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1. Introduction  

Hematopoietic stem cells (HSCs) present arguably the best entry point for gene therapy of 

hematopoietic and immune systems since genetically modified HSCs are long-lived and would 

eventually transfer the therapeutic constructs to all their descendants. However, gene therapy 

via HSCs, although conceptually simple, has proven to be a technically formidable problem that 

has yet to be solved successfully. Despite overtly positive results obtained in gene therapy 

experiments performed with mouse and larger animal models, these achievements did not 

translate into clinically acceptable outcomes for non-human primates and human patients, with 

exception of a few specific disease instances where a therapeutic gene brought about significant 

survival advantages to transduced cells (Cavazzana-Calvo et al., 2000, Schmidt et al, 2003). 

Major differences between outcomes of conceptually similar experiments in mice and primates 

underscore the notion that the fundamental principles governing functioning of hematopoietic 

system in small short-lived vs. larger long-lived animals differ significantly. Low degree of 

chimerism obtained in experiments with primates and humans is likely a result of intrinsically 

low efficiency of viral transduction of long-term repopulating (LTR) HSCs coupled with 

subsequent massive silencing of integrated constructs (Ellis, 2005; Horn et al, 2002). One may 

hypothesize that this situation reflects a better protection of hematopoietic system from external 

influences, in particular invasion of foreign genetic material, in longer-living animals. 

However, our deepening knowledge of molecular mechanisms underlying functioning of 

HSCs within the organism provides hints as to what strategies may lead to the development 

of the efficient gene therapy via HSCs; some of these strategies are discussed below. 

2. Improvements of vectors and ex vivo HSC transduction protocols 

Numerous studies indicate that lentiviral vectors that are capable of transducing non-
dividing cells may represent a more promising tool for introduction of genetic material into 
HSCs compared to retroviral vectors (Uchida et al, 1998, Case et al., 1999). This may be 
attributed to a largely quiescent nature of LTR HSCs, especially in larger animals (Cheshier 
et al., 1999, Shepherd et al., 2007). Since even lentiviral vectors transduce more efficiently 
dividing cells than quiescent ones (Trobridge et al., 2004), the current transduction protocols 
relied until recently on the use of culture conditions that induced entry of HSCs into cell 
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cycle but incidentally failed to maintain their stem cell status (Bunting et al., 1999). This 
situation seems to have been ameliorated after introduction of transduction protocols that 
rely on the use of serum-free media that lack factors inducing SC differentiation 
(Mostoslavsky et al., 2005) and novel growth factors that better preserve cell stemness 
(Zhang C et al., 2008). It remains yet to see whether these improvements are sufficient to 
significantly increase the efficiency of HSC gene therapy in clinical settings. 

3. Selection of genetically modified HSCs in vivo: Negative selection 

As current efficiency of transduction of human LTR HSCs with viral vectors appears to be quite 

low and there are no clinically proven protocols for expansion of these cells ex vivo, the most 

promising solution at hand to this problem is an in vivo selection of modified cells after their 

transduction and re-transplantation back to a patient. Conceptually, one might distinguish 

negative and positive in vivo selection strategies. The first one can be defined as a strategy that 

is aimed at elimination of stem and progenitor cells that do not bear integrated functional 

constructs. Positive selection implies a strategy that does not target the construct-negative stem 

cells but rather provides selective survival and growth advantage to the cells that bear the 

inserted construct. The negative selection gains presently much of attention and seems to be 

better poised for a clinical advancement in the near future. Arguably, the most promising and 

advanced variant of negative selection is based on the use of O6-MGMT as a selection marker 

and various alkylating compounds as selection agents (Davis et al., 2000, Ragg et al., 2000). 

Using this approach and multiple rounds of selection in vivo, overall peripheral blood 

chimerism has been driven in mice and larger animal models to levels higher than 75%. 

However, the clinical applicability of this technique is as yet unclear, as recent experiments 

performed by two research teams with non-human primates using MGMT-mediated selection 

produced rather conflicting results. One team demonstrated successful implementation of this 

strategy in monkeys, although with selection efficiencies and chimerism rates highly variable 

between individual animals (Beard et al., 2010), whereas another team reported a rather 

negligible increase in chimerism rates upon selection in vivo (Larochelle et al., 2009). 

Various implementations of negative selection strategy are listed in the Table 1. 

4. Selection of genetically modified HSCs in vivo: Positive selection 

Ongoing studies of the mechanisms controlling HSC self-maintenance and commitment 

continue to identify novel factors that bring about HSC expansion in vivo when over-expressed. 

