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1. Introduction 

Early diagnostic and disease management is one of the most important challenges facing 
modern medicine, which is particularly relevant in cancer. The lack of effective assays 
measuring multiple blood-based biomarkers is lacking in many types of cancer. 
Moreover, transforming a biomarker into a useful clinical diagnostic test is a complex 
process, which starts with identification, proceeds through validation, but also requires 
extensive performance testing metrics (i.e., sensitivity, specificity, positive and negative 
predictive values, false positive and false negative rates, inter-test reliability and 
test/retest reliability). Identification can be carried out by various means (gene arrays, 
purification procedures, proteomics), that focus on observed changes of the marker 
correlated with the disease progression, either in the tissue/tumor or in a body fluid. 
Many of these methodologies attempt to identify markers in a non-spatial context, for 
example in tissue extracts, which results in a higher likelihood of obtaining false positives, 
which are then discovered as such through further validation methods. To avoid these 
problems or to validate the potential biomarkers several approaches are used including 
the development of specific antibodies, using protein microarrays or including more 
refined techniques to include tissue laser dissection. The process is long, arduous and 
lacks predictive power. Additionally, these methods often require large amounts of 
material, such as would occur in studies of tumour tissues. Ideally, the direct detection of 
a protein within spatial context would provide the best chances of rapidly identifying a 
potential and useable biomarker. One of the most powerful mass spectrometry 
applications known to date, MALDI mass spectrometry imaging (MALDI-MSI) 1 does just 
that. This technology is a major new alternative that combines both biomarker 
identification and validation in a single step1, 2. It has recently successfully been used for 
in situ tracking of biomarkers, as predictors of cancer aggressiveness, and for improved 
therapeutic strategies1,3-11 

www.intechopen.com



 
Advances in Cancer Management 

 

212 

2. MALDI Mass Spectrometry Imaging (MALDI-MSI) 

Over these past ten years, important technical improvements in mass spectrometry 
instrumentation together with the growing importance of this method for compound 
identification had lead to the development of direct analysis of tissue samples. Mass 
spectrometry has become an analytical tool allowing identification of compounds directly 
from tissues without any extraction or separation and adding the essential and time saving 
spatial resolution to the analysis. Furthermore, in a single experiment, molecular 
information on hundreds of chemical or biological molecules can be retrieved. By 
automation of this method and powerful data processing, molecular maps are generated 
from single tissue sections. Another major advantage is the sensitivity of mass spectrometry 
instruments giving access to hundreds of compound molecular images after one set 
acquisition. Matrix-assisted laser desorption/ionization (MALDI) ion sources are well suited 
for this application as they can provide data on a range of biomolecular families ranging 
from small molecule drugs, peptides, proteins, oligonucleotides, sugars or lipids with a 
spatial resolution that approaches near cellular resolution. MALDI-imaging mass 
spectrometry (MALDI-MSI) was first introduced by Caprioli and coll.12 but major 
improvements have been developed in by other groups seeking to improve sample 
preparations, instrumentation, image spatial resolution , as well as develop new fields of 
applications2,12-14. For example, MALDI-MSI technology has been used for biomarkers 
hunting, drug biodistribution tissue interactions in drug discovery as well as for the 
molecular diagnosis through biopsy analyses in pathology. The translational nature of this 
technology provides unique challenges and as yet unimagined opportunities that promise to 
transform the way disease is detected, treated, and managed.  
Rather than focusing on genetic alterations that may lead to a particular disease, it is 
emerging that changes in protein expression patterns are the most accurate way to identify 
diseases in their early stages and to determine the most effective course of treatment. 
Indeed, genome sequences fails to provide certainty for post-translational modification 
events such as glycosylation, phosphorylation, acylation or partial proteolysis. One of the 
most common objectives in proteomics is the study of protein expression patterns (e.g., 
protein profiling) associated with diseases. Pathologies that cause changes in signal 
transduction pathways generally result in changes in specific cell phenotypes. Using 
MALDI-MSI in this context does not have knowledge prerequisite of the studied system due 
to the non-targeted nature of the analysis. Such data leads to the establishment of a 
classification of cell phenotypic changes at the molecular level and in this way can provide a 
better understanding of pathologies, can lead to new diagnostic biomarkers or even new 
therapeutic targets. The capacity of generating multidimensional pictures with a spatial 
resolution that can approach the cellular level, allows monitoring, in the same analysis, of 
the localization of drugs compounds and the changes in biomarkers expression2. 
In the context of the present discussion, there is a single clear advantage of MALDI_MSI, 
that is the spatial localization of identified compounds, that tremendously increases the 
predictive potential of which markers are most likely to be successful at the clinical level. 
There are additional advantages to the MALDI-MSI approach for biomarker hunting. 
MALDI ion sources can identify a wide range of biomolecular families including small 
molecule drugs, peptides, proteins, sugars or lipids with a spatial resolutions that 
approaches the cellular level. Due to its high data acquisition, MALDI_MSI can permit the 
establishment of a classification of cell phenotypic changes at the molecular level, which can 
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be used to complement histology techniques. The correlation between molecular images 
obtained by MALDI-MSI and the ones obtained by pathologists using classical 
histocytochemistry can be inclusive of all grades, stages, cancer types, and cell types. 
However, differently from classic histocytochemistry, MALDI-MSI allows identification at 
the molecular level, in each cell type. Combined with powerful multivariate analyses like 
the hierarchical classification and principal component analyses (PCA)5, it is possible to 
identify biomarkers present in carcinoma region from one in a stromal area, from those in an 
interstitial region. Therefore, in a single analysis we can access multiple biomarkers present 
in a region of interest, characterize them in situ, without any tissue extraction. In regards to 
cancer tissues, which most often are high heterogeneous, the combination of MALDI_MSI 
and multivariate analyses are the most powerful and suited tools developed to date. 
Consequently, we propose that biomarkers uncovered using MALDI-MSI will be more 
clinically useful than those uncovered by standard methods, such as gene arrays or tissue 
extraction/fractionation, which lack spatial context. Other predictions also follow from this 
logic, as biomarkers are known for their potential roles in a disease’s etiology. It therefore 
follows that they may well represent important therapeutic targets. 
In the present chapter, we will focus on a single example, namely in ovarian, cancer, to 
establish the usefulness of MALDI MSI technology for tracking and validating new 
biomarkers. 

