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1. Introduction 

Water stress is one of the factors most frequently limiting maize production, food security, 
and economic growth in sub-Saharan Africa. The unprecedented combination of climatic 
risk, declining soil fertility, the need to expand food production into more marginal areas as 
population pressure increases, high input costs, extreme poverty, and unavailability of 
credit systems, have resulted in small holder farmers in southern and eastern Africa 
producing maize in extremely low-input/low risk systems (Banziger and Diallo, 2004). As a 
consequence, crop yields are falling to very low levels and food insecurity is widespread 
amongst agricultural communities (Kamara et al., 2004). The development of maize 
germplasm able to tolerate water stress is crucial if the productivity of maize based farming 
systems is to be sustained or increased (Betran et al., 2003).  
Maize genotypes perform differently under water stress conditions due to the existence of 
genetic variability for tolerance to stress (Bolanos and Edmeades, 1993; Lafitte and 
Edmeades, 1994; Banziger et al., 2000; 2006; Diallo et al., 2004). Betran et al. (2003) observed 
hybrids performing well under stress and suggested the possibility of combining stress 
tolerance and yield potential in tropical maize hybrids. Tolerance of maize to water stress is 
partly related to the development of the root system, which in turn influences water and 
nutrient uptake by crop plants (Moll et al., 1982; Kamara et al., 2004). In general, however, 
the amount of grain yields recorded from maize genotypes fall with the severity of water 
stress (Betran et al., 2003). Breeding strategies to develop stress tolerant maize inbred lines 
include screening and selection of inbreds under managed stress conditions, multi-location 
testing of progeny in a representative sample of the target environments, and selection 
under high plant populations (Beck et al., 1997). Additional information from adaptive 
secondary traits (ears per plant, anthesis-silking interval and leaf senescence) that show 
differential expression between optimal and stress conditions is genetically variable and is 
correlated with grain yield and is commonly used to increase selection efficiency (Bolanos 
and Edmeades, 1993; 1996; Banziger and Lafitte, 1997). When genetic variance and 
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heritability for grain yield declines under water stress (Blum, 1988; Bolanos and Edmeades, 
1996), variances and heritability of anthesis-silking interval and ears per plant remain stable 
across water stress levels or may even increase (Bolanos and Edmeades, 1996). Anthesis-
silking interval and ears per plant have, therefore, been used in selection indices to increase 
selection efficiency for water stress tolerance (Bolanos et al., 1993; Bolanos and Edmeades, 
1996).  
The choice of the most effective breeding scheme and the rate of the genetic improvement 

are dependent upon the relative magnitude of various gene effects (Dhillon and Pollmer, 

1978). The expression and genetic variation of grain yield and secondary traits in maize vary 

with stress level. Additive genetic effects were found to be more important for grain yield 

under water stress and well-watered conditions (Betran et al., 2003; Makumbi et al., 2004). 

Betran et al. (1999) reported that as water stress increases so does the importance of general 

combining ability (GCA) and additive genetic effects. Derera et al. (2008) reported the 

preponderance of additive effects for grain yield and ears per plant under water stress and 

the importance of both additive and non-additive effects in controlling grain yield under 

well-watered conditions. Both additive and non-additive gene effects are important for days 

to anthesis, silking and anthesis-silking interval under both water stress and non-water 

stress environments (Derera et al., 2008).  

Determining of the mode of gene action controlling yield and secondary traits in QPM 

germplasm under water stress, and optimal conditions would help in devising a viable 

conventional breeding strategy to develop nutritionally enhanced cultivars adapted to stress 

and optimal environments. The aim of this study was to determine (i) the combining ability 

and (ii) modes of gene action for grain yield and related traits in QPM inbred lines under 

water stress, and optimal (well-watered) conditions. 

