
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322405258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ana Leonor Rivera
Centro de Fisica Aplicada y Tecnologia Avanzada,

Universidad Nacional Autonoma de Mexico
Mexico

1. Introduction

Since their discovery, optical fibers have received increasing attention due to its important
technological applications (Bottacchi, 2002; Culshaw, 1997; Harmon, 2001; Herrmann, 1973;
Keyl, 2002; Lauterborn et al., 1997; Prasad & Williams, 1991; Shimizu et al., 1997; Way, 1998;
Young, 2000). A fiber is an optical waveguide in which the propagation of an optical wave is
confined to two dimensions (the cross section dimensions). The dimension of the confinement
must be comparable to the wavelength of the light which one would like to confine (Kogelnik,
1979).
A fiber is formed by a region with a refractive index larger than that of the surrounding
media; this condition assures the total internal reflections at the interfaces required for
the beam propagation. If an integer number of wavelengths have traveled between two
consecutive reflections, a standing wave pattern will be developed, producing a constructive
interference which allows high electromagnetic power to be transmitted along the fiber. A
change in the fiber geometry, modifies the reflection angle and consequently the total number
of reflections: rays traveling thicker fibers require more reflections to travel along the same
length in the propagation direction. This implies that the effective velocity of light in thicker
fibers must be slower; this effect also produces a change in the phase of the output signal
(Arnaud, 1976). These phenomena are cumbersome to explain by standard optical methods
(Kogelnik, 1979; Torchigin & Torchigin, 2003) and are easily predicted by the use of the
Wigner Distribution Function (Reyes et al., 1999). One of the main advantages of the phase
space approach to solve optical problems is the simplicity of the mathematical calculations
compared with the traditional treatment (Bottacchi, 2002). This is due to the fact that in phase
space representation, the relevant properties of the system can be obtained by simple matrices
products.
Quantum mechanically, the development of nonlinear optics allowed the generation and
manipulation of new quantum states of light, going from the simplest and common one, the
so-called coherent states (Glauber, 1963), to squeezed states (Walls, 1983; Yuen, 1976), Fock
states (Lvovsky et al., 2001) or entangled states (Ou et al., 1992). A full quantum theoretical
analysis of the three-photon states is contained in the Wigner function (Leonhardt, 2001) that
has proven to be very helpful to visualize in the phase space (the amplitude q and phase p