A less than exhaustive set of these factors is listed in the Table 2. Arguably, the most extensively 

studied gene with such properties is the homeobox transcription factor HoxB4. Forced 

expression of HoxB4 in murine HSCs induces remarkable ex vivo and in vivo cell expansion 

without compromising their differentiation or inducing leukemic transformation (Sauvageau et 

al., 1995, Antonchuk et al., 2002). Similar effects were obtained using recombinant TAT-HOXB4 

protein (Krosl et al., 2003). In some reports, HoxB4 and negative selection marker MGMT were 

used together to further increase percentage of modified HSCs (Chinnasamy et al., 2005). 

However, attempts to use HoxB4 for positive selection of HSCs in larger animals were much 

less successful, with a major expansion of short-term repopulating cells only (Zhang X et al., 

2006). Besides, a significant number of leukemia occurrences apparently related to unregulated 

expression of HoxB4 were observed in these animals (Zhang X et al., 2008).  
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Slective 
marker 

Selecting agent Mode of action References 

O6-MGMT 
BCNU, TMZ, 
other alkylating 
agents 

MGMT protein functions to repair 
alkylated DNA caused by 
chemotherapeutic agents like 
BCNU or TMZ 

Sawai et al, 
2001; Zielske et 
al, 2003 

Thymidylate 
synthase 

5-fluorouracil 
(5-FU) 
5-fluorodeoxy-
uridine (5-
FUdR) 

Drug-resistant TS can protect bone 
marrow cells from 5-fluorouracil 
(5-FU) and related 
fluoropyrimidines that induce 
cessation of DNA and RNA 
synthesis, and subsequent cell 
death. 

Bielas et al, 
2009 

Tyr22DHFR Methotrexate 

MTX acts on highly proliferative 
cells, blocking DNA synthesis 
through competitive inhibition of 
DHFR. Drug resistant 
dihydrofolate reductase such as 
Tyr22 (Tyr22DHFR) has the 
potential to selectively increase 
engraftment of gene-modified 
human hematopoietic cells 

Gori et al, 2010 

Multidrug 
resistance 
gene-1 (MDR) 

Taxol, Paclitaxel 

Overexpression of the multidrug 
resistance gene MDR1 in bone 
marrow cells results in protection 
from hematopoietic toxicity from 
chemotherapy drugs that are 
substrates for the MDR1 drug 
efflux pump 

Cowan et al, 
1999 

Table 1. Strategies for negative selection of genetically modified HSC 

Some other members of the HOX family, either alone or fused with specific cellular partners, 
are also able to induce expansion of hematopoietic progenitors in mice. Of particular 
importance is a fusion gene NUP98-HoxA10, which has a remarkable ability of multi-log 
expansion of murine repopulating cells ex vivo, exceeding that of HoxB4 (Ohta et al., 2007; 
Watts et al., 2011). 

Recently, the powerful effect of overexpression of early acting transcription factor SALL4 on 
ex vivo expansion of human hematopoietic cells capable of long-term repopulation of 
NOD/SCID mice was demonstrated (Aguila et al., 2011). Significant ex vivo expansion 
could be also achieved using recombinant TAT-SALL4B protein.  

There are at least a dozen of other genes that, when overexpressed, induce significant 
expansion of HSCs in mice in vivo. One of the most interesting groups of such factors are 
epigenetic regulators. Of particular interest is Bmi1, a member of Polycomb group, which is 
involved in regulation of mantenance of various adult stem cell types. Inactivation of Bmi1 
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leads to defect in HSC self-renewal (Park et al., 2003), whereas its enforced expression 
results a striking ex vivo expansion of multipotential progenitors and marked augmentation 
of HSC repopulating capacity in vivo (Iwama et al., 2004). In addition, enforced expression 
of Bmi1 in human CD34-positive cells leads to the ex vivo expansion of NOD/SCID 
repopulating cells (Rizo et al., 2008). Another Polycomb group gene that potentially could be 
used for positive selection is Ezh2; upon overexpression, it prevents HSC exhaustion 
(Kamminga et al., 2006). Forced expression of yet another epigenetic regulator, histone 
demethylase Fbxl10/Jhdm1b in HSCs abolishes exhaustion of the LTR HSCs following serial 
transplantation. This property of Ezh2 and Fbxl10/Jhdm1b makes them especially 
appropriate for schemes combining positive and negative selection since the latter one 
places very significant stress on hematopoietic system. 

Another group of genes that might be used for positive selection are those that are 

frequently activated in predominant hematopoietic cell clones arising after retro- or 

lentiviral transduction, and are likely therefore to act as factors inducing in vivo expansion 

of these clones. The most prominent among such genes are MDS1/Evi-1 (Sellers et al., 2010; 

Métais & Dunbar, 2008), PRDM16 (Du et al., 2005; Ott et al., 2006) HMGA2 (Wang et al., 

2010; Cavazzana-Calvo et al., 2010) and LMO2 (McCormack et al., 2003; McCormack et al., 

2010). As a note of caution, forced expression of these genes may produce undesired effects; 

for example, expression of Evi-1 was reported to be associated with chromosomal instability 

(Stein et al., 2010). 

