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Maximizing Efficiency of Electromagnetic 
Resonance Wireless Power Transmission 

Systems with Adaptive Circuits 

Huy Hoang and Franklin Bien 
Ulsan National Institute of Science and Technology 

South Korea 

1. Introduction  

Wireless power transmission (WPT) is a cutting-edge technology that signifies a new era for 
electricity without a bunch of wires. Wireless power or wi-power is increasingly becoming 
the main interest of many R&D firms to eliminate the “last cable” after the wide public 
exposure of Wi-Fi lately. Even though the first idea was devised from Nikola Tesla in the 
early 20th century (Tesla, 1919), there was never strong demand for it due to the lack of 
portable electronic devices. In recent years, with the advent of a booming development in 
cell-phones and mobile devices, the interest of wireless energy has been re-emerged. WPT 
offers the possibility to supplying power for electronic devices without having to plug them 
into AC socket. Until now, there have been many efforts to be made to improve this 
technology as well as its applications. These efforts include medium-range transmission 
based on electromagnetic resonance and long-range transmission using microwaves (Greene 
et al., 2007; Brown & Eves, 1992). Although the investigation of long-range power delivery 
via far-field techniques was carried out with endeavors, the efficiency or power delivery is 
still quite low that is not sufficient to fully charge typical electronic gadgets overnight. 
Therefore, increasing the transmitting power is necessary to provide energy enough to 
consistent DC supply of gadgets. However, the system would be harmful to human 
according to IEEE standard for radio frequency electromagnetic fields (IEEE, 1999). The 
other way is to utilize many transmitters simultaneously, but the implementation seems to 
be impractical. Additionally, the existence of an uninterruptible line of sight (LoS) is 
mandatory for microwave-based power transmissions and in a case of mobile objects 
requiring a complicated tracking system. In general, such power transmissions are relatively 
suited to very low power applications unless they are used in military or space explorations 
which are less regulated environments. On the other hand, medium-range WPT covering up 
to 30 feet is a growing research area that finds wide applications. In order to implement a 
viable WPT system, Q factors of coils and an impedance matching issue are critical and 
sensitive to achieve a high efficiency. In reality, due to a resonant coupling nature of the 
system, for the most efficient power transmission, there is an optimum range between a 
power coil and a transmitting coil for a fixed distance between the transmitting and 
receiving coils. This effect may not be clarified by a conventional magnetic induction theory. 
In this chapter, a simple equivalent circuit model for a WPT system via electromagnetic 
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resonance will be derived and analytically solved. From the solution, above effect could be 
easily clarified and key concepts including frequency splitting and impedance matching will 
be mentioned as well. In addition, adaptive circuits, called antenna-locked loops (ALL), are 
studied to maintain the optimal resonant condition, realize the maximum wireless power 
transfer efficiency and execute precision resonant frequency optimization by setting the 
resonant condition with the low Q factor to detect any possible incoming power, then 
increasing the Q factor while maintaining the resonant condition. 
This chapter is organized as follows. In Section 2, Subsection 2.1 introduces a system model 
and circuit analysis of a four-coil system. Subsection 2.2 describes a comparison of different 
types of coupling mechanism, while a case of multiple receivers in WPT system is 
mentioned in Subsection 2.3. Subsection 2.4 shows experimental results. The ideas for ALL 
systems are presented in Section 3. Finally, Section 4 provides conclusion. 

2. System model and circuit analysis 

The electromagnetic resonance (also called magnetic resonant coupling) WPT based 
techniques are typically relied on four coils as opposed to two coils used in the conventional 
inductive links. A typical model of four-coil power transfer system is shown in Fig. 1, which 
consists of a power coil, a transmitting coil (Tx coil), a receiving coil (Rx coil) and a load coil. 
The transmitting coil and the receiving coil are also called resonators, which are supposed to 
resonate at the same frequency. For common cases, sizes of the four coils are different. 
Indeed, in some applications, the coils in the receiver side are needed to be scaled as small 
enough to be integrated in portable devices such as laptops, handheld devices or 
implantable medical equipment. In various cases of practical interest, the receiving and load 
coils can be fitted within the dimensions of those personal assistant tools, enabling mobility 
and flexibility properties. Otherwise, it is quite free to determine sizes of the transmitter. 
Normally, the transmitting coil may be made larger for a higher efficiency of the system. For 
the system in Fig. 1, a drawback of a low coupling coefficient between the Tx and Rx coils, 
as they locate a distance away from each other, is possibly overcome by using high-Q coils. 
This may help improve the system performance. In other words, the system is able to 
maintain the high efficiency even when the receiver moves far away from the transmitter. In 
the transmitting part, a signal generator is used to generate a sinusoidal signal oscillating at 
the frequency of interest. A power of the output signal from the generator is too small,  
 

