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1. Introduction 

Hematopoietic stem cells (HSCs) are probably the most extensively characterized somatic 

stem cells and are the only stem cells that have been clinically used to treat diseases such as 

leukemia, germ cell tumors, and congenital immunodeficiencies. Because of their capacity 

for self-renewal and their ability to differentiate into different lineages, HSCs are able to 

continually replenish the cells that make up the hematopoietic system (Kondo et al., 2003). 

Decades of intensive study using multicolor cell sorting techniques have allowed 

investigators to identify these cells within a small population in the mouse bone marrow 

(BM) (i.e., CD34low/-, Kit+ Sca-1+ lineage marker-negative cells: CD34low/- KSL) and thereby 

allow the prospective isolation of nearly-homogenous HSC populations for further 

characterization (Osawa et al., 1996).  

Under steady-state conditions, the majority of HSCs are maintained in a quiescent state in 

which they divide infrequently to produce proliferative progenitors that eventually give rise 

to the mature hematopoietic cells that sustain blood homeostasis (Cheshier et al., 1999). 

However, in response to external stresses such as bleeding, myeloablative chemotherapy 

and total body irradiation, HSCs proliferate extensively to produce very high numbers of 

primitive progenitor cells, thereby enabling rapid hematological regeneration (Randall et al., 

1997). Once recovery from myelosuppression has been achieved, the activated HSCs return 

to a quiescent state via a number of negative feedback mechanisms (Venezia et al., 2004). 

The cell fate decisions (including life and death, self-renewal and differentiation) of HSCs 

are important processes that regulate the number and lifespan of the HSC pool within a 

host. Defects in these processes may contribute to hematopoietic failures and to the 

development of hematologic malignancies.  

Understanding the molecular mechanisms underlying HSC regulation is of great 
importance to basic stem cell biology and for the development of HSCs for use in various 
clinical applications. Information regarding the regulation of HSC fate has been gained 
using conventional experimental approaches such as gene deletion, gene overexpression, 
and the direct stimulation of HSCs with cytokines. Although many studies have elucidated 
the factors controlling HSC fate using these methods, they can occasionally be misleading 
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because they lack physiological relevance and do not identify phenomena such as genetic 

redundancy. For example, family genes or alternative pathways can compensate 

functionally for deleted genes in gene-ablated mouse models in a manner that masks the 

true physiology. One approach to identifying the individual components involved in the 

molecular pathways underlying HSC regulation is to define the molecular signature of the 

HSCs by comparative transcriptional profiling of distinct subsets of hematopoietic cells. 

Over the past decade, several attempts have been made by independent investigators, 

including ourselves, to define the molecular signature of HSCs (Park et al., 2002; Ramalho-

Santos et al., 2002; Ivanova et al., 2002; Akashi et al., 2003; Venezia et al., 2004; Zhong et al., 

2005; Forsberg et al., 2005; Ramos et al., 2006; Chambers et al., 2007; Kubota et al., 2009). A 

list of gene expression profiling studies using purified mouse HSCs performed to date is 

shown in Table 1. Although this information has, more or less, clarified the molecular 

makeup of HSCs and several critical factors have been identified based on the data reported 

in these studies, it is still extremely time-consuming to elucidate the physiological function 

of each individual gene involved in HSC regulation. The transcriptional regulation of stem 

cell fate, particularly by factors that have specific functions in HSCs, is only beginning to be 

understood.  

In this chapter, we briefly review the recent advances in our knowledge of cell-intrinsic 

regulators of HSC self-renewal, differentiation, quiescence, cycling, and survival. 

 

 

Table 1. Gene expression profiling analyses of adult HSCs 

2. Regulators of HSC fate 

2.1 Regulation of HSC self-renewal and quiescence 

The outstanding feature of adult stem cells is their relative quiescence (Orford et al., 2008; 
Wilson et al., 2008). Quiescence is critical for the maintenance and self-renewal of HSCs. 
Unscheduled HSC proliferation results in the loss of self-renewal or stem cell exhaustion 
(Orford et al., 2008; Wilson et al., 2009; Trumpp et al., 2010). Identification of the molecules 
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that regulate adult HSCs has largely been achieved through the use of gene-targeted mouse 
models. Increasing or decreasing HSC cell-cycling results in the accelerated production of 
more committed progenitors at the expense of self renewal, or the insufficient production of 
progeny cells, which eventually results in BM failure. 

2.1.1 Positive regulation 

2.1.1.1 GATA-2 

GATA-2 is highly expressed in immature progenitors within hematopoietic lineages (Tsai & 

Orkin, 1997; Akashi et al., 2000). The haploinsufficient GATA-2+/– mouse model shows 

mildly increased quiescence of both HSCs and progenitor cells (Rodrigues et al., 2005). 