3. Ovarian cancer 

Ovarian cancer is the fourth leading cause of cancer death among women in Europe and the 
United States. Among biomarkers, cancer-antigen 125 (CA-125) is the most studied. CA-125 
has a sensitivity of 80% and a specificity of 97% in epithelial cancer (stage III or IV, (Table 1, 
Figure 1)). However, its sensitivity is around 30% in stage I cancer, its increase is linked to  
 

 
Fig. 1. Hematoxilin eosin staining of different type’s of ovarian cancer and benign tissues. 
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several physiological phenomena and it is also detected in benign situations15. CA-125 is 
particularly useful for at-risk population diagnosis and following disease progression 
during therapeutic treatment. In this context, CA-125 is insufficient as a single biomarker for 
ovarian cancer diagnosis. The alternative is to identify additional biomarkers, using a 
proteomic strategy, that can better etablish the diagnosis and prognosis in regards to the 
tumor stage (Table 2)16-24. Presently, two strategies have been established. First has been the 
attempt to identify ovarian cancer markers in plasma SELDI-TOF profiling or 
chromatography coupled to mass spectrometry17,25-30. Second, has been the development of 
classic proteomic strategies using comparative 2D-gels and mass spectrometry24,31-33 or using 
genomic methodologies (Table 3).  
 

FIGO STAGE 

TNM FIGO Description Prevalence % of survey after 5 
years treatment 

TX  Non evaluable primitive Tumor   

T0  No ovarian lesion   

T1 Stage I Tumor limited to the ovary 25%  

T1a Ia Unilateral, capsule intact, no ascite  80% 

T1b Ib Bilateral, capsules intact, no ascite  75% 

T1c Ic Limited to ovaries but presence of ascite  70% 

T2 Stage II Tumor limited to the pelvis 11%  

T2a IIa Extensions limited to the uterus and the 
ducts 

 60% 

T2b IIb Extensions to the other pelvic issues  65% 

T2c IIc Extensions to the other pelvic issues 
with ascites 

 65% 

T3 Stage III Tumor limited to the abdomen 47%  

T3a IIIa Peritoneal microscopic extension  40% 

T3b IIIb Peritoneal implants less than 2 cm  25% 

T3c IIIc-p Peritoneal implants more than 2cm  20% 

N1 IIIc-g Lymphatic ganglia colonized: sub-
pelvis, para-aortic and inguinal 

 <10% 

M1 Stage IV Metastasis at distance and pleural 
effusion 

17% <10% 

Table 1. Grading systems of epithelial carcinoma. FIGO 1995: Universal grading 
nomenclature. 
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Marker Name Genomic Proteomic MALDI 
Imaging 