quadratures) quantum mechanical system defined by its density matrix. This has already
been the case for some quantum states of light such as the coherent state, the squeezed
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vacuum or the bright squeezed state (Breitenbach et al., 1995; 1997; Smithey et al., 1993),
whose Wigner function has been experimentally reconstructed using homodyne quantum
tomography, a technique that allows the measurement of the marginal probability distribution
that expresses the quadrature amplitude distribution. The use of optical fiber for quantum
squeezing has considerable technological advantages, such as generating squeezing directly
at the communications wavelength and the use of existing transmission technology (Corney
et al., 2008).
More generally, the Wigner function contains the full information about the quantum states
(Wigner, 1932) and their moments allow to differentiate between paraxial regime, wave-like
regime and chaotic behavior (Rivera et al., 1997). More particularly, it allows us to establish
the quantum correlations between the different generated modes in the case of twin photons
or photon triplets (Benchekh et al., 2007). The Wigner function is a positive definite function
in the phase space only for classical states with Gaussian marginal probability distributions
(Rivera & Castano, 2010). However, it can be negative in some circumstances for particular
quantum states of light. These negativities are the signature of highly nonclassical behaviour
of a quantum state (Rivera & Castano, 2010) as it has been observed for a quantum state of
light prepared in a single-photon Fock state (Lvovsky et al., 2001). These quantum negativities
are also present in the case of complete degenerate three-photon states obtained by third order
optical parametric fluorescence or amplification, and also for aberrated optical systems.
Historically, the so-called Wigner Distribution Function (Wigner, 1932) has been of central
importance as an alternative description of Quantum Mechanics (Kim & Noz, 1991). However,
these phase-space mathematical tool has found exciting applications in a wide range of the
physical sciences and even engineering ranging from statistical mechanics (Green, 1951; Mori
et al., 1962) to optics (Perinova et al., 1998; Schleich, 2001; Wolf, 2004). Moreover, it has become
the basis of an entire discipline: time-frequency representation of wave phenomena (Allen &
Mills, 2004; Boashash, 2003; Cohen, 1995; Grochenig, 2000). There exist several reviews of the
quantum phase-space distribution functions, in particular of the Wigner distribution function.
A concise but authorative review of the quantum distribution functions is that by Wigner
(Wigner, 1971). A good mathematical treatment of the quantum distribution functions and
related operator algebra is given in the book by (Louisell, 1973). Some extensive reviews
of the quantum distribution functions are given by (Balazs & Jennings, 1984; Berry, 1977;
Filinov et al., 2008; Groot & Suttorp, 1972; Hillery et al., 1984; Lee, 1995; OConnell, 1983;
Takabayasi, 1954). Applications of the Wigner distribution function to Optics are reviewed
by (Dragoman, 1997; Dodonov, 2002; Mack & Schleich, 2003; Zalevsky & Mendlovic, 1997),
and for the particular case of fibers on the works (Bao & Chen, 2011; Benabid & Roberts, 2011;
Benchekh et al., 2007; Corney et al., 2008; Leonhardt, 2001; Rivera & Castano, 2010a).
As Wigner functions, the Lie Algebra, due to its mathematical simplicity to solve differential
equations by numerical integration, has become an important aid for the solution of different
problems in classical and quantum mechanics (Bakhturin, 2003; Frank & van Isacker, 1994;
Hamermesh, 1962; Jacobson, 1979). A Lie treatment of geometrical optics and aberrations has
been developed by (Dragt & Finn, 1976), and it is a new approach to fiber optics (Reyes et
al., 1999; Reyes & Castano, 2000) that simplifies the traditional solution of optical problems
(Born & Wolf, 1999) to the determination of the corresponding Symplectic Map associated to
the optical system, thus reducing the problem to simple matrices products. The Gaussian
Symplectic map helps to find the Wigner distribution function of the probability density of
an optical fiber, and from it, it is possible to obtain all the physical information required to
analyze the fiber (Rivera & Castano, 2010a).
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This chapter presents a brief review of the phase-space analysis applied to fiber Optics,
using the Wigner Distribution Function. The hope is that it will show the beauty, elegance
and usefulness of this mathematical construction. The rest of the chapter is organized as
follows. Section 2 gives a short review of phase space representation using the Wigner
Distribution Function which describes some of its important properties and its physical
interpretation. Section 3 presents the description of the Maxwell equations under paraxial
approach (considering parallel rays close to the optical axis of the system) that describe the
light propagation in a fiber by a parabolic type equation that is completely equivalent to the
quantum system Schrödinger equation for a bidimensional potential-well time-dependent.
Section 4 shows an example, analyzing a gaussian beam propagation through a fiber.

2. Phase space representation

The standard formulation of quantum mechanics either in the Schrödinger (Schrodinger, 1946)
or in Heisenberg pictures (Heisenberg, 1930) may create an impression that quantum and
classical dynamics are completely different (Dirac, 1935). However, there are representations
in which quantum dynamics seems to resemble classical statistical mechanics, and where the
state of a quantum system is represented by the quasiprobability distribution in phase space
of the corresponding classical system (Kim & Noz, 1991). Of course, there are at least two
important differences (Hillery et al., 1984):

1. Quasiprobability distributions may take negative values (unlike the true probability
distributions).

2. The classical distribution can be localized at a point in phase space, whereas the quantum
distribution must always be spread in a finite phase volume, in agreement with uncertainty
relations.

Among different quasiprobability distributions Cohen (1995), the Wigner Distribution
Function, introduced by Wigner in 19321 (Wigner, 1932), is the only one for which the
quantum evolution law coincides with the classical one for the case of linear dynamics
(Moyal, 1949). The Wigner distribution function is a real valued quasiprobability distribution
containing all information available about the system. Its popularity stems from its
characteristics (Wigner, 1932):

• It has a close connection to the marginal probability distributions characterizing the
probabilities of the outcomes of von Neumann measurements of the system.

• It lends itself to a visualization of quantum states, and some of their properties.

• It is a versatile calculation tool for normally ordered operators.