However, Tipping et al. recently showed that enforced expression of GATA-2 in a murine 

cell line (Ba/F3), or human cord blood HSCs (CD34+CD38－) and progenitors (CD34+CD38+), 

increases quiescence and inhibits proliferation (Tipping, et al, 2009).  

2.1.1.2 Bmi1 

Bmi1 belongs to the polycomb group (PcG) of proteins, which play a role in the 

transcriptional repression of genes via histone modification (Rajasekhar et al., 2007). Bmi1 is 

highly expressed in HSCs. The expression of Bmi1 is maintained at high levels in lymphoid 

lineage cells but is downregulated during myeloid differentiation (Iwama et al., 2004). 

Although Bmi1-/- mice show normal fetal liver hematopoiesis, progressive pancytopenia 

emerges in postnatal Bmi1-/- mice. This hematopoietic defect can be attributed to impaired 

HSC self-renewal. Transplanted fetal liver and bone marrow cells from Bmi1-/- mice cannot 

contribute to long-term hematopoiesis, although they do maintain the ability to repopulate 

in the short-term (Park et al., 2003; Iwama et al., 2004). Conversely, enforced expression of 

Bmi1 promotes HSC self-renewal (Iwama et al., 2004). Thus, Bmi1 is essential for the 

maintenance of HSC self-renewal.  

The activity of Bmi1 in HSCs largely depends on the silencing of its target, the Ink4a locus 

(Jacobs et al., 1999). The expression of p16INK4a and p19ARF (both cell-cycle inhibitors encoded by 

the Ink4a locus) is markedly upregulated in hematopoietic cells in Bmi1-deficient mice, and the 

overexpression of p16INK4a and p19ARF in HSCs induces cell-cycle arrest and p53-dependent 

apoptosis (Park et al., 2003). On the contrary, the deletion of both p16INK4a and p19ARF restores the 

self-renewal ability of Bmi1-/- HSCs (Oguro et al., 2006). Thus, Bmi1 prevents the premature loss 

of HSCs by repressing the p16INK4a- and p19ARF-dependent senescence pathways.   

2.1.1.3 Gfi-1 

Gfi1 is a SNAG-domain–containing zinc-finger transcriptional repressor, which plays a role in 
T cell proliferation and the development of lymphoid tumors (Gilks et al., 1993). It is suggested 
that Gfi-1 restricts proliferation and preserves functional integrity of hematopoietic stem cells. 
Gfi-1-null HSCs show excessive cell cycling and a decreased capacity for self-renewal in 
competitive repopulation assays (Hock et al., 2004; Zeng et al., 2004). 

2.1.1.4 Pbx1 

Pbx1 is a TALE class homeodomain transcription factor that critically regulates numerous 
embryonic processes, including hematopoiesis (DiMartino et al., 2001). Although a potential 
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role was suggested by the observation that Pbx1 is preferentially expressed in long-term 
repopulating HSCs (LT-HSCs) compared with more mature progenitor cells (Forsberg et al., 
2005), its functional analysis in adult HSCs has been hampered because Pbx1 mutant mice 
are embryonic lethal. Therefore, Pbx1-conditional knockout (KO) mice have been used to 
study the role of Pbx1 in the adult mouse hematopoietic system (Ficara et al., 2008). 
Conditional inactivation of Pbx1 in hematopoietic cells results in the loss of HSCs, which is 
associated with decreased quiescence. This leads to a defect in the maintenance of self-
renewal in serial transplantation assays. Global gene expression profiling analyses show 
that a significant proportion (~8%) of the downregulated genes in Pbx1-deficient HSCs 
belong to the TGF-ǃ signaling pathway, which has been implicated in maintaining HSC 
quiescence (Yamazaki et al., 2009). Also, in contrast to WT LT-HSCs, Pbx1-mutant LT-HSCs 
do not upregulate the expression of several downstream transcripts in response to TGF-ǃ 
stimulation in vitro. These results suggest that Pbx1 regulates HSC self-renewal and 
quiescence, at least in part by affecting the response to TGF-ǃ. 

2.1.1.5 Evi-1 

The ecotropic viral integration site-1 (Evi-1) was first identified in murine model systems as 

the integration site for the ecotropic retrovirus that causes myeloid leukemia (Morishita et 

al., 1988; Mucenski et al., 1988). Several studies using gene-targeting mice show that Evi-1 is 

required for HSC regulation. Yuasa et al. showed that Evi-1 is preferentially expressed in 

HSCs in embryos and adult BM. Evi-1–deficient embryonic HSCs are severely decreased in 

number, and show defective repopulating capacity. In addition, the expression of GATA-2 

mRNA is markedly reduced in HSCs from Evi-1–null embryos. GATA-2 promoter analysis 

revealed that Evi-1 directly binds to the GATA-2 promoter and acts as an enhancer (Yuasa et 

al., 2005). Another study using conditional Evi-1 knockout mice showed that Evi-1 also 

regulates adult HSC proliferation in a dose-dependent manner. Evi-1–deficient BM HSCs 

did not maintain definitive hematopoiesis and lost their ability to reconstitute the cell 

population. Mutant mice heterozygous for Evi-1 exhibited an intermediate phenotype in 

terms of HSC activity (Goyama et al., 2008). Furthermore, gene expression profiling of Evi-

1–deleted HSCs and leukemic cells identified Pbx1 as a downstream target for Evi-1 in HSCs 

(Shimabe et al., 2009). 