In addition to protein factors, micro RNAs also have effect on HSC function and population 

size. In particular, miR-125a and miR-125b were shown to increase number of HSCs in vivo 

or enhance their repopulation capacity (Guo  et al., 2010; Ooi et al., 2010). 

Having focused on genes that expand stem cell population, one should not overlook 

another group of genes that exert an opposite effect, namely negative influence on HSC 

pool size. Thanks to RNA interference technology, suppression of gene expression in 

various cell types nowadays is nearly as simple as overexpression. If gene knockout or 

knockdown results in expansion of stem cell population, this property may potentially 

be used for positive selection. Among genes of interest in this respect are C/EBP alpha, 

Lnk and Nur77, to name a few. C/EBP alpha-deficient hematopoietic stem cells (HSCs) 

are hyperproliferative, have increased expression of Bmi-1 and enhanced competitive 

repopulating activity (Zhang et al. 2004; Heath et al., 2004). Inactivation of Lnk, 

inhibitory adaptor protein, leads to an expanded HSC pool with enhanced self-renewal 

(Bersenev et al., 2008). Mice with inactivation of both Nor-1 and Nur77 have abnormal 

expansion of HSCs and myeloid progenitors and develop lethal acute myeloid leukemia 

(AML). 

Regardless of what gene is being used for positive selection, it is clear that its constitutive 

expression would eliminate one or more of the negative growth controls imposed on HSCs 

by organism, and thus increase risks of neoplastic transformation. Therefore, any clinically 

acceptable protocol for gene therapy using positive selection of transduced HSCs should be 

based on transient, tightly regulated gene expression. Given that positive selection, if 

correctly implemented, promises to provide significant advantages over negative selection 

schemes, further research into creation of robustly regulated expression systems for positive 

selection in HSCs seem to be fully warranted. 
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Gene Observed effects References 

HOXB4 
Overexpression of HoxB4 induces significant ex 
vivo and in vivo expansion of murine long-term 
repopulating HSCs. 

Antonchuk et al., 
2002; Sauvageau et 
al., 1995 

NUP98-
HOXA10 

Enforced expression of NUP98-HOXA10 fusion 
protein results in significant expansion of murine 
repopulating cells ex vivo exceeding that of HoxB4. 

Ohta et al., 2007; 
Watts et al., 2011 

NF-Ya 
Murine HSCs overexpressing NF-Ya demonstrate 
strongly increased in vivo repopulation.  

Zhu et al., 2005 

Bmi1 

Enforced expression of Bmi1 leads to striking ex 
vivo expansion of multipotential progenitors and 
marked augmentation of HSC repopulating 
capacity in vivo. 

Iwama et al., 2004; 
Rizo et al., 2008 

Ezh2 
Overexpression prevents exhaustion of long-term 
repopulating HSCs. 

Kamminga et al., 
2006 

Fbxl10/ 
Jhdm1b 

Same as above. 
Konuma et al., 
2011 

Jab1 
Mice with Jab1 overexpression have expanded HSC 
pool and develop a myeloproliferative disease. 

Mori et al., 2008 

HMGA2 

Frequently found in the vicinity of integrated 
constructs in gene therapy trials; HMGA2-
expressing cells have growth advantage in 
competitive repopulation and serial transplantation. 

Cavazzana-Calvo 
et al., 2010; Ikeda et 
al., 2011; Wang et 
al., 2010 

Evi-1 
Frequently found in the vicinity of integrated 
constructs in gene therapy trials. 

Métais & Dunbar, 
2008; Sellers et al., 
2010 

PRDM16 
Frequently found in the vicinity of integrated 
constructs in gene therapy trials. 

Du et al., 2005; Ott 
et al., 2006 

Sall4 
Enforced expression results in ex vivo expansion of 
long-term NOD/SCID repopulating cells. 

Aguila et al., 2011 

MicroRNAs 
miR-125a, miR-
125b 

Forced expression of miR-125a was capable of 
increasing the number of HSCs cells several-fold. 
Overexpression of miR-125b enhances HSC 
function, as judged by serial transplantation. 

Guo  et al., 2010; 
Ooi et al., 2010 

Lnk 
Mice with Lnk inactivation have an expanded HSC 
pool with enhanced self-renewal. 