2. Materials and methods 

2.1 Environments and stress management 
The study was conducted in eastern and southern Africa, in Ethiopia, Kenya, Zambia and 

Zimbabwe from 2006 to 2008 (Table 1). Nine environments at Harare (HAOM), Rattray 

Arnold (RAOM), Mpongwe (MPOM), Bako (BKOM), Melkassa (MLOM), Pawe (PWOM), 

Awassa (AWOM), Jimma (JMOM) and Kiboko (KBOM) research stations comprised 

optimum management (optimal fertilization and supplemental irrigation as needed to avoid 

water stress). Fertilizer rates at each location were adjusted to reflect the agronomic 

recommendations for each location. The trials were conducted during the summer (main 

cropping) seasons of the respective countries. Two experiments were grown under water 

stress during the winter (dry) seasons at Chiredzi, Zimbabwe (CHDS) and Kiboko, Kenya  

(KBDS) research stations. 

Both Chiredzi and Kiboko are largely rain free during the winter season, allowing the 

control of water stress intensity by withdrawing or delaying irrigation for varying lengths of 

time during flowering and grain filling stages (Edmeades et al., 1999). At Chiredzi, water 

stress was achieved by applying a total of 220 mm irrigation water in the first 50 days from 

planting. This regime caused severe water stress at flowering and grain filling time. The 

trials at Kiboko were irrigated from planting until 15 days before male flowering after which 

watering was withheld until 15 days after male flowering when additional irrigation was 

applied to prevent zero yield (Banziger et al., 2000). Care was taken so that irrigation, and 
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hence stress, was as uniform as possible and the water stress blocks were not contaminated 

with irrigation water from neighbouring blocks or leaking pipes and wind drift. Sufficient 

fertilization and crop management practices were applied, except irrigation management to 

avoid confined effects from other factors.  

 
 
 

 
 

† n/a= not available; ‡K= potassiu m fertilizer was not used in Ethiopia and Kenya; RARS= Rattray 

Arnold Research Station 

Table 1. Locations and environments used to evaluate F1 hybrids, with their characteristics 

and codes 

2.2 Germplasm 
Fifteen inbred lines were selected based on diverse pedigree backgrounds. These lines 

showed better combining ability in top-cross evaluations and per se performance across a 

range of tropical and subtropical environments (data not shown). Most of the lines are 

resistant/tolerant to major foliar diseases of the tropics (CIMMYT, 2004). Diallel crosses 

were made among the 15 inbred lines in the winter of 2006 at Muzarabani, Zimbabwe. Seeds 

from reciprocal crosses were bulked to form a set of 105 F1 hybrids. The F1 hybrids were 

evaluated along with two QPM (SC527Q and CML144/CML159//CML176) and one normal 

maize (SC633) hybrid checks in all experiments conducted in Kenya, Zambia and 

Zimbabwe, and two normal maize (BH540 and BH541) and one QPM (BHQP542) hybrid 

checks in all experiments conducted in Ethiopia. 

2.3 Experimental design and field measurements  
All experiments were laid out as 9 x 12 alpha-lattice designs (Patterson and Williams, 

1976) with two replications (Table 1). Measurements were recorded on well-bordered 

plants by excluding the plant nearest to the alley of each row. Days to anthesis and silking 

were calculated as the number of days from planting to 50% pollen shed and silk 

emergence. Anthesis silking interval was calculated as the difference between days to 

silking and anthesis (ASI = DS – DA). Two weeks after pollen shed, plant height and ear 

height were measured as the distance from ground level to the first tassel branch or to the 

node bearing the main ear. Number of ears per plant was obtained by dividing the 

number of ears by number of plants harvested. An ear was counted if it had at least one 
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fully developed grain. Grain weight from all the ears of each experimental unit was 

measured and used to calculate grain yield (expressed in ton ha-1 and adjusted to 12.5% 

moisture content). 

2.4 Statistical analysis 

Before data analysis, anthesis-silking interval (ASI) was normalized using ln ( 10)ASI   as 

suggested by Bolanos and Edmeades (1996). Analysis of variance per environment was 

conducted with the PROC MIXED procedure in SAS (SAS, 2003) considering genotypes as 

fixed effects and replications and blocks within replications as random. Entry means 

adjusted for block effects generated from individual location analyses according to a lattice 

design (Cochran and Cox, 1960) were used to perform across environments combined 

analyses using PROC GLM in SAS (SAS, 2003) and combining ability analysis using a 

modification of the DIALLEL-SAS program (Zhang and Kang, 1997). 