2.1.1.6 JunB 

The AP-1 transcription factor, JunB, is a transcriptional regulator of myelopoiesis and a 

potential tumor suppressor gene in mice (Passegue et al., 2001). Compared with normal 

HSCs, JunB-deficient LT-HSCs showed an average 2-fold increase in the percentage of 

cycling cells, suggesting that JunB functions to limit cell-cycle entry. Gene expression 

analyses revealed that JunB-deficient LT-HSCs show increased expression of cyclins and 

decreased expression of cyclin-dependent kinase inhibitors (Santaguida et al., 2009). 

These results suggest that the absence of JunB induces quiescent cells to enter the cell 

cycle. 

2.1.1.7 p53 

The p53 tumor suppressor protein functions as a transcription factor, regulating the 
transcription of genes that induce cell-cycle arrest, senescence, and apoptosis. LT-HSCs 
express high levels of p53 (Dumble et al., 2007). Although p53-deficient mice show almost 
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normal hematopoiesis (Lotem & Suchs., 1993), a number of studies have identified a role for 
p53 in the proliferation, differentiation, apoptosis, and aging of HSCs (Kastan et al., 1991; 
Shounan et al., 1996; Park et al., 2003; Dumble et al., 2007). Recent detailed analyses of p53-
null mice have unraveled other important functions of p53 in HSCs. Liu et al. found that p53 
promotes HSC quiescence, and that p53-deficient HSCs enter the cell cycle more easily (Liu 
et al., 2009). Competitive BM repopulation assays revealed that p53-null cells out-compete 
wild-type cells (TeKippe et al., 2003; Chen et al., 2008; Liu et al., 2009), indicating that p53 is 
a negative regulator of HSC self-renewal. In addition, Liu et al. also identified Gfi-1 and 
necdin as p53 target genes by performing comparative transcriptional profiling of HSCs 
isolated from wild-type and p53-deficient mice. The results of in vitro overexpression and 
knockdown experiments identified a role for necdin in the maintenance of HSC quiescence 
and self-renewal. However, necdin appears to have a modest functional role in HSCs in vivo 
(Kubota et al., 2009), and necdin overexpression does not result in enhanced HSC quiescence 
(Sirin et al., 2010). 

2.1.1.8 Nurr1 

Gene expression profiling analyses identified Nurr1 (also known as Nr4a2), an orphan 

nuclear receptor, as a candidate molecule that may play a functional role in HSC quiescence 

(Venezia et al., 2004; Chambers et al., 2007). Overexpression of Nurr1 resulted in HSC 

quiescence. On the other hand, loss of one Nurr1 allele resulted in enhanced cycling and 

sensitivity to the chemotherapeutic agent 5-fluorouracil (5-FU). Molecular analysis showed 

that Nurr1 overexpression is positively correlated with the upregulation of the cell-cycle 

inhibitor p18INK4C, suggesting a mechanism by which Nurr1 may regulate HSC quiescence 

(Sirin et al., 2010). 

2.1.1.9 Reactive oxygen species, FoxOs 

Reactive oxygen species (ROS) play an important role in the regulation of HSC quiescence. 

The forkhead O (FoxO) family of transcription factors (FoxO1, FoxO3, FoxO4, and FoxO6) 

participates in various cellular processes, including the induction of cell-cycle arrest, stress 

resistance, apoptosis, differentiation, and metabolism (Greer & Brunet., 2005). Two groups 

reported that FoxOs play a regulatory role in a number of physiologic processes that 

influence HSC numbers and function. Both aged germline FoxO3-deficient mice and 

conditional triple knockout (FoxO1, 3, 4) mice show a reduction in HSC numbers with a 

deficient repopulating capacity in competitive reconstitution assays and serial competitive 

transplantation assays (Tothova et al., 2007; Miyamoto et al., 2007). These phenotypes 

correlate with increased cell-cycling and apoptosis of HSCs, caused by increased levels of 

ROS. Furthermore, treatment with the antioxidant, N-acetyl-L-cysteine (NAC), rescues the 

FoxO-deficient HSC phenotype.  