With the use of this distribution function, it is straightforward to cast quantum mechanics
in a form which resembles the classical theory of statistical averages over the classical phase
space, with the Wigner distribution function playing a role analogous to a probability function

1 Wigner’s original motivation for introducing it, was to be able to calculate the quantum correction to
the second virial coefficient of a gas, which indicates how it deviates from the ideal gas law (Wigner,
1932). Classically, to ca1culate the second virial coefficient one needs a joint distribution of position and
momentum. So Wigner devised the simplest joint distribution that gave, as marginals, the quantum
mechanical distributions of position and momentum. The quantum mechanics came in the distribution,
but the distribution was used in the classical manner. It was a hybrid method. Also, Wigner was
motivated in part by the work of Kirkwood (Kirkwood, 1933) who had previously calculated this
quantity but Wigner improved it.
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(Fairlie, 1964). Consequently, the Wigner distribution function has been used extensively to
study the classical limit of quantum mechanical systems (Kim & Noz, 1991; Mayer & Band,
1947; Moyal, 1949).
There is in principle an infinite variety of quantum phase-space distribution functions
corresponding to an infinite number of possible ordering rules of two noncommuting
operators and their linear combinations (Lee, 1995). The general class of this distributions is
given by (Cahill & Glauber, 1969; Cohen, 1966; Kakazu et al., 2007). Distribution functions in
general have different properties and are associated with various dynamical equations, so they
may be described most conveniently by distribution functions having different characteristics
(Hillery et al., 1984). Other distribution functions that have been considered in the past include
those of Kirkwood (Kirkwood, 1933), Margenau-Hill (Johansen & Luis, 2004; Margenau
& Hill, 1961; Terletsky, 1937)2, Husimi (Husimi, 1940), Q-functions (Husimi, 1940; Kano,
1965; Smith, 2006), Page (Page, 1952), Glauber-Sudarshan (Glauber, 1963; Sudarshan, 1963),
Rihaczek (Rihaczek, 1968), and Choi-Williams (Choi & Williams, 1989). Another very used
function is the ambiguity function (Bastiaans, 1980; Marks & Hall, 1979; Woodward, 1963).
Phase space representation, in particular through the so-called Wigner Distribution Function,
has proven to be a very effective tool applied in many branches of physics (Cohen, 1995;
Kim & Wigner, 1987; Kim & Noz, 1991; Mecklenbrauker et al., 1997; Moyal, 1949; Stewart et
al., 2002; Wigner, 1932), and more specifically in fiber optics (Dragoman & Meunier, 1998;
Kominis & Hizanidis, 2002; Reyes et al., 1999a; Rivera & Castano, 2010a; Sheppard & Larkin,
2000; Voss et al., 1999). The Wigner distribution function was invented by Wigner (Wigner,
1932) to study the quantum corrections to the classical behavior of certain statistical systems
described by the Boltzmann formula. For the evaluation of the Wigner function are various
implementations (Bala & Prabhu, 1989; Easton et al., 84; Eilouti & Khadra, 1989; Flandrin et al.,
1984; Frank et al., 2000; Gupta & Asakura, 1986; Lohmann, 1980; Lopez et al., 2002; Maanen,
1985; Mateeva & Sharlandjiev, 1986; Rivera et al., 1997; Subotic & Saleh, 1984).
In this chapter the notation will be for the optical position coordinates q (that corresponds
to the interaction of the ray with a z = 0 reference plane), and for the canonically conjugate
momentum p (which describes the direction of the ray with respect to the normal at the point
q that evolves over the system’s optical axis, z) (Buchdahl, 1970).
Consider a particle in one dimension. Classically, the particle is described by a phase space
distribution Pcl(q, p). The average of a function of position and momentum A(q, p) can then
be expressed as

〈A〉cl =
∫

∞

−∞

dq

∫

∞

−∞

dp A(q, p) Pcl(q, p) . (1)

A quantum mechanical particle is described by a density matrix ρ̂, and the average of a
function of the position and momentum operators Â(q̂, p̂) as

〈A〉quant = Tr (Â ρ̂) . (2)

It must be admitted that, given the classical expression A(q, p), the corresponding self adjoin
operator Â is not uniquely defined. The use of a quasiprobability phase space distribution

