacterial reduction of up to 1.5.104 

cells/mL from the initial concentration of 108 cells/mL, and to the zero concentration at an 

initial concentration of 3.106 cells/mL (Fig. 10b).  

DPPC-based liposomes were also examined, in addition to EPC-based olive oil-containing 

liposomes. The results showed high antimicrobial efficiency of the olive oil-containing 

liposomes in both bases, which was not less than that of the liposomes without olive oil 

supplements. Fig. 11 relates to the antimicrobial activity of Rose Bengal, applied against S. 

epidermidis, in free form or encapsulated in olive oil-containing ECP- and DPPC-liposomes, 

as well as to EPC-liposomes without olive oil. The data presented in Fig. 11 indicate that at 

each initial concentration, all liposomal forms of Rose Bengal eradicated bacteria more 

effectively than its free form (P-value 0.015), but there was no statistically significant 

difference in the photosensitizer activity when encapsulated in various types of liposomes 

(P-value 0.86).   
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Fig. 10. Eradication of (a) S. aureus by 0.25 M and (b) S. epidermidis by 0.01 M Rose Bengal 
(RB) in a free form and encapsulated into EPC–olive oil liposomes under white light 
illumination at various initial bacteria concentrations presented in a logarithmic form. 

Olive oil-containing liposomes with encapsulated Methylene Blue were tested against S. 
epidermidis. Bacterial sensitivity to this photosensitizer was much lower than to Rose Bengal 
in both free and liposomal forms. Thus, at the same initial bacterial concentration of 3.106 
cells/mL, total eradication of S. epidermidis by liposomal Rose Bengal was achieved at 0.02 

M (Fig. 9b), and by liposomal Methylene Blue only at a concentration of 62.5 M (Fig. 12). 
As to the general effect of free and liposomal Methylene Blue, it can be said that this 
photosensitizer exhibits the same trends as Rose Bengal. A liposome-encapsulated form was 
twice to three times more effective than the free form at all Methylene Blue concentrations 
(Fig. 12).  
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Fig. 11. Eradication of S. epidermidis under white light illumination by 0.01M Rose Bengal 

(RB) in a free form and when encapsulated into liposomes with or without olive oil (O-O) and 

cholesterol (Chol) at various initial bacteria concentrations presented in a logarithmic form. 

 

Fig. 12. Eradication of S. epidermidis by various concentrations of Methylene Blue in a free 

form and encapsulated into EPC–olive oil liposomes under white light illumination at initial 

bacteria concentration of 3.106 cells/mL. 

It is important to mention that in no case did olive oil incorporation into the membrane of 

liposomes with encapsulated photosensitizers cause any decrease in their antimicrobial 

activity.  

5. Perspectives for application of olive oil-containing liposomes 

Several types of drug delivery systems containing lipids for oral, intravenous or dermal 
administration are described in the literature (Wasan, 2007). One of them is an oil-in-water 
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emulsion, composed of isotropic mixtures of oil triacylglycerols, surfactant and one or more 
hydrophilic solvents. The typical particle size of such systems is between 100 and 300 nm 
(Constantinides, 1995). Another system, called a lipidic self-microemulsifying drug delivery 
system, represents transparent microemulsions with a particle size of 50-100 nm 
(Constantinides, 1995; Holm et al., 2003). The described emulsions and microemulsions were 
based on structural triacylglycerols or sunflower oil. Such systems were proven to 
appropriately deliver lipophilic drugs such as cyclosporine A, saquinavir, ritonavir and 
halofantrine (Charman et al., 1992; Holm et al., 2002). A soybean lecithin-based nanoemulsion 
enriched with triacylglycerols was used for efficient delivery of Amphotericin B (Filippin et al., 
2008). An additional example represents solid lipid nanoparticles which were shown to not 
only deliver glucocorticoids, but also to enhance drug penetration into the skin (Schlupp et al., 
2011). Colloid dispersions of solid triacylglycerol 140 nm-sized nanoparticles stabilized with 
poly(vinyl alcohol) were applied for delivery of the drugs diazepam and ubidecarenone 
(Rosenblat & Bunje, 2009). Soybean and olive oils were suggested as drug delivery vehicles for 
the steroids progesterone, estradiol and testosterone (Land et al., 2005). All of the above-
mentioned examples illustrate successful use of lipid-based systems for delivery of 
hydrophobic drugs. However, they are all unsuitable for carrying hydrophilic components.  

Liposomes are devoid of this serious disadvantage and are applicable for delivery of both 
hydrophobic and hydrophilic agents. In case of dermal application, lipid-based drug 
formulations exhibit enhanced abilities to penetrate into skin, improving the delivery 
process of active agents, thus enabling an increase in treatment efficiency in cases of skin 
infections and inflammations caused by bacterial invasion. Liposomes were shown to carry 
the encapsulated hydrophilic agents into the human stratum corneum and possibly into the 
deeper layers of the skin (Verma et al., 2003). Packaging of drugs into liposomes enables a 
more concentrated delivery, enhanced cytotoxicity, improved pharmacokinetic qualities, 
sustained release and prolonged action of active components.  

In this chapter we considered only one type of antimicrobial agents delivered by olive oil-
containing liposomes, but the list of active drugs can be continued and expanded. 
Incorporation of olive oil into the lipid bilayer increases the biocompatibility of liposomes 
and enriches them with a broad spectrum of natural bioactive compounds. Integration of 
olive oil into the liposome lipid bilayer enriches the liposome features by new properties. 
Such enriched liposomes can not only fulfill a passive role in drug delivery, but can also 
supply active components for post-treatment recovery of skin. It has been proven that daily 
treatment with olive oil lowered the risk of dermatitis (Kiechl-Kohlendorfer et al., 2008). 
Olive oil vitamins and antioxidants could help overcome skin damage caused by skin 
infection and by the active treatment itself. Olive oil-containing liposomes can thus be 
converted from passive excipients into active supporting means of drug delivery systems. 
Totally natural and biocompatible olive oil-containing liposomes carrying any of the 
antimicrobial agents can be administrated in ointments and creams for application on skin 
areas contaminated with bacteria. 

6. Conclusions 

Olive oil can be incorporated into the liposome phospholipid bilayer, composed of an egg 
phosphatidylcholine or a dipalmitoyl phosphatidylcholine bilayer. The photosensitizers 
Rose Bengal and Methylene Blue encapsulated in olive oil-containing liposomes showed 
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high efficiency in the eradication of Gram-positive Staphylococcus aureus and Staphylococcus 
epidermidis bacteria. The effectiveness of the antimicrobial agents was concentration-
sensitive and depended on the initial concentration of the bacteria. 

Application of olive oil-containing liposomes for drug delivery can change their perception 
as having a passive role of lipid-based excipients, converting them into a new generation of 
active and supporting drug carriers, supplying natural bioactive components for post-
treatment recovery of skin.  
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