2.1.1.10 Fbxw7 

Fbxw7 is the F-box protein subunit of an SCF-type ubiquitin ligase complex that targets 
positive regulators of the cell-cycle, including Notch, c-Myc, cyclin E, and c-Jun. Two 
independent groups investigated the functions of Fbxw7 in HSCs using conditional Fbxw7 
knockout mice (Matsuoka et al., 2008; Thompson et al., 2008). Conditional ablation of Fbxw7 
rapidly and severely affects hematopoietic progenitor maintenance within the BM. Fbxw7-/- 

HSCs show increased cycling and defective long-term repopulation capacity in competitive 
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transplantation assays. As Fbxw7 is able to ubiquitinate several target proteins, studies were 
conducted to examine the protein expression of Notch1, c-Myc, and cyclin E. The results 
showed that c-Myc protein was substantially overexpressed in Fbxw7-/- HSCs, suggesting 
that the activation of the cell-cycle in Fbxw7-null HSCs induced by excess c-Myc causes the 
premature exhaustion of HSCs.  

2.1.1.11 HIF-1α 

Leukemic stem cells (LSCs) reside in the niches near epiphysis of the bone (Ishikawa et al., 

2007) and oxygen concentration of this area is quite low. Thus, it may be very important for 

leukemic cells, especially for LSCs to survive and adapt to hypoxia (Takeuchi et al., 2010). 

Cellular responses to hypoxia are mediated by hypoxia-inducible factors (HIFs), which 

regulate gene expression to facilitate adaptation to hypoxic conditions (Kaelin & Ratcliffe., 

2008). Hypoxia inducible factor-1ǂ (HIF-1ǂ) is stabilized under low-oxygen conditions, such 

as those present in the BM. Recently, two groups investigated the importance of hypoxia 

and its related signaling pathways in HSC function using different approaches (Simsek et 

al., 2010; Takubo et al., 2010). HIF-1ǂ levels are elevated in adult HSCs and its transcription 

is regulated by the homeodomain protein Meis1, which is essential for hematopoiesis (Hisa 

et al., 2004; Simsek et al., 2010). HIF-1ǂ conditional knockout mice show that HIF-1ǂ–

deficient HSCs have an increased cell cycling rate and show progressive loss of long-term 

repopulation ability in serial transplantation assays (Takubo et al., 2010). Taken together, 

these data indicate that the precise regulation of HIF-1ǂ levels is required to maintain HSC 

quiescence. 

2.1.1.12 Lkb1 

The control of energy metabolism within HSCs is poorly understood, although they are 

highly sensitive to oxidative stress. Recently, several groups examined the role of the 

protein, Lkb1, in the metabolic regulation of HSCs (Nakada et al., 2010; Gurumurthy et al., 

2010; Gan et al., 2010). Lkb1 is a kinase enzyme that regulates the activity of AMP-

activated protein kinase (AMPK). Conditional inactivation of Lkb1 (Mx1-Cre; LKB1fl/fl or 

RosaCreERT2; LKB1L/L) in adult mice causes the loss of HSC quiescence, rapid HSC 

depletion, and pancytopenia. Interestingly, Lkb1 seems to regulate HSC homeostasis 

primarily through pathways that are independent of its downstream effectors, AMPK and 

mTORC1.  

2.1.1.13 Cyclin-dependent kinase inhibitors  

p21cip1/waf1 (hereafter referred to as p21) is a mammalian member of the CIP/KIP family and 

was the first cyclin-dependent kinase inhibitor to be identified (Serrano et al., 1993; Harper 

et al., 1993; Stier et al., 2003). Serial transplantation assays using p21-deficient cells showed 

premature HSC exhaustion; also, p21-null mice were more sensitive to 5-FU (Cheng et al., 

2000). These results suggest that p21 restricts HSC entry into the cell cycle and regulates the 

size of the HSC pool under conditions of stress. However, a later study demonstrated that 

p21 plays a minor role in regulating HSC quiescence under conditions of steady-state 

hematopoiesis (van Os et al., 2007). 

Although p57kip2 (hereafter referred to as p57) is highly expressed in HSCs (Table 2) (Kubota 
et al., 2009; Umemoto et al., 2005), little is known about its functional role. Microarray 
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analysis studies of human CD34+ HSC/progenitor cells identified p57 as the only cyclin-
dependent kinase inhibitor induced by TGFǃ (Scandura et al., 2004). Knockdown of p57 in 
hematopoietic cell lines using small interfering RNA (siRNA) results in more rapid 
proliferation of hematopoietic cells in the absence of TGF-ǃ. These results suggest that p57 is 
required for the TGF-ǃ–mediated cell cycle entry of hematopoietic cells and for repressing 
the proliferation of these cells. 

 

 

Table 2. Genes expressed at higher levels in HSCs than in other subsets. 