Mesothelin-MUC16 99   

STAT3 99   

LPAAT-┚ (Lysophosphatidic acid acetyl transferase beta) 100   

Inhibin 101   

Kallikrein Family (9, 11, 13, 14) 102  5 

Tu M2-PK 103   

c-MET 104-106   

MMP-2, MMP-9, MT1-MPP: Matrix metalloproteinase 107-109  5 

EphA2 110-112   

PDEF (prostate-derived Ets factor) 63, 113   

IL-13 114   

MIF (Macrophage inhibiting factor) 63, 113   

NGAL (Neutrophil gelatinase-associated lipocalin) 115  5 

CD46 116-118   

RCAS 1 (Receptor-binding cancer antigen expressed on 
SiSo cells) 

64, 119   

Annexin 3 120   

Destrin 121, 122   

Cofilin-1  123  

GSTO1-1  121, 122  

IDHc  121, 122  

FK506 binding protein  124  

Leptin  125, 126  

Osteopontin  120  

insulin-like growth factor-II  127  

Prolactin  128  

78 kDa glucose-regulated protein  129  

Calreticulin  129  

Endoplasmic reticulum protein ERp29  129  

Endoplasmin  129  

Protein disulfideisomerase A3  129  

Actin, cytoplasmic 1  129  

Actin, cytoplasmic 2  129  

Macrophage capping protein  129  

Tropomyosin alpha 3 chain, alpha-4 chain  129  
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Marker Name Genomic Proteomic MALDI 
Imaging 

Vimentin  129 5 

Collagen alpha 1(VI) chain  129  

Dihydrolipoyllysineresidue succinyltransferase 
component of 2-oxoglutarate dehydrogenase 

 129  

Pyruvate dehydrogenase E1 component beta  129  

Superoxide dismutase [Cu-Zn]  129  

Chromobox protein homologue 5  129  

Lamin B1, B2  129  

14-3-3 protein  129  

Cathepsin B  129  

Heterogeneous nuclear ribonucleoprotein K  129  

Nucleophosmin  129  

Peroxiredoxin 2  129  

Prohibitin  129  

Receptor tyrosine-protein kinase erbB-3  129  

Fibrinogen gamma chain  129  

Splicing factor, arginine/serine-rich 5  129  

Elongation factor 1-beta  129  

Lysosomal protective protein  129  

Hemoglobin beta subunit  129  

Transitional endoplasmic reticulum ATPase  129  

Serum albumin  129  

Protein KIAA0586  129  

Similar to testis expressed sequence 13A  129  

SNRPF protein  129  

Fibrinogen gamma chain  129  

Transitional endoplasmic reticulum ATPase  129  

Heat shock 70 kDa protein 1, 60K protein  129  

Heterogeneous nuclear ribonucleoprotein K  129  

Keratin, type I cytoskeletal 7, 9, 18, 19 ?  129 5 

Adenylosuccinate lyase  129  

Peroxiredoxin 2  129  

Glutathione S-transferase P  129  

Ras-related protein Rab-7  129  

Prohibitin  129  
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Marker Name Genomic Proteomic MALDI 
Imaging 

Cathepsin B  129  

Heterogeneous nuclear ribonucleoprotein K  129  

Tumor protein D54  129  

Rho GDPdissociation inhibitor 1  129  

Annexin A2  129  

ATP synthase beta chain  129  

Heterogeneous nuclear ribonucleoprotein K  129  

Actin, cytoplasmic 1  129  

Heterogeneous nuclear ribonucleoprotein A/B  129  

Immunoprotease activator fragment 11 S   7 

Mucin-9   5 

Tetranectic   5 

Urokinase plasminogen activator   5 

Orosomucoid   5 

S100-A2   5 

S100-A11   5 

Apolipoprotein A1   5 

Transgelin   5 

Prolargin   5 

Lumican Precursor   5 

Siderophilin   5 

Alpha 1 antiprotease   5 

Phosphatidyl Ethanolamine Binding Protein   5 

Hemopexin   5 

Profilin -1   5 

Table 2. Biomarkers identified by genomic, classical proteomic or SELDI approaches. 