Bersenev et al., 
2008 

Nur77/NR4A1 
& Nor-
1/NR4A3 

Mice with inactivation of both Nor-1 and Nur77 have 
abnormal expansion of HSCs and myeloid progenitors 
and develop lethal acute myeloid leukemia. 

Mullican et al., 
2007 

C/EBP 

C/EBP alpha-deficient HSCs are hyperproliferative 
and have enhanced competitive repopulating 
activity. 

Heath et al., 2004; 
Zhang P et al. 2004; 

Latexin 
Mouse strains expressing lower latexin levels have 
increased numbers of HSCs. 

Liang et al., 2007 

Table 2. Genes affecting in vivo expansion of HSCs 
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5. Expansion and selection of genetically modified HSCs ex vivo 

Although much hope is currently invested into various schemes aimed at in vivo selection 
of gene-modified HSCs, a substantially simpler and arguably more elegant solution may be 
achieved if protocols for long-term culture and robust ex vivo expansion of HSCs could be 
developed. Very significant expansion of HSCs that occurs during embryonic development 
indicates that this might be eventually possible.  

Over the last two decades, quite a few HSC culture protocols have been developed. The 
earlier established conditions involved cultivation in the presence of serum and cocktail of 
“classical” cytokines including SCF, IL3, IL6, FLT3L and TPO. Since bovine serum 
apparently contains factors that induce differentiation and/or apoptosis of HSCs, recent, 
more advanced protocols have been developed, which use defined, serum-free conditions 
that offer better reproducibility and minimize rapid loss of long-term repopulating HSCs 
during ex vivo culture and transduction with lenti- and retroviral vectors (Mostoslavsky et 
al., 2005). 

In addition to classical cytokines, a number of new growth factors that have pronounced 
effect on HSC maintenance and expansion were identified in the last years. Among the most 
important are FGF1 (de Haan et al., 2003), IGFBP2 (Huynh et al., 2008), and several members 
of angiopoeitin-like family, in particular Angptl3 and 5 (Zhang et al., 2006). 

Several major signaling pathways figuring prominently during embryonic development, in 
particular during specification of hematopoietic lineage, were shown to be important for 
adult HSC biology. Among those, Notch and Wnt pathways are currently considered as of 
the most immediate interest as far as HSC-niche interactions and ex vivo expansion are 
concerned. Stem and progenitor pool-enhancing properties of Notch signaling were 
demonstrated initially using constitutive Notch1 signaling in murine hematopoietic cells, 
which produced immortalized, cytokine-dependent stem cell-like cells (Varnum-Finney et 
al., 2000), and constitutive Notch4 signaling in human cord blood cells, which resulted in 
significant increase in cells repopulating immunodeficient mice (Vercauteren & Sutherland, 
2004). Later on, culture of human CD34+ precursors with the immobilized Notch ligand 
Delta1 and cytokines was shown to result in a substantial increase in NOD/SCID-
repopulating cells (Delaney et al., 2010); similar results were obtained for mouse cells with 
immobilized Jagged1 ligand (Toda et al., 2011). 

As for Wnt signaling, initial studies indicated that overexpression of activated beta-
catenin expanded the pool of HSCs in long-term cultures as judged by both phenotype 
and function. Wnt3a protein induced self-renewal of haematopoietic stem cells, whereas 
ectopic expression of inhibitors of the Wnt signalling pathway led to suppression of HSC 
growth in vitro and reduced reconstitution in vivo (Reya et al., 2003; Willert et al., 2003). 
Later publications demonstrated, though, that inactivation of the beta-catenin gene in 
bone marrow progenitors does not impair their ability to self-renew and reconstitute all 
hematopoietic lineages (Cobas et al., 2004), whereas activation of beta-catenin enforced 
cell cycle entry of hematopoietic stem cells, thus leading to exhaustion of the long-term 
stem cell pool (Sheller et al., 2006).  Some recent studies demonstrate that it is the non-
canonical Wnt signaling promoted by Wnt5a rather than the canonical one, that supports 
maintenance of competitive repopulating murine HSCs in culture (Buckley et al., 2011; 
Nemeth et al., 2007). 
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Yet another line of evidence indicates that activation of beta-catenin in the niche 
components rather than in HSCs may produce support of LTR cells ex vivo (Nemeth et al., 
2009). Currently, there is little doubt that Wnt signaling plays important role in HSC 
biology, but the issue is apparently more complex than was implied by initial publications 
and remains highly controversial.  

Other embryonic signaling pathways also might be exploited in HSC culture. Morphogens 
of the hedgehog family, namely Sonic and Indian hedgehogs, are able to support ex vivo 
expansion of human NOD/SCID repopulating cells (Bhardwaj et al., 2001; Kobune et al., 
2004), despite the fact that in vivo Hedgehog signaling seems to not be necessary for adult 
murine hematopoietic stem cell function (Hofmann et al., 2009). BMP4, a member of BMP 
superfamily, is a critical component of the hematopoietic niche that regulates both HSC 
number and function (Goldman et al., 2009), and is able to expand NOD/SCID-repopulating 
cells in culture (Hutton et al., 2006). 