Genes showing at least 2-fold higher expression in CD34-/low KSL cells than in CD34+ KSL 
cells were selected by microarray analysis. The selected genes were then evaluated by Q-
PCR, and genes whose transcripts were expressed at ≥ 2-foltd higher levels in CD34-/low KSL 
cells than all other samples are listed. 
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2.1.2 Negative regulation 

2.1.2.1 E3 ubiquitin ligase 

The E3 ubiquitin ligase, c-Cbl, is a member of the RING finger-type ubiquitin ligase Cbl 
(casitas B-cell lymphoma) family. The c-Cbl protein is thought to implement the degradation 
of various cellular proteins, receptors, and signaling molecules including Notch1, STAT5, 
and c-Kit (Jehn et al., 2002; Goh et al., 2002; Zeng et al., 2005). c-Cbl–deficient mice were 
used to study the role of c-Cbl in HSCs (Rathinam et al., 2008). The number of HSCs and 
progenitors was significantly higher in the BM of c-Cbl-null mice due to increased 
proliferation. Interestingly, detailed analyses revealed augmented STAT5 phosphorylation 
in c-Cbl-/- HSCs in response to TPO/c-MPL signaling which is crucial for the proliferation 
and self-renewal of HSCs (Kimura et al., 1998), and this led to enhanced c-Myc expression. 
C-Cbl–deficient HSCs also showed an increased repopulating ability in competitive 
reconstitution assays, including serial transplantation. These results suggest that c-Cbl acts 
as a negative regulator of both the size of the HSC pool and self-renewal (Rathinam et al., 
2008). 

Recently, Itch, another E3 ligase belonging to the HECT family (Bernassola et al., 2008), was 
also identified as a negative regulator of HSC homeostasis and function. The phenotype of 
Itch-/- HSCs was similar to that of c-Cbl-/- HSCs. However, unlike c-Cbl, Itch-deficient HSCs 
showed augmented Notch1 signaling. Furthermore, knockdown of Notch1 in Itch-null 
HSCs resulted in the reversion of the phenotype (Rathinam et al., 2011). Taken together, 
these studies underscore the pivotal roles of E3 ubiquitin ligases and the importance of post-
translational modification of HSCs in the molecular control of HSC self-renewal. 

2.1.2.2 Egr1 

Egr1 is a member of the immediate early response gene family (Gashler et al., 1995). Egr1 is 
highly expressed in LT-HSCs under steady-state conditions and is downregulated upon 

proliferative stimulation and migration in response to pharmacological mobilization (Min et 
al., 2008). Egr1-deficient mice show a significant increase in the frequency of cycling HSCs. 

This phenomenon results in a slightly higher frequency of HSCs in the BM of Egr1-/- mice. 
Interestingly, loss of Egr1 results in a striking increase (up to 10-fold) in the number of 

circulating HSCs. Importantly, HSCs isolated from both the BM and peripheral blood of 
Egr1-/- mice show a greater degree of long-term multi-lineage repopulation after 

transplantation, although their life span is slightly reduced. Quantitative RT-PCR analysis 
shows that Bmi1 is upregulated in Egr1-/- HSCs. In addition, Egr1-/- HSCs also show the 

downregulation of p21CIP1/WAF1 and increased expression of cyclin-dependent kinase 4 
(cdk4), which is consistent with their increased cell-cycling status (Min et al., 2008). Taken 

together, the deletion of Egr1 causes an increase in the number of cycling HSCs but does not 
lead to stem cell exhaustion. This may be due to Bmi1 upregulation. 

2.1.2.3 Lnk 

Lnk is a member of an adaptor protein family that possesses a number of protein-protein 
interaction domains: a proline-rich amino-terminus, a pleckstrin homology (PH) domain, a 
Src homology 2 (SH2) domain, and many potential tyrosine phosphorylation motifs (Rudd., 
2001). Studies using Lnk-deficient mice show that Lnk-null HSCs are expanded during post-
natal development (Ema et al., 2005; Buza-Vidas et al., 2006). The Lnk-/- HSC population 
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contains an increased proportion of quiescent cells and shows decelerated cell cycle kinetics 
and enhanced resistance to repeat treatment with 5-FU in vivo compared with wild-type 
HSCs. Genetic evidence demonstrates that Lnk controls HSC self-renewal and quiescence, 
predominantly through c-Mpl. Furthermore, Lnk-deficient HSCs show higher levels of 
symmetric proliferation in response to thrombopoietin (TPO) in ex vivo culture than wild-
type HSCs (Seita et al., 2007). Biochemical analyses revealed that Lnk directly binds to 
phosphorylated tyrosine residues in JAK2 after TPO stimulation (Bersenev et al., 2008). 
Therefore, Lnk is a physiologic negative regulator of JAK2 in HSCs, and TPO/c-
Mpl/JAK2/Lnk constitute a major regulatory pathway controlling HSC quiescence and self-
renewal. 