GCA effects of the parents and SCA effects of the crosses were estimated following 

Griffing’s Method IV (crosses only) and Model I (fixed) of diallel analysis (Griffing, 1956). 

Combined analyses of variance were conducted for each trait that showed significant entry 

mean squares in individual environment analysis. Combining ability was analyzed, and 

GCA and SCA effects were estimated accordingly. The mean squares for hybrids and 

environments were tested against the mean squares for hybrid x environment (E) as error 

term while hybrid x E interactions mean squares were tested against pooled error. 

Since means (over replication) of each of the genotypes were used for combined analysis of 

variance, estimate of pooled error mean squares were calculated following the procedure of 

Dabholkar (1999) as: 2

1 1

n n

i i i
i i

K S K r
 
  , where Ki and 2

iS are error degrees of freedom and 

error mean square at ith environment, respectively, n is the number of environments and  r is 

the number of  replications in each environment. The significance of GCA and SCA sources 

of variation was determined using the corresponding interactions with the environment as 

error terms. Error mean squares calculated above were used to test the significance of GCA 

and SCA interactions with environment; because the combining ability mean squares were 

calculated based on entry means of each genotype from each environment (Griffing, 1956; 

Singh, 1973; Dabholkar, 1992). For GCA effects of the inbred lines, the restriction 0gi   

was imposed. Significance of GCA effects was determined by the t-test, using standard 

errors of GCA effects (Griffing, 1956; Singh and Chaudhary, 1985).  

3. Results 

Analysis of variance for each environment revealed the existence of significant differences 

among hybrids for most traits except anthesis-silking interval at Harare, Mpangwe and 

Pawe optimal (Table 2). Mean squares due to GCA were highly significant for all traits 

studied at all environments. SCA effects were also significant for most traits. Mean grain 

yields for the QPM hybrids (excluding the checks) ranged from 0.6 t ha-1 under severe water 

stress at Chiredze to 8.4 t ha-1 under optimum management at Mpongwe (Table 3). At 

Kiboko, average grain yield of the hybrids tested under water stress was 35.7% of grain 

yield under optimal conditions (KBOM).  
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HAOM=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako optimal, 
MLOM=Melkasa optimal, PWOM=Pawe optimal, AWOM=Awassa optimal, JMOM=Jimma optimal, 
CHDS=Chiredzi stress, KBDS=Kiboko stress, KBOM=Kiboko optimal* P≤ 0.05 ; ** P≤ 0.01; DF= degrees 
of freedom; GY= grain yield; AD= days to anthesis; DS= days to silking; ASI= anthesis-silking interval; 
PH= plant height; EH= ear height; EPP= ears per plant 

Table 2. Mean squares for hybrids, general (GCA) and specific (SCA) combining ability for 
grain yield and agronomic traits in stressed and optimal environments, 2006 – 2008 
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Combined analysis of variance across water stress environments revealed highly significant 

mean squares due to environments and hybrids for all traits analyzed (Table 4). Mean grain 

yield across water stress environments ranged from 0.3 to 3.7 t ha-1 with a mean of 1.8 t ha-1. 

Higher grain yields were recorded for VL052 x VL05561 (3.7 t ha-1), VL05561 x CML159 (3.5 t 

ha-1), VL054178 x VL06375 (3.4 t ha-1), VL05482 x VL05561 (3.3 t ha-1) and VL054178 x 

VL05561 (3.0 t ha-1). Mean grain yield across water stress environments (Table 4) was 27.4% 

of the mean grain yield across optimal environments (Table 5). Mean days to anthesis was 

92.3 with a range of 82.8 – 103.5. Days to silking ranged from 83.7 to 120.0 d with a mean of 

102.0. Anthesis-silking interval ranged from 0.4 to 21.4 with a mean of 9.7.  Ears per plant 

ranged from 0.10 to 0.88 with a mean 0.50. Combining ability analysis revealed non-

significant GCA mean squares for grain yield but significant GCA mean squares for days to 

anthesis and silking, anthesis-silking interval and ears per plant. SCA mean squares, 

however, were not significant for all traits. Hybrid x E, GCA x E and SCA x E interaction 

mean squares were significant for all traits tested. 