In addition to the use of secreted proteins to for ex vivo HSC culture, one apparent trend of 
the last years is the application of low-molecular weight chemicals, in particular agonists or 
inhibitors of particular intracellular signaling pathways, for ex vivo culture. Thus, specific 
inhibitor of p38 kinase induces self-renewal and ex vivo expansion of HSCs as shown by the 
in vitro cobblestone area forming cell assay and serial transplantation (Wang et al., 2011). 
GSK-3β inhibitors, which stimulate Wnt signaling, were shown to promote engraftment of 
cultured HSCs (Ko et al., 2011; Trowbridge et al., 2006). Of significant clinical interest is the 
finding that ex vivo treatment with stabilized prostaglandin E2 enhances frequency of both 
hematopoietic progenitors and long-term repopulating HSCs present as analyzed by 
competitive transplantation (North et al., 2007). According to other data, only the short-term 
repopulating HSCs are expanded by this treatment, though (Frisch et al., 2009). 

The initial studies demonstrating substantial degree of expansion of HSCs ex vivo relied the 
use of stromal cells as feeder layers (Moore et al., 1997). Based on the substantial progress in 
identification of HSC niches in bone marrow, there is currently a revival of interest in 
development of protocols for co-culture of HSC with stromal cell layers (Chou & Lodish, 2010; 
De Toni et al., 2011). These stromal cells produce a range of factors that significantly improve 
the maintenance and expansion of HSCs in culture, most likely by mimicking more or less 
successfully niche conditions. Very prominent components of the HSC niche are cell surface 
proteins, in particular cell adhesion molecules. The importance of cell-cell interactions was 
highlighted by the study by Wagner et al., 2007, indicating that maintenance of primitive 
hematopoietic progenitors by stromal lines is associated with expression of cell adhesion 
proteins rather than with secretory profiles of these lines. In particular, N-cadherin was shown 
to be an important component of the osteoblastic HSC niche (Zhang et al., 2003). However, 
importance of N-cadherin for HSC-niche interactions was later questioned (Kiel et al., 2007), 
thus rising substantial controversy. In an elegant in vitro study Lutolf et al. (2009) have shown 
that N-cadherin, as well as Wnt3a, are the only proteins among those tested that were capable 
of supporting self-renewal divisions of HSCs in vitro. N-cadherin expression was also shown 
to be important for maintenance of long-term repopulating cells in culture (Hosokawa et al., 
2010). Ability of stromal cell line FMS/PA6-P to support primitive murine hematopoietic cells 
was found to depend critically on N-CAM expression (Wang et al., 2005). Yet another cell 
adhesion protein, namely mKirre, plays a prominent role in hematopoietic supportive capacity 
of OP9 stromal cells (Ueno et al., 2003). 
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Quite promising developments occur currently in the field of 3-D culture (Yuan et al., 2011; 
Tan et al., 2010; Miyoshi at el., 2011). Despite a relative paucity of data related to the 3-D 
culture of HSCs, available publications demonstrate significant advantages of this technique 
and indicate that in combination with correctly chosen or gene-modified stromal cell layers, 
3-D culturing may eventually lead to creation of artificial niche that will be able to support 
substantial expansion of human HSCs ex vivo.  

A question of paramount importance for the field is whether specific combinations of 
soluble factors will be able to attain a bone fide ex vivo expansion of HSCs, or this goal can 
only be achieved if specific cell surface proteins produced by the niche cells are also 
employed in the process, or perhaps the only way to the eventual success is the use of 
supporting stromal cell layers for ex vivo culture? As a number of molecules that contribute 
to the maintenance of HSCs in vitro and in vivo continues to rise, and there is a steady 
improvement in techniques for culturing HSCs, chances are that within a matter of a few 
years, key combination(s) of specific factors and modes of their application that can produce 
robust self-renewal and expansion of human HSC ex vivo will be identified. Table 3 
provides a list, albeit incomplete, of factors and chemicals that, in addition to “classical” 
cytokines, are being used for maintenance and expansion of HSCs ex vivo. 

6. Pre-conditioning and transplantation regimens 

A common practice in the field of HSC gene therapy is a transduction of HSCs using viral 

vectors in the ex vivo setting. The advantages of this strategy include elimination of non-target 
transduction events, higher transduction efficiency and better control over the overall process. 