 
Protein Patient 1 Patient 2 Patient 3 Virus 

VE2-HPV36 X  X HPV 

VE2-HPV39  X  HPV 

VE6-HPV56   X HPV 

UL16-EBV X X X EBV 

UL11-EBV X X X EBV 

Table 3. Viral protein detected in patients tumor by NanoLC-IT MS/MS. 
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Our group has taken a different approach, attempting direct tissue analysis and peptide 
profiling followed by MALDI profiling and imaging1,3-11,34-38. Ovarian carcinomas (stages III 
and IV) and benign ovaries were directly analyzed by MALDI-TOF-MS after three different 
treatments for proteins, high hydrophobic proteins and peptides extraction. Hierarchical 
clustering based on principal component analysis (PCA) as well as PCA-Symbolic Discrimant 
Analysis (SDA)34 was carried out using ClinProTools software to classify tissues. Principal 
component analysis was used in the unsupervised mode to differentiate tumors and healthy 
spectra based on their proteomic composition as determined by MALDI-MSI. These 
characterized proteins can be grouped into functional categories such as cell proliferation, 
immune response modulation, signaling to the cytoskeleton, and tumor progression1,5,7,37. 

4. Proteins involved in immune response modulation 

Recent studies have shown that ovarian cancer-associated ascites may provide an 
immunosuppressive environment39 (Figure 2). A high CD4/CD8 ratio, which may indicate 
the presence of regulatory T-cells, is associated with poor outcomes. Recently, Clarke et al.40 
have validated in a cohort of 500 ovarian cancer patients that the presence of intraepithelial 
CD8+T-cells correlates with improved clinical outcomes for all stages of ovarian cancer. 
Curiel et al. demonstrated in 104 ovarian cancer patients that CD4+CD25+FoxP3+ Tregs 
suppress tumor-specific T-cell immunity and contribute to growth of the tumor in vivo41. 
These data point to a mechanism of immune suppression in ovarian cancer either by over-
expression of Tregs or by the tumor itself by escaping the immune response by molecular 
mimicry or by escaping immunosurveillance42,43. Additional eveidence has reinforced the 
involvement of Tregs in ovarian cancer. CCL22, a protein secreted by dendritic cells and 
macrophages, highly expressed in tumor ascites is known to have a role in Treg cell 
migration in tumors41. Over-expression of the immunoregulatory enzyme indoleamine 2,3-
dioxygenase (IDO) has also been demonstrated in ovarian cancer44-47. IDO suppresses the 
proliferation of effector T cells or natural killer cells and their killer functions45,48. In ovarian 
cancer, high IDO expression in tumor cells was correlated with a reduced number of tumor-
infiltrating lymphocytes44. Reduced IL-2 and elevated TGF-β and IL-10 levels favor induced 
Tregs49. On the other hand, tumor cells escape the immune response by inducing peripheral 
mature DCs toinduce IL-10 CCR7+CD45RO+CD8+Tregs. Primary suppressive 
CCR7+CD45RO+CD8+ T cells are found in the tumor environment of patients with ovarian 
cancer50. Another way that tumor cells escape immunosurveillance is through the 
expression of Human Leukocyte antigen (HLA-G)51,52,53{Sheu, 2007 #5782. Recent studies have 
shown that the expression of HLA-G was detected in 22/33 (66.7%) primary tumor tissues, 
but was absent in normal ovarian tissues (P<0.01). Cytotoxicity studies showed that HLA-G 
expression dramatically inhibits cell lyses by NK-92 cells (P<0.01), which could be restored 
by the anti-HLA-G conformational mAb 87G (P<0.01). HLGA-G5 type has been detected in 
tumor and soluble form of HLA-G in ascites54,55 and in the blood of patients56. HLA-G seems 
to be implicated in the immune response modulation through NKT cell inhibition57. In the 
tumor cells expressing a B7 costimulatory family molecule, B7H4 is known to inhibit 
antigen-dependent induction of T cell proliferation and activation. B7-H4 promotes the 
malignant transformation of epithelial cells by protecting them from apoptosis and seems to 
be expressed at an early stage of the tumor58-60. In the same way, tumor cells highly express 
the mesothelin-Mucin 16 (MUC16) which inhibits the formation of immune synapses 
between NK cells and ovarian tumor targets61. 
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Fig. 2. Immune suppressive pathways in ovarian cancer. 
Tregs are attracted to the tumor environment by CCL22 secreted by the tumor. Tregs 
inhibits CD4+, CD8+ via direct contact or by secretion of IL10 and TGF-β. NKT cells are 
inhibited by sHLA-G, MUC16, RCAS1 and MIF produced by the tumor and by IDO 
produced by Tregs. MIF acts through NKGD2 activation on NKT cells. The tumor 
environment expresses molecules that can convert functional APCs into dysfunctional ones. 
These dysfunctional APCs in turn stimulate Treg differentiation and expansion. The tumor 
produce IL6, IL8, pDcs are present in tumor environment and stimulate tumor growth by 
releasing TNF-α and IL8. IL6, IL10 are produced by Tregs and stimulate B7H4 expression in 
macrophages leading T-cell cycle arrest. IL10, TGF-b suppress APC function by inhibiting 
the expression of CD80, CD86. 