2.1.2.4 Myc 

Human c-MYC was the second proto-oncogene to be identified and encodes a basic helix-

loop-helix leucine zipper transcription factor (c-Myc) (Sheiness et al., 1978). Overexpression 

of one of the three family members has been detected in numerous human cancers including 

Burkitt’s lymphoma (c-MYC), neuroblastoma (N-MYC), and small cell lung cancer (L-MYC) 

(Nesbit et al., 1999). Conditional deletion of c-Myc in the BM results in cytopenia and the 

accumulation of functionally defective HSCs. In the absence of c-Myc, HSC differentiation 

into more committed progenitors is inhibited because they upregulate a number of adhesion 

molecules, such as N-cadherin, that anchor them in the niche. Conversely, enforced c-Myc 

expression in HSCs causes marked repression of N-cadherin and integrin expression leading 

to the loss of self-renewal ability at the expense of differentiation (Wilson et al., 2004). These 

results suggest that c-Myc activity controls the first differentiation step of LT-HSCs in vivo. 

Unexpectedly, conditional ablation of both c-myc and N-myc results in pancytopenia and 

rapid lethality due to HSC apoptosis via the accumulation of the cytotoxic molecule, 

Granzyme B (Laurenti et al., 2008). Thus, Myc activity controls important aspects of HSC 

function such as proliferation, survival and differentiation.  

2.1.2.5 MEF/ELF4 

MEF (also known as ELF4), an Ets transcription factor, was identified as a novel 

component of the transcriptional circuit that dynamically regulates HSC quiescence 

(Lacorazza et al., 2006). Mef-deficient HSCs grow more slowly than wild-type HSCs in 

response to cytokine stimulation Pyronin Y staining and BrdU incorporation show 

increased quiescence. Enhanced HSC quiescence in Mef-null mice also increases HSC 

resistance to cytotoxic agents that target dividing cells and allows more rapid 

hematological recovery after chemotherapy or irradiation. These findings suggest that 

Mef normally functions to induce or facilitate the entry of quiescent HSCs into the cell 

cycle and imply that Mef expression and/or activity may be dynamically regulated in 

HSCs. To explain this, Lacorazza et al. proposed a model in which Mef acts at an earlier 

stage than p18 and antagonizes p21. 

2.2 Survival of HSCs 

HSC self-renewal and apoptosis represent major factors that determine the size of the HSC 
mass. The number of HSCs is also controlled by their capacity to survive during 
homeostasis or under conditions of stress.  
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2.2.1 Bcl-2 family 

Accumulating evidence suggests that the suppression of apoptosis is required for HSC 
survival. Forced expression of Bcl-2 increases the number of HSCs and provides them with 
enhanced competitive repopulation ability (Domen et al., 1998, 2000), suggesting that cell 
death plays a role in regulating HSC homeostasis.  

Mcl-1, another anti-apoptotic Bcl-2 family member, is also an essential regulator of HSC 
survival. Mcl-1 is highly expressed in LT-HSCs, and conditional deletion of MCl-1 results in 
the loss of the early BM progenitor population, including HSCs, leading to fatal 
hematopoietic failure (Opferman et al., 2005). Recently, it was reported that Mcl-1 is an 
indispensable regulator of self-renewal in human stem cells and that functional dependence 
on Mcl-1 defines the human stem cell hierarchy (Campbell et al., 2010).  

2.2.2 Scl, Lyl1 

Scl/Tal1 is a basic helix-loop-helix (bHLH) transcription factor that is essential for the 

development of HSCs in the embryo (Robb et al., 1995; Shivdasani et al., 1995). During adult 

hematopoiesis, Scl/Tal1 is highly expressed in LT-HSCs compared with short-term HSCs 

and progenitor cells (Lacombe et al., 2010). However, a study using conditional Scl/Tal1 

knockout mice revealed that Scl/Tal1 is required for the generation of, but not the 

maintenance of, adult HSCs (Mikkola et al., 2003). Another group showed that conditional 

deletion of Scl/Tal1 in adult HSCs has a relatively mild effect: Scl-null HSCs show impaired 

short-term repopulating ability, but no defect in long-term repopulating capacity (Curtis et 

al., 2004). Redundant activity caused by the expression of Lyl1, a related bHLH transcription 

factor, in adult HSCs may provide an explanation for these “mild” phenotypes. While adult 

HSCs in single-knockout mice show no or only a mild phenotype, Lyl1;Scl-conditional 

double-knockout mice show a gene dosage defect on HSC survival, as HSCs and progenitor 

cells are immediately lost due to apoptosis (Souroullas et al., 2009).  