2 Kirkwood attempted to extend the classical theory to the quantum case and devised the distribution
commonly called the Rihaczek or Margenau-Hill distribution to do that. Many years later, Margenau
and Hill derived the distribution that bears their name. The importance of the Margenau-Hill work is
not the distribution but the derivation. They were also the first to consider joint distributions involving
spin.
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PQ(q, p), however, does give such a definition by expressing the quantum mechanical average
as

〈A〉quant =
∫

∞

−∞

dq

∫

∞

−∞

dp A(q, p) PQ(q, p) , (3)

where the function A(q, p) can be derived from the operator Â(q̂, p̂) by a well defined
correspondence rule. This allows one to cast quantum mechanical results into a form in which
they resemble classical ones. This is a reformulation of Schrödinger quantum mechanics
which describes states by functions in configuration space (Kim & Noz, 1991).
In the case where PQ in (3) is chosen to be the Wigner Distribution function (Wigner, 1932),

then the correspondence between A(q, p) and Â is that proposed by Weyl (Weyl, 1927), as
was first demonstrated by Moyal (Moyal, 1949).
The requirement given by Eq. (3) let us to define a function in the 6N dimensional q, p phase
space, called the Wigner Distribution Function in terms of the density matrix, ρ as:

Wρ (q, p; t) ≡
(

1

πh̄

)3N ∫

∞

−∞

dr exp

(

2i

h̄
p · r

)

ρ(q − r, q + r; t) , (4)

Because for pure states described by a wavefunction Ψ, the density matrix is given by
(vonNeumann, 1927)

ρ(q, q
′) = Ψ

∗(q′)Ψ(q) , (5)

the expression (4) for pure states can be rewritten in coordinate representation as:

WΨ(q, p; z) ≡ 1

2πh̄

∫

∞

−∞

dr Ψ
∗
(

q − 1

2
r; z

)

e−i[p·r]/h̄
Ψ

(

q +
1

2
f r; z

)

(6)

or taking the Fourier transform (Goodman, 1968) in momentum representation as

WΨ(q, p; z) =
1

2πh̄

∫

∞

−∞

dr Ψ̃

(

p +
1

2
r; z

)

e−i[q·r]/h̄
Ψ̃
∗
(

p − 1

2
r; z

)

, (7)

where h̄ is the Planck constant divided by 2π, Ψ̃ denotes the Fourier transform of Ψ and
the asterisk represents the complex conjugate. In geometric optics, h̄ corresponds to the
wavelength λ of the beam (Wolf, 2004).
In Wigner phase-space representation everything we have said for the coordinate domain
holds for the momentum domain because the Wigner distribution is basically identical in
form in both domains (compare equations 6 and 7). The complete symmetry between q and
p in the former definitions of the Wigner function (equations 6 and 7), indicates that space
and momentum have equal weight in this description (Moyal, 1949). Due to this, the Wigner
distribution function can be thought as the expected value of the parity operator around (q, p)
in the phase space (Royer, 1997); i.e. the Wigner function is proportional to the overlap of
Ψ(q, z) with its specular image around (q, p), that is a measure of “how much centered” is
Ψ(q, z). Note that the Wigner distribution function is a 4-dimensional phase space distribution
function, where two dimensions correspond to real space and the other two to momentum
space. The Wigner distribution function is a real function that can take either positive and
negative values, however, only for a Gaussian the Wigner distribution function is positive
everywhere (Hudson, 1974; Soto & Claverie, 1983); therefore, one cannot interpret it as a
classical probability function in phase space (Lee, 1995). Tthe value of WΨ mirrors closely the
intuitive objects in the model, that in the case of quantum optics may be the coherent states
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of the radiation field (Glauber, 1965), and in monochromatic paraxial wave optics, they are
often beams with Gaussian position and inclination distributions (Hillery et al., 1984; Rivera
& Castano, 2010).
From all phase space representations, the Wigner Distribution Function can be uniquely
distinguished (among shift-invariant joint distributions) by imposing a requirement of correct
marginals with respect to arbitrary directions in the time-frequency plane, thus connecting
the Wigner distribution with the fractional Fourier transform (Atakishiyev et al., 1999). It also
contains all the information of the system and it can be proved that it contains the hologram
of the signal (Wolf & Rivera, 1997).
For numerical calculations it is very useful to note that the Wigner distribution function is the
Fourier transform of the kernel (Wigner, 1932):