Transcriptomic and proteomic studies perform at the level of the tumors confirm the active 
role of the tumor cells to escape the immune response. Transcriptomic studies have shown 
the over-expression of the macrophage migration inhibitory factor (MIF)62,63, Receptor-
binding cancer antigen expressed on SiSo cells64 known to be implicated in lymphocytes 
apoptosis. MIF contributes to the inhibition of antitumoral CD8+ T and NK cells by down-
regulation of NKG2D (NK cell receptor NK group 2D)65. 
From our MALDI-MSI studies, five factors involved in immune response modulation in 
mucinous tumors have been identified, namely a C-terminal fragment of the 11S 
immunoproteasome (Reg-alpha) (Figure 3), orosomucoid, apolipoprotein A1, hemopexin, 
and lumican which have also been detected in ascites1,5,7,36,37. 
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Fig. 3. Immunocytochemical studies with polyclonal antibody rose against the c-terminal 
part of Reg alpha. 
a. Epithelial cells of immunolabeled differentiated endometrioid carcinoma 
b. Epithelial cells of immunolabeled in carcinoma region 
c. Cytoplasmic epithelial cells immunolabeling of nondifferentiated endometrioid 

carcinoma. 
d. Epithelial cells of immunolabeled in clear cells adenocarcinoma (mesonephroma) 
e. Nuclear epithelial cells immunolabeling of benign tumor 
f. Nuclear epithelial cells immunolabeling of adenofibromatous tumor 

PSME1 (proteasome activator complex subunit 1, 11S regulator complex [syn: PA28 alpha]) 
cleaved into the Reg-alpha fragment could lead to default self-antigen presentation7. PA28 is 
a regulatory complex associated with 20S proteasome that consists of 3 subunits: alpha, beta, 
and gamma66. Binding of the 11S regulator complex to the 20S proteasome does not depend 
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on ATP hydrolysis and unlike the 19S regulatory subunit, the 11S regulator complex does 
not catalyze degradation of large proteins. Rather, it is responsible for MHC-class l antigen 
processing,67-69 which is greatly improved by interferon gamma-induced expression of the 
alpha and beta subunits70.  
Several viral proteins that interact with these proteasome subunits have been reported, and 
may interfere with host anti-viral defenses, thereby contributing to cell transformation71. 
The manner in which they bind to the core particle via its subunits' C-terminal tails, and 
induce an ┙-ring conformational change to open the 20S gate, suggests a mechanism similar 
to that of the 19S particle66. No role in ovarian cancer has been demonstrated for the 11 S 
regulator complexes. Our data demonstrate a high level of expression of PA28 in 
carcinomas, especially in epithelial cells at stage III/ IV but also at early stages Ia (Figure 4).  
 