Across optimal environments, the effects of environments, hybrids, GCA and SCA were 

highly significant for all the traits evaluated (Table 5). Grain yields ranged from 1.8 to 9.4 t 

ha-1 with a mean of 6.5 t ha-1. The highest yielding hybrids were VL05483 x CML491 (9.4 t 

ha-1), CML511 x CML491 (8.8 t ha-1), VL05561 x CML491 (8.7 t ha-1), CML159 x CML491 

(8.5 t ha-1) and VL054178 x CML491 (8.1 t ha-1).  Mean days to anthesis was 73.8 with a 

range of 66.9 – 80.4. Days to silking ranged from 68.9 to 82.8 with a mean of 75.1. Mean 

plant and ear height was 225.5 and 110.9 cm with ranges of 189.0 – 248.4 cm and 89.9 – 

131.7 cm. Mean ears per plant was 1.14 with ranges of 0.79 – 1.48. Anthesis-silking interval 

ranged from -0.2 to 3.3 d with a mean of 1.6 d. Hybrid x E, GCA x E and SCA x E 

interactions were highly significant for all traits except SCA x E for ear height and 

anthesis-silking interval. 

 
 

 

 

HAOM=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako optimal, 
MLOM=Melkasa optimal, PWOM=Pawe optimal, AWOM=Awassa optimal, JMOM=Jimma optimal, 
CHDS=Chiredzi stress, KBDS=Kiboko stress, KBOM=Kiboko optimal. ‡ proportion of QPM hybrid 
with higher grain yield than the best check (normal maize or QPM); SE(M)= standard error of the 
mean 

 

Table 3. Means of QPM hybrids, and best normal and QPM checks for grain yield in stress 
and optimal environments, 2006 -2008 
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* P≤ 0.05 ; ** P≤ 0.01; ASI= Anthesis silking interval; CV= coefficient of variation; DA= days to anthesis; 
DF= degrees of freedom; DS= days to silking; EPP= ears per plant; GCA= general combining ability; 
GY= grain yield;  SCA= specific combining ability; SE (m)= standard error of the mean 

Table 4. Mean squares from combined analysis of variance and means for grain yield and 
agronomic traits of QPM hybrids across water stress environments at Chiredzi and Kiboko, 
2007 

 
 
 
 

 

* P≤ 0.05 ; ** P≤ 0.01; ASI= anthesis-silking interval; CV= coefficient of variation; DA= days to anthesis; 
DF= degrees of freedom; DS= days to silking; EH= ear height; EPP= ears per plant; GCA= general 
combining ability; GY= grain yield;  PH= plant height; SCA= specific combining ability; SE (m)= 
standard error of the mean 

Table 5. Mean squares  from combined analysis of variance and means for grain yield and 
agronomic traits of QPM hybrids across nine optimal environments, 2006 – 2008 
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Estimates of GCA effects for grain yield showed that inbred lines VL05561, VL05483, CML511, 
CML159 and VL06375 combined well in most of the environments (Table 6). These inbred lines 
mostly showed positive and highly significant GCA effects in most environments. On the 
other hand, VL052, VL052887, VL0523 and CML144 showed negative and highly significant 
GCA effects in most of the environments. Inbred lines VL05561, VL05483 and CML511 showed 
high positive GCA effects across optimum and combined environments.  
For days to anthesis, VL054178, VL05482, VL05561, VL05483, CML511 and VL06375 had 
negative and highly significant GCA effects in most environments (Table 7). On the other 
hand, inbred lines VL05200, VL054178, VL052887, VL0523, VL05561 and CML144 showed 
positive and highly significant GCA effects in most environments. VL054178, VL05482, 
VL05561, VL05483, CML511, CML159 and VL06375 had highly significant negative GCA 
effects for days to silking for both water stress and optimal environments. 
Inbred lines VL054178, VL05482, VL05561, VL05483 and VL06375 had negative and highly 
significant GCA effects for days to silking (Table 8). On the other hand, VL05468, VL052887, 
VL0523, VL0524, CML144 and CML491 showed positive and highly significant GCA effects.  
VL054178, VL05482, VL05561, VL05483, CML159 and VL06375 had highly significant 
negative GCA effects for days to anthesis for both water stress and optimal environments. 
The GCA effects for anthesis-silking interval were negative and highly significant for 
VL05561 but positive and highly significant for VL054178 in almost all environments (Table 
9). Across water stress environments, inbred lines VL054178 and VL05482 showed lower 
GCA effects. VL052887, VL05561 and CML144 had negative and highly significant GCA 
effects across optimal environments. VL054178, VL05561, VL05483 and VL06375 showed 
lower GCA effects for anthesis-silking interval over all environments. 
Inbred lines VL05200, VL054178, VL05482, CML144 and CML159 showed negative and 
significant GCA effects for plant and ear height in most environments (Tables 10 and 11). 
However, VL05483 and VL06375 had positive and significant GCA effects for plant height 
while VL053, VL0524 and VL5561 had positive and significant GCA effects for ear height in 
most environments.  
For ears per plant, inbred lines VL05482, VL05483 and CML511 showed positive and 
significant and VL05200, VL05468, VL0523, VL0524 and CML159 showed negative and highly 
significant GCA effects in water stress and optimal environments (Table 12). At Chirezi under 
water stress, VL05482, CML511 and CML491 showed negative and significant GCA effects. 