WΨ(q, p; z) = Ψ

(

q +
1

2
r

)

Ψ
∗
(

q − 1

2
r

)

. (8)

Because WΨ(q, p; z) is Hermitian [WΨ(q, r) = W∗
Ψ
(q,−r)], the Wigner distribution function

is real (Moyal, 1949).
When we integrate WΨ(q, p) over p, we obtain the probability distribution in q, while if we
integrate WΨ(q, p) over q, we obtain the probability distribution in p, (Moyal, 1949). Then, to
recover either the image |Ψ(q; z)|2 (light intensity on the two-dimensional screen of coordinate
q at the optical axis position z) or the diffraction pattern |Ψ̃(p; z)|2, it is necessary to make a
simple projection of the Wigner distribution function (Wigner, 1932):

|Ψ(q; z)|2 =
∫

∞

−∞

dpWΨ(q, p; z) , (9)

|Ψ̃(p; z)|2 =
∫

∞

−∞

dqWΨ(q, p; z) . (10)

If the signal or image of interest is nonstationary, the Wigner distribution function gives the
local spectrum centered at p as a function of location (Bartelt et al., 1980). Thus, the total
energy of Ψ(q, z) can be obtained from integration of WΨ(q, p; z) over the entire phase space
(Hillery et al., 1984).
Moreover |WΨ(q, p; z)| ≤ (2πh̄)−1.
Another interesting property (Schempp, 1986) is that the Wigner distribution function has the
same extension and is band-limited as the function Ψ(q, z).
The Wigner distribution function is the expectation value of the parity operator about the
phase-space point q, p (Royer, 1997). To show this, let us first rewrite

W(q, p) =

(

1

πh̄

)3N

〈Ψ|Π̂q,p|Ψ〉 , (11)

where the operator Π̂q,p has the following three equivalent expressions:

Π̂q,p =
∫

∞

−∞

dr e2ipr/h̄ |q − r〉 〈q + r| ,

=
∫

∞

−∞

dk e−2ikq/h̄ |p + k〉 〈p − k| ,

=

(

1

πh̄

)3N ∫

∞

−∞

dk
∫

∞

−∞

dr ei[k(R̂−q)+r(P̂−p)]/h̄ . (12)
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Let us now consider the special case q = 0, p = 0, and denote Π̂q=0,p=0 = Π̂; we have

Π̂ =
∫

∞

−∞

dq | − q〉 〈q| ,

=
∫

∞

−∞

dp |p〉 〈−p| ,

=

(

1

πh̄

)3N ∫

∞

−∞

dk
∫

∞

−∞

dy ei[kR̂+yP̂]/h̄ . (13)

From (13) it is immediately apparent that Π̂ is the parity operator (about the origin): it changes
Ψ(q) into Ψ(−q) and Ψ̃(p) into Ψ̃(−p), or equivalently

Π̂R̂Π̂ = −R̂ , Π̂P̂Π̂ = −P̂ , (14)

moreover,
Π̂

−1 = Π̂ . (15)

We now observe that Π̂q,p may be obtained from Π̂ by a unitary transformation

Π̂q,p = D̂(q, p) Π̂ D̂(q, p)−1 ; (16)

here
D̂(q, p) = ei(pR̂−qP̂)/h̄ (17)

is a phase-space displacement operator, introduced by Glauber (Glauber, 1963) in connection
with a different, though related, type of phase-space representation of quantum mechanics,
the coherent-state representation. We have the actions

D̂(q, p)−1 R̂ D̂(q, p) = R̂ + q , (18)

D̂(q, p)−1 P̂ D̂(q, p) = P̂ + p , (19)

D̂(q, p)−1 F(R̂, P̂) D̂(q, p) = F(R̂ + q, P̂ + p) . (20)

From this follows directly

Π̂q,p(R̂ − q)Π̂q,p = −(R̂ − q) , (21)

Π̂q,p(P̂ − p)Π̂q,p = −(P̂ − p) , (22)

that is, Π̂q,p reflects about the phase-space point q, p and is thus the parity operator about
that point. Note that

(Π̂q,p)
2 = 1 . (23)