However, the opposite side of the coin in this case is the necessity for transduced cells to 

compete with the bone marrow-resident ones, which is likely to lower significantly the degree 
of chimerism after gene therapy. For efficient repopulation of hematopoietic system with gene-

modified HSCs, extensive myeloablative treatments eliminating resident HSCs are usually 
performed. However, since these treatments are of generalized character and connected with 

substantial risks of morbidity and mortality, especially for elderly patients, they should 
preferably be avoided whenever possible. A combination of nonmyeloablative pre-

conditioning of the recipient animals with in vivo selection strategy can be used to achieve 
substantial degrees of chimerism (Davis et al., 2000, Zielske et al., 2003). Additional ways to 

develop more appropriate pretreatment conditions involve the use of molecules that disrupt 
key signaling pathways within HSCs or niche components thus inducing HSC loss, as was 

shown for the case of inactivation of c-kit or mpl signaling by neutralizing antibodies 
(Czechowicz et al., 2007; Yoshihara et al., 2007), and for combined poly(I:C)/5-fluorouracil (5-

FU) treatment (Sato et al., 2009). The other approach for nonmyeloablative HSC 
transplantation is based on disruption of HSC-niche interactions thus aiding in the stem cell 

mobilization (Chen et al., 2006). This alternative might grow into clinically relevant technique 
if the efficiency of current protocols for mobilization of HSCs is further improved. The more 

HSCs are mobilized into circulation and used for viral transduction, the higher is ratio of 
transduced vs. resident stem cells and better chances to achieve significant engraftment and 

chimerism of gene-modified cells without resorting to drastic myeloablative regimens. 
Although current combinations of mobilizing agents (Ramirez et al, 2009) demonstrate much 

higher mobilization rates than the initially used G-CSF, there is still a long way to go before 
this strategy may equal or surpass myeloablative pre-conditioning in its efficiency. 
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Factor Observed effects References 

FGF1 
FGF1 under serum-free conditions stimulates expansion of 
serially transplantable, long-term repopulating HSCs. 

de Haan et al., 2003  

Angptl2, 3 and 5 
Proteins of angiopoeitin-like family provide 20- to 30-fold 
net expansion of long-term HSCs according to reconstitution 
analysis.  

Zhang C et al., 2006 

IGFBP2 IGFBP2 enhances ex vivo expansion of mouse HSCs. Huynh et al., 2008 

IL32 
IL-32 significantly induces the proliferation of HSCs in 
culture.  

Moldenhauer et al., 
2011 

Delta 1, Jagged1 
(Notch ligands) 

Culturing murine or human cells with surface-immobilized 
Notch ligands resulted in expansion of primitive 
hematopoietic population. 

Delaney et al., 2010; 
Toda et al., 2011;  

Wnt3a, Wnt10b 
(Wnt canonical 
pathway) 

Wnt3a protein induces self-renewal of haematopoietic stem 
cells. Wnt10b enhances growth of hematopoietic precursors. 

Willert et al., 2003;  
Congdon et al., 2010  

Wnt5a (Wnt non-
canonical pathway) 

Wnt5a inhibits canonical Wnt signaling and supports 
maintenance of competitive repopulating murine HSCs in 
culture. 

Nemeth et. al, 2007; 
Buckley et al., 2011 

Shh, Ihh 
Sonic hedgehog and Indian hedgehog support ex vivo 
expansion of human NOD/SCID repopulating cells. 

Bhardwaj et al., 2001; 
Kobune et al., 2004 

Bmp4 BMP4 expands NOD/SCID-repopulating cells in culture. Hutton et al., 2006 

TAT-HOXB4 fusion 
protein 

TAT-HOXB4 protein produces significant ex vivo expansion 
of murine HSCs. 

Krosl et al., 2003 

TAT-NF-Ya fusion 
protein 

TAT-NF-Ya protein treatment produces several-fold increase 
in the percentage of human cells repopulating 
immunodeficient  mice. 

Domashenko  et al., 
2010  

TAT-SALL4B fusion 
protein 

TAT-SALL4B fusion protein rapidly expands long-term 
NOD/SCID repopulating cells. 

Aguila et al, 2011 

Prostaglandin E2 
Ex vivo incubation with PGE2 increases the frequency of 
long-term repopulating HSCs as measured by competitive 
transplantation. 

North et al., 2007 

SB203580  
SB203580, specific p38 inhibitor, leads to increase in HSC 
self-renewal and ex vivo expansion.  

Wang et al., 2011 

StemRegenin 1 
SR1, aryl hydrocarbon receptor antagonist, provides 
substantial increase in cells engrafting into immunodeficient 
mice. 

Boitano et al., 2010 

zVADfmk, 
zLLYfmk 

Cord blood CD34+ cells cultured in presence of zVADfmk or 
zLLYfmk (inhibitors of caspases and calpains, respectively) 
have a higher ability for engraftment in NOD/SCID mice. 