4. Discussion 

The results observed in various environments (Table 2) showed that water stress 
significantly affected grain yield, as previously reported (Bolanos and Edmeades, 1993, 1996; 
Banziger et al., 1997; Banziger and Lafitte, 1997; Banziger et al., 1999a; Derera et al., 2008). 
High levels of variation observed among hybrids under water stress, and optimal 
environments indicate the possibility of selecting for improved grain yield and agronomic 
traits under stress and non-stress conditions. The existence of genetic variability in maize 
evaluated under stress conditions has been reported by several investigators (Bolanos et al., 
1993; Bolanos and Edmeades, 1996; Banziger and Lafitte, 1997; Beck et al., 1997; Banziger et 
al., 1997; 1999b; Betran et al., 2003; Derera et al., 2008). Significant GCA and SCA mean 
squares for most traits in each environment indicate the importance of both additive and 
non-additive effects for the traits studied. This suggests that effective selection or systematic 
hybridization could be employed in improving these traits.   
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Table 6. Estimates of general combining ability effects of 15 QPM inbred lines for grain yield 
per environment, 2006 -2008 
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Table 8. Estimates of general combining ability effects of 15 QPM inbred lines for days to 
silking per environment and across environments, 2006 – 2008 
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Table 10. Estimates of general combining ability effects of 15 QPM inbred lines for plant 
height per environment and across environments, 2006 – 2008 
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Combined analysis of variance across water stress (Table 4) and optimal (Table 5) 

environments indicated the existence of significant variation among hybrids and 

environments for all traits. Both additive and non-additive genetic effects were not 

important for grain yield across water stress environments while only additive effect was 

important for days to anthesis and silking, anthesis-silking interval and ears per plant. 

This finding is contrary to the reports of other researchers (Betran et al., 1999; 2003; 

Makumbi et al., 2004; Derera et al., 2008), who reported the importance of additive effects 

for grain yield of normal maize under water stress. When genetic variance for grain yield 

is not apparent, secondary traits of adaptive value whose genetic variability increases and 

whose heritability remains high under water stress can increase selection efficiency 

(Bolanos and Edmeades, 1996; Edmeades et al., 1997; Banziger and Lafitte, 1997; Banziger 

et al., 1999b). 

Highly significant GCA and SCA mean squares for all traits under optimal environments 

indicate the importance of both additive and non-additive gene effects for the inheritance of 

these traits. Similar results have been reported in diallel studies of QPM inbred lines under 

optimal environments (Pixley and Bjarnason, 1993; Bhatnagar et al., 2004; Hadji, 2004; Fan et 

al., 2004). Derera et al. (2008) reported the importance of both additive and non-additive 

effects in conditioning grain yield, days to anthesis and silking, and anthesis-silking interval 

in Design-II crosses of normal maize inbred lines. Similarly, additive and non-additive 

effects were important for all traits evaluated across environments except anthesis silking 

interval which had non-significant SCA effects. Significant mean squares of Hybrid x E, 

GCA x E and SCA x E interactions for most traits across environments indicate that these 

effects were not consistent over environments. This implies that different genes are involved 

in controlling these traits under water stress and optimal conditions. Cooper and Byth (1996) 

explained that the larger the degree of genotype-by-environment interaction, the more 

dissimilar the genetic systems controlling the physiological processes conferring adaptation 

to different environments.  