The Wigner function, is thus
(

1
πh̄

)3N
times the expectation value of the parity operator about

q, p. Alternatively, W(q, p) is proportional to the overlap of Ψ with its mirror image about
q, p, which is clearly a measure of how much Ψ is “centered” about q, p.
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3. Light propagation on a fiber

Propagation of light in a fiber is governed by Maxwell equations (Born & Wolf, 1999).
Consider a monocromatic light beam of frequency ω propagating through a fiber of refractive
index n, described by the wavefunction Ψ(x, y, z). It can be shown that this beam obeys the
Helmholtz equation (Born & Wolf, 1999):

∂2
Ψ

∂x2
+

∂2
Ψ

∂y2
+

∂2
Ψ

∂z2
+

ω2

c2
n2

Ψ = 0 , (24)

where n = n(x, y, z) is the refractive index of the fiber.
Under paraxial approach, the beam is almost parallel and close to the optical axis of the
system, z, then n = n(0, 0, z), and Ψ vary slowly with z allowing to neglect second order
derivatives in the z direction. This considerations let to write equation (24) as the parabolic
type equation (Leontovich & Fock, 1946)

i

k

∂Ψ

∂τ
=

1

2k2

(

∂2
Ψ

∂x2
+

∂2
Ψ

∂y2

)

+
(

n2
0 − n2

)

Ψ , (25)

where n0 is the vacuum refractive index, and

τ = −
∫ z

0

1

n0(z′)
dz′ . (26)

Equation (25) shows that the light beam propagation in the paraxial approximation is
described by a Schrödinger equation where the wavelenght λ = 1

k plays the role of the
Planck constant and instead of time appears z. The potential well is given by the refractive
index n2

0 − n2(x, y, z). This treatment translate the problem of solving the Helmholtz equation
(24) to solve the Schrödinger equation for a system with two degrees of freedom (x, y) in a
time-dependent (z) potential well.
This Schrödinger equation (25) is valid for any wave that follows the Helmholtz equation
under the paraxial approach (for a detailed description check (Arnaud, 1976; Manko, 1986;
Marcuse, 1972). The validity of this approximation can be verified using the moments of the
Wigner distribution function of the solution as shown in (Rivera et al., 1997). To solve the
problem in fiber optics it can be applied the formalism of symplectic groups through coherent
state representation of quantum mechanics (Manko & Wolf, 1985).
In general, the output Wigner function of an optical system is related to the input Wigner
through (Castano et al., 1982; Gutierrez & Castano, 1992):

WΨout
(q, p; z) = WΨin

(a q + b p, c q + d p; z) , (27)

where a, b, c and d are parameters which depend on the specific system under study.
As an example, the free space propagator is given by

WΨout
(q, p; z) = WΨin

(

q − z

k
p, p; z

)

, (28)

for a lens of focal length f , we have

WΨout
(q, p; z) = WΨin

(

q,
1

f
q + p; z

)

, (29)

and to obtain a Fourier transform we use:

WΨout
(q, p; z) = WΨin

(−p, q; z) . (30)
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4. Gaussian beam propagation in optical fibers

To model optical fibers it is common to consider gaussian beams that travel freely through
space (Rivera & Castano, 2010). Gaussians are also ubiquitous in quantum mechanics, where
they are intimately related to the harmonic oscillator (Gitterman, 2003; Moshinsky, 1996;
Sako & Diercksen, 2003), to the coherent (Gori et al., 2003; Grewal, 2002; Grosshans et al.,
2003; Lauterborn et al., 1993; Lesurf et al., 1993) and squeezed states formalism (Agarwal &
Ponomarenko, 2003; Dodonov, 2002; Kim et al., 2002; Sohma & Hirota, 2003). In Quantum
Optics, Gaussian beams are fundamental to test and to compare wave optical models and
systems (Berry, 1994; Oraevsky, 1998; Rivera et al., 1997).
Using Fermat minimal action principle, it can be proved that the system is governed by the
optical Hamiltonian (Rivera et al., 1995):

H = −
√

n2 − p2 . (31)