Imai et al., 2010; 
Sangeetha et al, 2010;  

GSK-3 inhibitors 
Pretreatment with GSK-3 inhibitors (BIO or CHIR-911) 
promotes engraftment and repopulation of ex vivo-
expanded HSCs. 

Ko et al., 2011; 
Trowbridge et al., 2006 

Rapamycin 
HSCs cultured in vitro in the presence of mTOR inhibitor 
rapamycin demonstrate enhanced engraftment. 

Rohrabaugh et al., 2011 

Copper helators 
Copper chelator tetraethylenepentamine increases long-term 
ex vivo expansion and engraftment capabilities of blood 
progenitors. 

Peled et al., 2004 

N-cadherin 
N-cadherin expression on stromal cells  is important for 
maintenance of long-term repopulating cells in culture. 

Hosokawa et al., 2010 

N-CAM 
N-CAM expression on stromal cells supports primitive 
murine hematopoietic cells. 

Wang et al., 2005 

mKirre 
mKirre is responsible for hematopoietic supportive capacity 
of OP9 stromal cells. 

Ueno et al., 2003 

Table 3. Proteins and compounds affecting ex vivo maintenance and expansion of HSCs 
(“classical” cytokines not listed) 
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There are reports indicating that the engraftment of gene-modified stem cells might be 
significantly improved by their direct intra-bone transplantation (Mazurier et al., 2003). As 
irradiation commonly used for preconditioning also damages hematopoietic niche, in 
particular mesenchymal stem cells, HSC co-transplantation with MSCs was tested and 
showed promising results (Masuda et al., 2009). 

Even a more radical departure from the accepted strategies for HSCs would be in situ 
transduction of HSCs using systemic or intra-bone delivery of viral vectors (McCauslin  et 
al., 2003, Pan, 2009). Currently, this is a rather hypothetical approach due to serious safety 
concerns connected with potential off-target modifications of non-hematopoetic cells. 
However, this strategy alleviates the need for hazardous pre-conditioning treatments and 
will become a viable alternative with further development of modified viral envelops 
(Zhang X & Roth, 2010) that target vectors specifically to hematopoietic stem and progenitor 
cells while minimizing off-target events. 

7. Safety: Vector genotoxicity, transposon vectors and other issues 

The genotoxicity issue is currently the most immediate and direct safety concern related to 
the gene therapy using HSCs. Several otherwise successful gene therapy trials of severe 

combined immunodeficiency using retroviral vectors have resulted in occurrence of 
leukemia in a significant percentage of patients. Substantial efforts were thus devoted to 

elucidation of integration patterns and clonal population structure in the hematopoietic 
compartment after viral transduction, both in experimental models and in clinical trials. The 

obtained results, although not unanimous, demonstrate nevertheless a frequent occurrence 
of oligoclonal hematopoiesis after gene therapy, with viral integration sites tending to 

concentrate in the vicinity of a limited number of genes preferentially involved in growth 
and proliferation control such as above mentioned Evi-1, PRDM16 or HMGA2. Although 

upregulation of these genes rarely led to overt neoplastic transformation, it is nevertheless 
clear that the patients with oligoclonal hematopoiesis are at substantial risk of acquiring 

leukemias at some future time point. 

Various strategies are being currently developed to minimize the risk of neoplastic 

transformations of HSCs after viral transduction. The most promising approaches include 

using lentiviral instead of retroviral vectors, and insulators to shield cellular oncogenes from 

activation by strong viral promoters (Puthenveetil  et al., 2004). Insulators, however, tends to 

significantly reduce viral titers (Nielsen et al., 2009), relatively inefficient (Uchida et al., 

2011) and do not provide guarantee against insertional activation of potential oncogenes 

such as HMGA2 (Cavazzana-Calvo et al., 2010). Another approach is to use promoters 

specific for differentiated cells that are expected to produce negligible activation of 

oncogenes in stem cells. However, such promoters tend to provide comparably lower 

expression levels, and although this might be improved by addition of strong enhancers 

(Gruh et al., 2008), it is far from certain that such combinations would not activate nearby 

cellular promoters. 