 

Fig. 1. Model of wireless power transfer system. 
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approximately tens to hundreds of milliwatts, to power devices of tens of watts. Hence, this 
signal is delivered to the Tx coil through a power amplifier for signal power amplification. 
In the receiver side, the receiving resonator and then load coil will transfer the induced 
energy to a connected load such as a certain electronic device. While the efficiency of the 
two-coil counterpart is unproportionally dependent on an operating distance, the four-coil 
system is less sensitive to changes in the distance between the Tx and Rx coils. This kind of 
system can be optimized to provide a maximum efficiency at the given operating distance. 
These characteristics will be analyzed in the succeeding sections. 

2.1 Circuit analysis of four-coil system 

Fig. 2 shows the circuit representation of the four-coil system as modeled above. The 
schematic is composed of four resonant circuits corresponding to the four coils. These coils 
are connected together via a magnetic field, characterized by coupling coefficients k12, k23, 
and k34. Because the strengths of cross couplings between the power & Rx coils and the load 
& Tx coils are very weak, they can be neglected in the following analysis. Theoretically, the 
coupling coefficient (also called coupling factor) has a range from 0 to 1. If all magnetic flux 
generated from a transmitting coil is able to reach a receiving coil, the coupling coefficient 
would be “1“. On the contrary, the coefficient would be represented as “0“ when there is no 
interaction between them. Actually, there are some factors identifying the coupling 
coefficient. It is effectively determined by the distance between the coils and their relative 
sizes. It is additionally determined by shapes of the coils and orientation (angle) between 
them. The coupling coefficient can be calculated by using a given formula 

 
xy

xy
x y

M
k

L L
=  (1) 

where Mxy is mutual inductance between coil “x“ and coil “y“ and note that 0 ≤ kxy ≤ 1. 
Referring to the circuit schematic, an AC power source with output impedance of Rs 
provides energy for the system via the power coil. Normally, the AC power supply can be 
either a power amplifier or a vector network analyzer (VNA) which is useful to measure a 
transmission and reflection ratio of the system. Hence, a typical value of RS, known as the 

output impedance of the power amplifier or the VNA, is 50Ω . The power coil can be 
modeled as an inductor L1 with a parasitic resistor R1. A capacitor C1 is added to make the 
power coil resonate at the desirable frequency. The Tx coil is a helical coil with many turns 
represented as an inductor L2 with parasitic resistance R2. Geometry of the Tx coil  
 

 

Fig. 2. Equivalent circuit of four-coil system. 
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determines its parasitic capacitance such as stray capacitance, which is represented as C2. 
Since this kind of capacitance is difficult to be accurately predicted, for fixed size of the coil, 
a physical length, which impacts the self-inductance and the parasitic capacitance, has been 
manually adjusted in order to fit the resonant frequency as desired. In the receiver side, the 
Rx coil is modeled respectively by L3, R3 and C3. The load coil and the connected load are 
also performed by L4, R4 and RL. A capacitor C4 also has the same role as C1, so that the 
resonant frequency of the load coil is defined. When the frequency of sinusoidal voltage 
source VS is equal to the self-resonant frequency of the resonators, their impedances are at 
least. In the other words, currents of the coils would be at the most and energy can be 
delivered mostly to the receiving coil. Otherwise, energy of the transmitting power source 
would be dissipated in the power coil circuit itself, resulting in the very low efficiency. In 
general, setting the frequency of AC supply source as same as the natural resonant 
frequency of the transceiver coils is one of key points to achieve a higher performance of the 
system. 
As can be seen from Fig. 2, the Tx coil is magnetically coupled to the power coil by the 
coupling coefficient k12. In fact, the power coil is one of the forms of impedance matching 
mechanism. The same situation experiences in the receiving part where the Rx coil and load 
coil are magnetically linked by k34. The strength of interaction between the transmitting and 
receiving coils is characterized by the coupling coefficient k23, which is decided by the 
distance between these coils, a relative orientation and alignment of them. In general, it is 
able to use other mechanisms for the impedance matching purpose in either or both sides of 
the system. For example, a transformer or an impedance matching network, which consists 
of a set of inductors and capacitors configured to connect the power source and the load to 
the resonators, is routinely employed. Similar to aspects mentioned above, in reality, the 
power and Tx coils would be implemented monolithically for the sake of convenience; 
hence the coupling coefficient k12 would be stable. For the same objective, k34 would also be 
fixed. Therefore, there only remains coefficient k23 which is so-called an environment 
variable parameter. The parameter varying with usage conditions, may include the range 
between the resonator coils, a relative orientation and alignment between them and a 
variable load on the receiving resonator. 
The circuit model offers a convenient way to systematically analyze the characteristic of the 
system. By applying circuit theory Kirchhoff‘s Voltage Law (KVL) to this system, with the 
currents in each resonant circuit chosen as illustrated in Fig. 2, a relationship between 
currents through each coil and the voltage applied to the power coil can be captured as a 
following matrix 