This Hamiltonian generates a ray path, i.e. a unidimensional group of canonical
transformations of the points of the optical phase space. In a three-dimensional optical
medium we denote the two screen coordinates (perpendicular to the optical axis) by q = (x.y)
and the optical axis coordinate as z.
When the canonical transformation has a nonlinear part, it is possible to identify this
nonlinearity as the effect of aberrations as is studied in (Rivera et al., 1997; Rivera & Castano,
2010). An alternative approach (called coherent states for Lie groups) uses the continuous
representations in quantum mechanics as a particular case of arbitrary Lie groups and can be
used in fiber optics for analyzing nonquadratic media under the action of Hamiltonians that
are the linear form of the Lie group representation with z dependent coefficients (Klauder,
1964). In geometric optics (paraxial approach), momentum is |p| = n sin θ, where n denotes
the refractive index and θ is the angle between the ray and the optical axis (Wolf, 2004).
A Gaussian function Γ associated to the one-dimensional real coordinate x is defined as
(Simon, 2002)

Γ(x) = M exp

[

− (x − x0)
2

2w0
+ ip0x

]

, (32)

where M =
(

w1

π|w0|2
)1/4

, x0, p0 are real numbers, and w0 = w1 + iw2, w1 > 0 is a complex

number. The dimension of w0 is [x2], the one of x0 is [x], and that of p0 is [x−1]. The
pre-exponential factor M guarantees the normalization condition

〈Γ | Γ〉 =
∫

∞

−∞

dx Γ
∗(x) Γ(x) = 1 . (33)

This Gaussian is centered at x0 and has a complex width
√

2w0. The value at its maximum is
M. If p0 	= 0 or w2 	= 0, this Gaussian shows oscillations.
The Fourier transform of the Gaussian Γ (Equation 32) provides the momentum representation
of the beam (Goodman, 1968):

Γ̃(p) =
1√
2π

∫

∞

−∞

dx e−ipx
Γ(x) =

(w1

π

)
1
4

exp

[

−w0(p − p0)
2

2
− ix0(p − p0)

]

. (34)

Interestingly, it is another Gaussian, centered in p0, with width
√

2/w0 and it oscillates for
x0 	= 0.
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In phase space, the Gaussian Γ, is represented by its Wigner distribution function (Rivera &
Castano, 2010):

WΓ(x, p) = 2 exp

{

− (x − x0)
2

w1
− |w0|2

w1
(p − p0)

2 +
2w2

w1
(x − x0)(p − p0)

}

, (35)

that is a two-dimensional Gaussian; coordinate centered at x0 with width
√

w1, momentum
center p0 with width |w0|/

√
w1, and tilted by arctan(2w2/w1).

A Vacuum Coherent State (Dodonov, 2002) is a Gaussian function with x0 = p0 = 0 and w0 = 1.
It has the important property of being the only state described by the same function in both
coordinate and momentum representation (Dodonov & Manko, 2000). A generalized coherent
state is described by a Gaussian function with w0 = 1, but x0 and p0 arbitrary. The state for
which w0 	= 1 is called a squeezed state (Dodonov, 2002).
To evaluate the Wigner distribution function of a sectioned fiber we assume that an optical
fiber is a cylinder of radius a and infinite length. We will consider a Gaussian traveling
through a fiber with constant refractive index n until a break generated by a section with
different refractive index m encapsulated by two parabolic surfaces. The Symplectic Map
for this system is given by the product of the initial propagator (before the break), first
refraction, propagation between refraction surface, second refraction (after the break), and
last propagation. It can be shown that the Symplectic Map of this system is (Reyes & Castano,
2000)

Mtotal = . . . e:F4 : e:F2 : , (36)

where

e:F2 : = e−
a

2n sin(2kπz):�p2 :eα(n−m):�q2 :e−
γ

2m :�p2 :

×e−
γ
2 :�p2 :e−α(n−m):�q2 :e−

a
2n sin(2kπz′):�p2 : ,

e:F4 : = eA:(�p2)2 :+B:�p2(�p·�q):+C :(�p·�q)2 :+D:�p2�q2 :

×eE :�q2(�p·�q):+F :(�q2)2 : .