 
Fig. 4. C-terminal fragment of Reg alpha dectection in stage Ia of ovarian cancer. 
a. Hematoxilin eosing staining of the carcinoma cell (acini) 
b. Hematoxilin eosin staining of the benign region 
c. Immunocytochemical studies with polyclonal antibody rose against the c-terminal part 

of Reg alpha 
d. MALDI mass spectra obtained from carcinoma cell and from the benign region. The 

data point out the detection of the m/z of 9744 in carcinoma region in line with the 
immunocytochemical data. 

www.intechopen.com



 
Advances in Cancer Management 

 

222 

The PA28 activator belongs to the antigen processing machinery (APM). Its alteration by 
cleavage in ovarian carcinomas may be a mechanism to evade immune recognition. Such a 
hypothesis has already been proposed for the case of APM chaperones such as TAP, LMP2, 
LMP10, and tapasin in colon carcinoma, small cell lung carcinoma, and pancreatic 
carcinoma cell lines. In fact, IFN-γ treatment of these carcinoma cell lines corrects the TAP, 
LMP, and tapasin deficiencies and enhances PA28 α, LMP7, calnexin and calreticulin 
expression, which is accompanied by increased levels of MHC class 1 antigens72. Recently, 
PSEM2 (proteasome activator complex subunit 2, PA28 Beta) has also been detected in 
ascites fluid, implicating its immune cell tolerance toward carcinoma cells and confirms the 
dysregulation of self-antigen processing in ovarian tumors73. Additionally, PA28 alpha 
seems to be a target for Epstein-Barr virus (EBV) and herpes virus (HV), as our proteomic 
and qPCR data indicates (Tables 3 and 4). Pudney and colleagues74 have also shown that as 
EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T-
cell recognition falls dramatically, concomitant with a reduction in transporter associated 
with antigen processing (TAP) function and surface human histocompatibility 
leukocyte antigen (HLA) class 1 expression. The implication of virus in the ethiology of 
ovarian cancer is also sustained by the over-expression of furin enzyme (Figure 5), which is 
known to be implicated in glycoprotein B cleavage through a motif R-X-K/R-R in both EBV 
and HV75,76. 
 

Tumor Type EBV
(DNA copies/ng tumors)

HHV6 
(DNA copies/ng tumors) 

Carcinoma

Serous adenocarcinoma 1.56 0.82 

Mucous adenocarcinoma 0.37 0.10 

Cytadenoma Carcinoma 0.28 1.16 

Adenomacarcinoma highly infiltrated 1.14 0.37 

Adenomacarcinoma clear cells 1.46 - 

Benign

Fibrous cytadenoma Benign - - 

Fibrous cytadenoma Benign - - 

Serous Cyst Benign - - 

Yellow body hemorrhagic - - 

Table 4.Viral DNA quantify by qPCR per ng of tissue. 
 

 
Fig. 5. RT-PCR amplification of prohormone convertase enzymes from serous stage III/IV 
carcinoma tissues. 
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Among the other four factors that might participate in the tolerance phenomenon by 
inhibiting immune activation, the acute phase protein, orosomucoid (ORM, also known as 
alpha1-acid glycoprotein or AGP), is normally increased in infection, inflammation, and 
cancer, and it seems to have immunosuppressive properties in ovarian carcinoma ascites 
through inhibition of IL-2 secretion by lymphocytes77. Similarly, apolipoprotein A1 has been 
detected in conjunction with transthyretin and transferrin in early-stage mucinous tumors78. 
ApoA-I is known to decrease expression of surface molecules such as CD1a, CD80, CD86, 
and HLA-DR in dendritic cells, and it stimulates the production of IL-1079.  
Interestingly, hemopexin has recently been demonstrated to reduce TNF α and IL-6 from 
macrophages during inflammation and limits TLR4 and TLR2 agonist-induced macrophage 
cytokine production80. We demonstrate that in SKOV-3 epithelial ovarian carcinoma cells, 
all TLRs are over-expressed with the exception of TLR9 and TLR10 (Figure 6). This is in line 
with the over-expression of lumican, which is a small LRR proteoglycan in the extracellular 
matrix. Along with other proteoglycans, such as decorin, biglycan, and prolargin, lumican is 
known to be over-expressed in breast cancer and to play a role in tumor progression81,82. 
However, as demonstrated for biglycan, which interacts with TLR2/4 on macrophages83,84, 
we speculate that lumican is also involved in the activation of the inflammasome through 
TLR2/4 interaction. The activation of all danger-sensing receptors in carcinoma cells can be 
explained through the regulation of inflammation by carcinoma cells to facilitate tumor 
progression. In a sense, this implies that ovarian cancer cells act as “parasites” and use 
molecular mimicry85 to escape the immune response, as they produce immunosuppressors 
to achieve tolerance (Figure 7). 
 