Recently, Lacombe et al. demonstrated that Scl/Tal1 is required for the maintenance of the 

quiescent stem cell pool (Lacombe et al., 2010). Cell-cycle analyses revealed that Scl/Tal1 

negatively regulates the G0-G1 transit of LT-HSCs; however, these phenomena were specific 

to adult HSCs and were not observed in perinatal HSCs. The reconstituting ability of Scl+/- 

HSCs or HSCs with decreased Scl protein expression induced by RNA interference was 

impaired in various transplantation assays. Furthermore, gene expression analysis and 

chromatin immunoprecipitation experiments revealed that the Cdkn1a and Id1 genes are 

direct SCL targets. 

2.2.3 Tel/Etv6 

The transcription factor Tel (also known as Etv6), an Ets-related transcriptional repressor, is a 

frequent target of the diverse chromosomal translocations observed in leukemias (Golub et al., 

1994). Tel/ETV6 is also required for HSC survival in adult hematopoiesis. Following 

conditional inactivation of Tel/Etv6, HSCs are rapidly lost from the adult BM. However, 

Tel/Etv6 is not required for the maintenance of lineage-committed progenitors. Conditional 

deletion of Tel/Etv6 after lineage commitment does not affect the differentiation or survival of 

these progenitors, although it does impair the maturation of megakaryocytes (Hock et al., 2004). 
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2.2.4 Zfx 

Zfx is a zinc finger protein belonging to the Zfx/ZFy family. Mammalian Zfx is encoded on 
the X chromosome and contains an acidic transcriptional activation domain, a nuclear 
localization sequence, and a DNA binding protein domain consisting of 13 C2H2-type zinc 
fingers (Schneider-Gadicke et al., 1989). Zfx is highly expressed in both HSCs and 
undifferentiated embryonic stem cells (ESCs). Using conditional gene targeting, Zfx was 
identified as an essential transcriptional regulator of HSC function (Galan-Caridad et al., 
2007). Constitutive or inducible deletion of Zfx in HSCs (using Tie2-Cre and Mx1-Cre 
deletion strains, respectively) impairs self-renewal, resulting in increased apoptosis and the 
upregulation of stress-inducible genes.  

2.2.5 ADAR1 

ADAR (adenosine deaminase acting on RNA) catalyzes the deamination of adenosine to 
inosine in double-stranded RNA. Conventional Adar-/- mice die around embryonic day 
11.5–12 because of widespread apoptosis and defective hematopoiesis (Hartner et al., 2004; 
Wang et al., 2004). Conditional deletion of Adar in HSCs shows that ADAR1 is essential for 
the maintenance of both fetal and adult HSCs, and leads to global upregulation of type I and 
II interferon-inducible transcripts and rapid apoptosis (Hartner et al., 2009). Interferon 
regulatory factor-2 (Irf2), a transcriptional suppressor of type I interferon signaling, is a 
positive regulator of HSC quiescence (Sato et al., 2009). Irf2-deficient HSCs are unable to 
restore hematopoiesis in irradiated mice, but the reconstituting capacity of Irf2-/- HSCs can 
be restored in these cells by disabling type I IFN signaling. 

2.3 Response to hematopoietic emergency 

Various external stresses, such as myelosuppressive chemotherapy, bleeding, infection, and 
total body irradiation, put HSCs under stress, as they must proliferate to produce large 
numbers of primitive progenitor cells, thereby enabling rapid hematologic regeneration. 
Although this property has long been recognized, the molecular basis underlying the 
reaction of HSCs to hematologic emergency remains enigmatic. However, some key players 
have been identified.  

2.3.1 Heme oxygenase-1 

Heme promotes the proliferation and differentiation of hematopoietic progenitor cells 

(HPCs) (Chertkov et al., 1991) and stimulates hematopoiesis (Porter et al., 1979; Abraham, 

1991). The degradation of heme is catalyzed by heme oxygenase (HO). HO-1, encoded by 

the Hmox1 gene, is the stress-inducible isozyme of HO and is highly expressed in the spleen 

and BM (Abraham, 1991). Heterozygous HO-1–deficient mice (HO-1+/-) show accelerated 

hematologic recovery from myelotoxic injury induced by 5-FU treatment, and mice 

transplanted with HO-1+/- BM cells show more rapid hematopoietic repopulation than those 

transplanted with Ho-1+/+ BM cells. However, HO-1+/- HSCs show a reduced capacity to 

rescue lethally irradiated mice and to serially repopulate irradiated recipients (Cao et al., 

2008). These results suggest that HO-1 limits the proliferation and differentiation of HPCs 

under stressful conditions, and that the failure of this mechanism can lead to the premature 

exhaustion of the HSC pool.  
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2.3.2 Necdin 

Necdin is a member of the melanoma antigen family of molecules, whose physiological 

roles have not been well characterized (Xiao et al., 2004). Necdin acts as a cell cycle 

regulator in post-mitotic neurons (Yoshikawa, 2000). Intriguingly, recent genetic analyses 

show that aberrant genomic imprinting of NDN on the human 15q11-q13 chromosomal 

region is, at least in part, responsible for the pathogenesis of Prader-Willi syndrome 