Even though significant cross-over interactions were observed for GCA effects of the inbred 

lines, some inbred lines were identified with consistent GCA effects across environments. 

This implies that the genetic systems controlling a given trait under different stress and non-

stress conditions are at least partially similar. Hence, it is possible to identify QPM hybrids 

that perform well across stress levels in Africa. Similar conclusions have been drawn by 

Betran et al. (2003) who evaluated tropical normal maize inbred lines and their hybrids for 

grain yield under optimal and water stress conditions.  

Inbred lines VL054178, VL05561, VL05483, CML511, CML159 and VL06375 were good 
general combiners for grain yield in both water stress and optimal environments indicating 
that these inbred lines contributed to increased grain yield in their crosses under all 
environmental conditions. Inbred lines VL054178, VL05482, VL05561, VL05483, CML159 
and VL06375 contributed to earliness under most environments as inferred from the 
negative and highly significant GCA effects of days to anthesis and silking. VL05561 was the 
best general combiner for anthesis-silking interval. Inbred lines VL05200, VL054178, 
VL05482, CML144 and CML159 were good combiners for plant stature as they contributed 
to reduced plant and ear height in the crosses. VL05482, VL05483 and CML511 contributed 
to increased ears per plant in the crosses. Anthesis- silking interval and ears per plant are 
important secondary traits to be considered in increasing the efficiency of selection for grain 
yield under stress. The highest grain yielding genotypes under water stress tended to show 
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lower anthesis-silking interval, delayed senescence, and a higher number of ears per plant 
(Bolanos and Edmeades, 1993; Banziger and Lafitte, 1997; Banziger et al., 1999c; Diallo et al., 
2004).  
Higher SCA variances than GCA variances for grain yield in most optimal environments 
indicate that additive variability was of greater importance in the inheritance of grain yield 
under optimal conditions. Under water stress conditions, however, additive variability was 
more important than non-additive variability. The predominance of additive effects under 
water stress conditions has been reported by several researchers (Betran et al., 2003; Diallo et 
al., 2003; Makumbi et al., 2004; Derera et al., 2008).  
Additive effects were more important that non-additive effects in the inheritance of days to 
anthesis and silking in all cases. Similarly, additive effects were more important for anthesis-
silking interval, plant and ear height, and ears per plant in most cases.  
According to Baker (1978), when SCA mean squares are not significant, the hypothesis that 
the performance of a single-cross progeny can be adequately predicted on the basis of GCA 
would be accepted. On the other hand, if the SCA mean squares are significant, the relative 
importance of GCA and SCA should be assessed by estimating components of variance in 
determining progeny performance.  

5. Conclusions 

A large proportion of the maize crop in Africa is grown by small scale farmers under low 
input systems, without adequate fertilization and irrigation. Significant yield losses due to 
water stress were realized in this study. The results indicated the availability of considerable 
variation among QPM hybrids and the possibility of making selections for grain yield and 
agronomic traits under stress and non-stress conditions. Significant GCA and SCA mean 
squares, and hence the importance of both additive and non-additive effects was observed 
for most traits in most environments. Neither additive nor non-additive genetic effects were 
important for grain yield across water stress environments. In this case, secondary traits 
such as anthesis-silking interval and ears per plant with high genetic variability and 
heritability can be used to increase selection efficiency.  
Estimates of GCA effects showed that inbred lines VL054178, VL05482, VL05561, VL05483, 
CML511, CML159, CML491 and VL06375 had good GCA effects for most traits under stress 
and non-stress conditions. These inbred lines can be used for the development of QPM 
hybrids and synthetics that perform well across stress and non-stress environments. In 
general, the inbred lines used in this study were found to be useful sources for genetic 
variability for the development of new genotypes for stress tolerance and the study 
confirmed the possibility of achieving good performances across stress and non-stress 
conditions in QPM germplasm. 
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