 
Fig. 6. RT-PCR amplification of Toll-like receptors from serous stage III/IV carcinoma tissues. 

5. Proteins associated with cell proliferation 

The S100 protein family has been previously detected in aggressive ovarian tumors30. In our 
study, we detected S100 A11 and S100 A12 proteins. S100 A11 has been detected in ovarian 
ascites73. S100 A11 (or calgizzarin) is known to regulate cell growth by inhibiting DNA 
synthesis86,87. S100 A12 is known to contribute to leukocyte migration in chronic 
inflammatory responses88. In conjunction with S100 proteins and cytoskeleton modifying 
proteins, we also detected expression of oviduct-specific glycoprotein (OGP, Mucin-9), a 
marker of normal oviductal epithelium. Our data are supportive of Woo and associates, who 
found that OGP is a tubal differentiation marker and may indicate early events in ovarian 
carcinogenesis. These data also support the hypothesis of oviduct ascini as the origin of 
serous ovarian carcinoma. 
From immune components, stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 
receptor, is a CXC chemokine that induces proliferation in ovarian cancer cells by increasing 
the phosphorylation and activation of extracellular signal-regulated kinases (ERK)1/2, 
which in turn is correlated to epidermal growth factor (EGF) receptor transactivation.  
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Fig. 7. Tumor cell factors production for escaping immune response. 
Apolipoprotein A1 has been detected in conjunction with transthyretin and transferrin in 
early-stage mucinous tumors. Lumican, which is a small LRR proteoglycan in the 
extracellular matrix is known to be overexpressed in breast cancer and to play a role in 
tumor progression. ApoA-I is known to decrease expression of surface molecules such as 
CD1a, CD80, CD86, and HLA-DR in dendritic cells, and it stimulates the production of IL-10 
hemopexin has recently been demonstrated to reduce TNF and IL-6 from macrophages 
during inflammation, and it limits TLR4 and TLR2 agonist-induced macrophage cytokine 
production. Orosomucoid have immunosuppressive properties in ovarian carcinoma ascites 
through inhibition of IL-2 secretion by lymphocytes. The tumor environment expresses 
molecules that can convert functional APCs into dysfunctional ones. These dysfunctional 
APCs in turn stimulate Treg differentiation and expansion. The tumor produces IL6, IL8, 
MUC18, MIF, RCAS1, sHLA-G exerting negative effects on the T-Cells. PA28 activator 
belongs to the antigen processing machinery (APM). Its alteration by cleavage by (furin, 
PACE4) in ovarian carcinomas participates in a mechanism to evade immune recognition. 

Similarly, TGF-β  produced by Treg cells stimulates tumor cell proliferation and increases 
matrix metalloproteinase’s (MMP) production and enhances invasiveness of ovarian cancer 
cells89-93. In ovarian cancer, IL7 acts as a growth factor, like in breast cancer, and has been 
found in ascites and plasma39,94,95. pDcs are also present in tumor environment and stimulate 
tumor growth by releasing TNF-α and IL8. The sum of these data reflect that cytokines exert 
pleiotropic effects in ovarian cancer and exert a major role in tumor proliferation. 
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6. Signaling to the cytoskeleton 

Several candidate proteins, including profilin-1, cofilin-1, vimentin, and cytokeratin 19 are 
involved in the intracellular signaling to the cytoskeleton. Changes in cell phenotype, such as 
the conversion of epithelial cells to mesenchymal cells, are integral not only to embryonic 
development but also to cancer invasion and metastasis. Cells undergoing the epithelial-
mesenchymal transition (EMT) lose their epithelial morphology, reorganize their 
cytoskeleton, and acquire a motile phenotype through the up- and down-regulation of 
several molecules, including tight and adherent junction proteins and mesenchymal markers. 
TGF-┚ has been described to induce EMT in ovarian adenosarcoma cells96. (Figure 8A) 
 