(MacDonald & Wevrick, 1997; Nakada et al., 1998; Barker et al., 2002), a disorder 

associated with a mildly increased risk of myeloid leukemia (Davies et al., 2003). Necdin 

interacts with multiple cell-cycle related proteins, such as SV-40 large T antigen, 

adenovirus E1A, E2F1, and p53 (Taniura et al., 1998, 1999, 2005; Hu et al., 2003). As shown 

in Table 2, necdin is one of 32 genes that show higher expression in HSCs than in 

differentiated hematopoietic cells (Kubota et al., 2009). Other groups also found that 

necdin is highly expressed in HSCs (Forsberg et al., 2005; Liu et al., 2009). Necdin-

deficient mice show accelerated recovery of hematopoietic systems after 

myelosuppressive stress, such as 5-FU treatment and BM transplantation, whereas no 

overt abnormality is seen under conditions of steady-state hematopoiesis. Considering 

necdin as a potential negative cell-cycle regulator, it was reasoned that the enhanced 

hematologic recovery in necdin-null mice could be the result of an increased number of 

proliferating HSCs and progenitor cells. As expected, after 5-FU treatment, necdin-

deficient mice had an increased number of HSCs, but this was only transiently observed 

during the recovery phase (Kubota et al., 2009). These data suggest that the repression of 

necdin function in HSCs may present a novel strategy for accelerating hematopoietic 

recovery, thus providing therapeutic benefits after clinical myelosuppressive treatments 

(e.g., cytoablative chemotherapy or HSC transplantation). 

2.3.3 Slug 

Slug belongs to the highly conserved Slug/Snail family of zinc-finger transcriptional 

repressors found in diverse species ranging from C. elegans to humans. SLUG is a target 

gene for the E2A-HLF chimeric oncoprotein in pro-B cell acute leukemia (Inukai et al., 1999). 

Slug-deficient mice show normal peripheral blood counts, but they are very sensitive to Ǆ-

irradiation (Inoue et al., 2002). Slug is induced by p53 and protects primitive hematopoietic 

cells from apoptosis triggered by DNA damage. Slug exerts this function by repressing 

Puma, a proapoptotic target of p53 (Wu et al., 2005). Sun et al. recently showed that Slug 

negatively regulates the repopulating ability of HSCs under conditions of stress. Slug 

deficiency increases HSC proliferation and reconstitution potential in vivo after 

myelosuppressive treatment, and accelerates HSC expansion during in vitro culture (Sun et 

al., 2010). 

3. Cancer stem cells 

Accumulating evidence strongly suggests that tumors are organized into cellular hierarchies 
initiated and maintained by a small pool of self-renewing cancer stem cells (CSCs) (Dick, 
2008; Reya et al., 2001). CSCs are thought to be resistant to various cancer treatments 
because of their relative quiescence (Komarova & Wodarz., 2007). Cancer relapses may 
occur because the dormancy of CSCs protects them from elimination by various cancer 
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therapies (Dick, 2008). In an acute myelogenous leukemia (AML) xenograft model, AML 
leukemic stem cells (LSCs) localized in the endosteal region of the BM show cellular 
quiescence and resistance to chemotherapy (Ishikawa et al., 2007; Saito et al., 2010). In 
patients with chronic myelogenous leukemia (CML), CD34+ progenitor cells contain 
dormant cells that are resistant to BCR/ABL tyrosine kinase inhibitors (Bhatia et al., 2003).  

It is well documented that regulators of HSC maintenance are also involved in the 
development of leukemias (Rizo et al., 2006). A number of cancer-related proteins, such as 
Bmi1, c-Myc, p53, Gfi-1, and PTEN, are key participants in HSC regulation, demonstrating 
the close relationship between normal HSCs and CSCs. Therefore, further understanding 
the mechanisms regulating HSC fate is needed if we are to develop new strategies for 
targeting CSCs and successfully treat cancer.  

4. Conclusions 

In this review, we have briefly summarized a number of critical regulators involved in the 
control of HSC self-renewal, quiescence, survival, and responses to external insults. Recent 
evidence strongly suggests that the BM niche also plays an integral role by providing critical 
signals that maintain HSCs in a stat of hibernation, thus preventing them from exhausting 
themselves. However, HSCs are critical for the maintenance and regeneration of an 
organism after injury/illness. This process must be tightly regulated and coordinated. 
Intensive studies have uncovered the molecular signatures and key molecules regulating 
HSC behavior. Moreover, new systems approaches, such as microRNA expression profiling 
and protein expression profiling, are expected to provide further useful information about 
HSC biology in the future. However, the overall picture of the molecular mechanisms that 
govern HSC fate is still unclear. Further understanding of the systems that regulate HSCs 
will enable the manipulation of stem cells for use in tissue engineering and cell-based 
therapies. 
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