Here, z and z′ give the propagation before and after the break, respectively.
In Eq. (36), the exponential e:F2 : is the Gaussian term, while e:F4 : corresponds to the aberration
term. This method simplifies the optical problem of obtaining the image of an optical system
to the determination of the corresponding Symplectic Map associated to the system, thus
reducing the problem to simple matrices products.
In order to calculate the Wigner distribution function we need to use the following
correspondence

: �p : −→ �p

: �q : −→ �q

to make the Symplectic map, and consider the convolution between a point source and Mtotal .
The point source is defined by the Dirac Delta

F(�p′, �q′) = δ(�q′ −�q, �p′ −�p) . (37)

The convolution between F and Mtotal (up to fourth order) is

F ∗ Mtotal = F(�p′, �q′) ∗ eF2 eF4 . . .

≃ [F(�p′, �q′) ∗ eF2 ](1 + F4)F(�p′, �q′) ∗ eF2

+[F(�p′, �q′) ∗ eF2 ]F4 . (38)
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The aberration of the system respect to the Gaussian ray (second term of the last equation) is

F ∗ eF2 = F(�p′, �q′) ∗ eF2 = C1
π√
α5

e
−(

α1
�
p′2−α2

�
p′ ·�p+α3�p

2

α4
)

,

where

α1 =
a

2n
sin(2kπz′)(β +

γ

2
) ,

α2 = β
a

2n
sin(2kπz′) ,

α3 = β(
γ

2
+

a

2n
sin(2kπz′)) ,

α4 = β +
γ

2
+

a

2n
sin(2kπz′) ,

α5 = (
γ

2n
+

a

2n
sin(2kπz))(β +

γ

2n
+

a

2n
sin(2kπz′)) .

Without perturbation (γ → 0), the aberration yield

F ∗ eF2 = C1
π

√

a
2n sin(2kπz)

,

that corresponds to the convolution between e−
a

2n sin(2kπz)�p2
and a point source.

Now we can calculate the Wigner distribution function in the image plane substituting in
Equation (6) the Symplectic Map of this system, Eqs. (36) and (38):

W(�q′, �p′) =
∫

∞

−∞

d�r e−i�p′ ·�r

×
{

F ∗ eF2 (�q′ +
�r

2
) + [F ∗ eF2 ]F4(�q′ +

�r

2
)

}

×
{

F ∗ eF2 (�q′ − �r

2
) + [F ∗ eF2 ]F4(�q′ − �r

2
)

}

,

that can be rewritten up to fourth order as

W(�q′, �p′) =

C2
1

2π3

α5
eiπe−(2/α4)(α1�p

′′2−[2α1+α2]�p′′ ·�p+[α1+α2+α3]�p2)

×
{

1 + 2F4δ(�p′) + π2F
(

d2

dp
′2
1

+
d2

dp
′2
2

)2

+ 8π2eiπ

×
[

C
(

p′1
d

dp′1
+ p′2

d

dp′2

)2

+ 2F
(

q′1
d

dp′1
+ q′2

d

dp′2

)2

+E
(

p
′
1q′1

d2

dp
′2
1

+ p
′
2q′2

d2

dp
′2
2

+ (p
′
2q′1 + p

′
1q′2)

d

dp
′
1

d

dp
′
2

)

+
1

2
[D(�p′) + E(�p′) ·�q′]

(

d2

dp
′2
1

+
d2

dp
′2
2

)

]}

δ(�p′) ,

(39)
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with �p
′ = �p

′′ −�p. From this equation is clear that after the break, the Wigner distribution
function is a Gaussian with center in (2α1 + α2�p)/(2α1). The Wigner function found have a

general phase of 2π, except in the term (4π2/3)F{ d2

dp′21
+ d2

dp′22
}2δ(�p′) where the phase is π.

Thus the initial Gaussian is modified by a corrective term, the F4 polynomial (the exponent of
the Aberration Lie Operator).
The limiting case without break, γ → 0, has a Wigner distribution function given by

W(�q′, �p′) =
C2

1eiπ

a
2n sin(2kπz)

δ(�p′) (1 + 2F4 + . . .) (40)

5. Conclusions

As shown in this chapter, phase space approach (through the Wigner distribution function)
simplifies the calculation and helps in the description of optical fibers. This is due to the
fact that in phase space representation, the relevant properties of the system can be obtained
by simple matrices products. Quasiprobability distribution functions are useful not only as
calculation tools but can also provide insights into the connections between geometric opticsl
and wave optics due to the fact that they allow one to express wave optics averages in a form
which is very similar to that for classical averages. In this sense it serves to validate paraxial
approximation.
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