 
Figure 8. 
A: Schematic illustration of E-cadherin, SIP1, Snail, Slug and Twist during ovarian 
progression. In this model, epithelial ovarian tumors have been classified into two broad 
categories: type I tumors including low-grade serous carcinomas, mucinous, endometrioid, 
and clear cells carcinomas seem to develop from their precursors, namely borderline ovarian 
tumors (BOTs), in a stepwise manner; type II including high-grade serous malignancies 
develop from the OSE or inclusion cysts without a common precursor.OSE cells covering 
the ovarian surface do not express E-cadherin but are positive for Snail and Twist 
expression. As depicted, E-cadherin expression changes during ovarian cancer progression 
showing an inverse correlation compared to SIP1, Snail, Slug and Twist expression93. 
B: A simplified overview of signalling network regulating EGF-induced EMT. In OSE cells, 
activation of the EGF receptor tyrosine kinases (RTKs) by EGF results in activation of the 
phosphatidylinositol 3-kinase (PI3K), which activates ILK and ERK pathways. EGF treated 
OSE cells display a molecular signature characteristic of EMT and are less likely to undergo 
a conversion in inclusion cysts.JAK/STAT3 pathway is required to induce EMT in ovarian 
cancer cells. Ovarian cancer cells that undergo EMT lose the expression of E-cadherin and 
NGAL and show an increased motility. 
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In the human lung adenocarcinoma cell line A549, this differentiation is accompanied by 
modification in the expression of several cytoskeleton proteins including ┚-actin, cofilin 1, 
moesin, filamin A and B, heat-shock protein beta-1, transgelin-2, S100 A11, and calpactin. 
These changes presumably increase migratory and invasive abilities97. We recently 
demonstrated that treatment of the ovarian cancer cell line SKOV-3 with TGF-┚ (10 ng/mL, 
24 h) increases the expression of cofilin and profilin-1 at mRNA and protein level, and 
modifies its cytoskeletal organization as assessed by confocal microscopy analysis98. After 
binding to its receptor, TGF-┚ stimulates the reorganization of the actin cytoskeleton and 
triggers the formation of stress fibers and cellular protrusions98 (Figure 8B). 

7. Conclusion 

A decade after its inception, MALDI-MSI has become a unique technique in the proteomic 
arsenal for biomarker hunting in a variety of diseases. In this report, we consider the 
contributions of MALDI-MSI and profiling technologies to clinical studies compared to the 
ones obtained by genomic and classical proteomic. A stringent analysis of the list of 
potential biomarkers detected by three technologies reflects little convergence between 
genomic and proteomic (classical and MALDI MSI) investigations by biomarker 
comparison. However, when integrating theses biomarkers in biological process, a real 
convergence can be shown. What emerges is picture showing how tumors modulate and 
escape the immune response. In this context, several biomarkers can be detected. Similarly, 
immune tolerance forced by the tumor production and interaction with the immune cells 
also revealed, in ascites and in plasma, some specific immune related biomarkers. In the 
same way, genes and proteins associated with cell proliferation, cell migration, invasiveness 
and EMT can be detected. The sum of these data confirm that diagnostics and treatment 
efficacy can be followed by the modulation of these markers. One of the most exciting 
finding is based on data obtained with the C-terminal fragment of Reg-alpha, suggested that 
self modulation mechanism developed by the tumor cells starts very early in the pathogenic 
process. Antibodies directed against this specific marker can be used to track early stage 
tumor cells. MALDI-MSI can be used to detect these antibodies in tumors and validate the 
therapeutic strategy.  
A decade after its inception, MALDI-MSI has become a unique technique in the proteomic 
arsenal for biomarker hunting. At this stage of development, it is important to ask whether 
we can consider this technique to be sufficiently developed for routine use in a clinical 
setting or an indispensable technology used in translational research. In this report, we have 
considered the contributions of MALDI-MSI and profiling technologies for clinical studies, 
outlining new directions that are required to align these technologies with the objectives of 
clinical proteomics. 
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