Transposon vectors offer an exciting alternative to retro- and lentiviral vectors. The 
transposon-based gene delivery combines advantages of integrating viral vectors with those 
of plasmid vectors. Permanent genomic integration of transposon vectors provides long-
term expression, whereas there are significantly fewer constraints on vector design and  use 
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of various function elements like insulators. Transposon systems are inherently less 
immunogenic than viral delivery systems, whereas their cargo capacity generally exceeds 
that of retro- and lentiviral vectors (Zayed et al., 2004). Initial experiments with transposons 
were plagued by low efficiency of integration, but continuous improvements in molecular 
design of transposases have significantly increased the efficiency of integration process 
(Mátés et al., 2009). Currently, transposons based on Sleeping Beauty (SB) system represent 

the most advanced version of this technology (reviewed by Ivics  Izsvák, 2011), although 
other system such as piggyBac are also being perfected (Yusa et al., 2011) and may offer 
some advantages, such as larger cargo capacity, over the SB system (Lacoste et al., 2009). 

Although stable SB transposon-mediated gene transfer into hematopoietic cells was 

reported (Xue et al., 2009), efficient vector delivery to HSCs remains poorly resolved issue, 

which is currently being addressed by using electroporation or hybrid lentiviral-transposon 

vectors (Staunstrup et al., 2009). Although certain undesired effects such as SB transposase 

cytotoxicity were observed, it seems that they might be minimized by controllable mRNA 

delivery (Galla et al., 2011). Compared to lenti- and retroviral vectors that show preferential 

integration near active genes, SB transposon vectors demonstrate nearly random integration 

profiles (Moldt et al., 2011), although this property might not be shared by other transposon 

systems (Huang et al., 2010). 

Another serious safety concern is a direct consequence of a current low efficiency of 

transduction of LTR HSCs, which necessitates the use of myeloablative pre-conditioning 

and negative selection strategies to eliminate competing endogenous HSCs and increase 

chimerism levels. Negative selection strategies using in particular alkylating drugs place a 

significant stress upon hematopoietic system. However, as demonstrated by Xie et al., 2010, 

repetitive hematopoietic stress by busulfan administration in a nonhuman primate may 

rapidly lead to reduction of polyclonality and eventually to cytopenia. In addition, potential 

long term mutagenic effects of alkylating agents are largely unknown, thus adding more 

uncertainty as to correct assessment of risks and benefits of this strategy. Apparently, in 

order to tackle efficiently the problem of low transduction efficiency, it is not sufficient to 

rely on the use of negative selection only, but is also important to achieve substantial 

improvements in ex vivo stem cell culturing, expansion and transduction efficiency. 

Promising approaches also involve use of positive ex vivo and in vivo selection and in situ 

transduction strategies. 

8. Novel technologies 

In the recent few years, a group of new exciting and very powerful technologies, namely cell 
reprogramming using specific combinations of transcription factors and/or micro RNAs 
appeared (Takahashi & Yamanaka, 2006; Miyoshi et al., 2011). Much hope is invested into 
development of strategies aiming at derivation of patient-specific induced pluripotent (iPS) 
cells similar to embryonic stem (ES) cells, with their subsequent differentiation into 
hematopoetic cells capable of long-term hematopoiesis. In addition to this indirect 
reprogramming strategy, methods for direct reprogramming that bypass derivation of iPS 
cells are also being elaborated. There is one report stating that ectopic expression of Oct4 
transcription factor in human fibroblasts is sufficient to convert them into hematopoietic 
cells with in vivo engraftment capacity (Szabo et al., 2010). However, whether the published 
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technique may result in production of bona fide hematopietic stem cells capable of long-
term reconstitution, remains to be seen. It should be noted that such a goal has not yet been 
achieved for ES or iPS cells. If efficient reprogramming into HSCs were possible, the 
perspectives would look staggering. First of all, since starting primary cell populations such 
as mesenchymal stem/progenitor cells can be propagated for many generations and are 
amenable for selection of efficient vector integration events, it will be possible to obtain cell 
populations in which the majority of reprogrammed HCS-like cells bear functioning 
transgenes, thus increasing efficiency of gene therapy many-fold. Besides, if this technology 
were able to generate ex vivo significantly more reprogrammed cells with HSC properties 
than is possible to obtain from a patient, this would establish basis for a radically increase in 
a level of chimerism after transplantation, thus further improving the efficiency of gene 
therapy. Of course, the safety issues, in particular potential epigenetic and genome 
instability of reprogrammed cells that might result in neoplastic transformations, must be 
addressed especially carefully in this case. 

9. Conclusion 

Current protocols of gene therapy of hematopoietic and immune system, despite significant 
efforts by numerous teams worldwide, demonstrate as yet a relatively modest clinical 
efficiency. However, there are sufficient reasons to assume that many rather inconspicuous 
yet significant recent technical developments are preparing the field for a decisive 
breakthrough in the near future. In addition, new cutting- edge technologies such as direct 
cell reprogramming are entering the scene and may eventually present a radically different 
and a more efficient solution of the problem.  Given all these considerations, the future of 
gene therapy of blood and immune system diseases looks definitely bright. 
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