 

1 12 1

12 2 23 2

23 3 34 3

34 4 4

0 0

0 0

0 0

0 0 0

SV Z j M i

j M Z j M i

j M Z j M i

j M Z i

ω
ω ω

ω ω
ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2) 

where Z1, Z2, Z3, and Z4 respectively are loop impedances of the four coils. These 
impedances can be indicated as below 

 1 1 1
1

1
SZ R R j L

C
ω

ω
⎛ ⎞

= + + −⎜ ⎟
⎝ ⎠

 (3) 
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2 2 2

2

1
Z R j L

C
ω

ω
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 (4) 

 
3 3 3

3

1
Z R j L

C
ω

ω
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 (5) 

 
4 4 4

4

1
LZ R R j L

C
ω

ω
⎛ ⎞

= + + −⎜ ⎟
⎝ ⎠

 (6) 

From the matrix (2), by using the substitution method, the current in the load coil resonant 
circuit is derived as given 

 
3

12 23 34
4 2 2 2 2 2 2 4 2 2

1 2 3 4 12 3 4 23 1 4 34 1 2 12 34

Sj M M M V
i

Z Z Z Z M Z Z M Z Z M Z Z M M

ω
ω ω ω ω

= −
+ + + +

 (7) 

It is clearly seen that the voltage across the load is equal to 4L LV i R= −  and the relationship 

between the voltages of source and load is given as VL/VS. 
The system model can be considered as a two port network. To analyze a figure of merit of 
this kind of system, S – parameter is a suitable candidate. Actually, S21 is a vector referring 
to a ratio of signal exiting at an output port to a signal incident at an input port. This 
parameter is really important because a power gain, the critical factor determining of power 
transfer efficiency, is given by |S21|2, the squared magnitude of S21. The parameter of S21 is 
calculated by (Sample et al., 2011, as cited in Fletcher & Rossing, 1998; Mongia, 2007) 

 
1/2

21 2 SL

S L

RV
S

V R

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (8) 

Thus, combining with xy xy x yM k L L=  derived from (1), the S21 parameter is given as 

3
12 23 34 2 3 1 4

21 2 2 2 2 2 2 2 2 4
1 2 3 4 12 1 2 3 4 23 2 3 1 4 34 3 4 1 2 12 34 1 2 3 4

2 S Lj k k k L L L L R R
S

Z Z Z Z k L L Z Z k L L Z Z k L L Z Z k k L L L L

ω
ω ω ω ω

=
+ + + +

 (9) 

It is helpful to analyze the performance of the system according to equation (9). With all the 
circuit parameters provided in Table 1, the parameter regarded as the factor determining the 
efficiency of the system, magnitude of S21, can be performed by a function of only two 
variables k23 and frequency. As referred, the coupling coefficient k23 is the parameter which 
varies according to changes in circumstances. A changeable distance, for instance, is a cause 
of k23 variation. In addition, changes in the orientation or misalignment between the 
transmitting and receiving resonators make the above coefficient inconsistent as well. 
Actually, when the distance increases, k23 will go down because the mutual inductance 
between those coils declines with distance. In case of a variable orientation or misalignment, 
the k23 also changes. The relation among |S21|, k23 and frequency is demonstrated in Fig. 3. 
Note that in practice, a vector of S21 parameter including magnitude and phase information 
can be measured by using VNA. From Fig. 3, it is clearly seen that when k23 is small in cases 
of the large distance between the transmitter and the receiver or the misalignment, 
orientation deviation taking place, the efficiency represented as S21 magnitude is able to  
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Transmitter Side Receiver Side

Parameter Value Parameter Value 

RS 50 Ω L3 0.4 µH 

L1 0.5 µH R3 0.02 Ω 

R1 0.015 Ω C3 357.5 pF 

C1 286 pF k34 0.1 

k12 0.05 L4 0.1 µH 

L2 1.3 µH R4 0.012 Ω 

R2 0.03 Ω C4 1.43 nF 

C2 110 pF RL 50 Ω 

k23 0.0001 to 0.3 frequency 11-16 MHz 

Table 1. An example of circuit values. 

 

 

Fig. 3. |S21| as a function of k23 and frequency (3D – View). 

reach a peak at the self resonant frequency of approximately 13.3 MHz. However, the 
resonant frequency separates as k23 is over a certain level. The phenomenon is so-called 
frequency splitting which has a negative impact on the system efficiency. For instance, as 
long as the transmitting and receiving coils are such closed as the coupling coefficient k23 
between them is 0.1, the resonant frequency splits into two peaks at 12.69 and 14.03 MHz as 
observed from Fig. 3. Consequently, the system performance is considerably degraded. In 
order to overcome the drawback, an automatically frequency tuning circuit is proposed, as 
presented in Section 3. The circuit is used to track the resonant frequency of interest so as to 
preserve the efficiency of the system in cases of transceivers’ mobility. It is possible to 
simulate the system by using Advanced Design System (ADS) of Agilent Technologies. With 
the circuit setup illustrated in Fig. 4, the result of the magnitude of S21 can be obtained as 
shown in Fig. 5. 
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Fig. 4. Simulation setup using Advanced Design System (ADS). 
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Fig. 5. Simulation result showing |S21| as a function of k23 and frequency (2D – View). 

It is instructive to analyze carefully a trend of |S21| as k23 variation. Fig. 5 clarifies that when 
the coefficient k23 is absolutely small corresponding to a case that the transmitter and the 
receiver are too far away each other, |S21| is low. When the distance between the resonators 
is getting closer, k23 increases bringing about a higher magnitude of S21. However, as |S21| 
increases to a certain level, the higher k23 does not lead to the higher amount of |S21|. 
Moreover, there is the frequency splitting issue which substantially reduces the system 
efficiency. The point, at which the deviation of the original resonant frequency (13.3 MHz) 
happens, plays a prominent role in the system. It clarifies the relative position of the 
resonators that the performance of the system is the highest. If the distance is longer than 
that range, the efficiency is poorly defined. On the contrary, the resonant frequency detunes 

k23 increasesk23 increases
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along two furrows, but the efficiency is still high. Thus, it would be the maximum power 
transfer if the frequency can be tuned to the desirable frequency. 
Coming back the system equation indicated in (9), let expand this equation in terms of 

quality factor which appreciates how well the resonator can oscillate. The quality factor is 

presented in a formula as given below 

 
1

, 1 ~ 4i i i
i i i i i

i i i

L L
Q L R Q i

R C R

ω ω= = ⇔ = =  (10) 

where ωi and Ri are respectively the self-resonant frequency and equivalent resistance of 

each resonant circuit. In the power coil, for instance, Ri is a sum of RS and R1. Actually, ωi of 

each coil is defined to be the same, 1 2 3 4 0ω ω ω ω ω= = = = . When the resonance takes place, 

the total impedance of each coil is presented as following 

 1 1S SZ R R R= + ≈  (11) 

 2 2Z R=  (12) 

 3 3Z R=  (13) 

 1 4L LZ R R R= + ≈  (14) 

For simplicity, in addition to the fact that system parameters can be measured by VNA, it is 

common to set RS equal to RL. At the resonant frequency, 0 1 / i iL Cω = , from (9), the 

magnitude of S21 can be written as 

 12 23 34 2 3 1 4
21 2 2 2 2 2

12 1 2 23 2 3 34 3 4 12 34 1 2 3 4

2

1

k k k Q Q Q Q
S

k Q Q k Q Q k Q Q k k Q Q Q Q
=

+ + + +
 (15) 

As referred previously, the coupling coefficient k12 and k34 would be constant. There is only 

k23 varying with medium conditions. To find the range between the resonators at which 

|S21| or the efficiency is certainly at maximum, a derivative of S21 with respect to k23 is taken 

and then setting the result to zero, yielding 

 
( )( )2 2

12 1 2 34 3 421 *
23

23 2 3

1 1
0

k Q Q k Q Qd S
k

dk Q Q

+ +
= ⇒ =  (16) 

This value of *
23k is equivalent to the maximum range that the transmitter is able to 

effectively transfer power to the receiver at the given resonant frequency (before the 

resonant frequency breaking in two peaks). Note that *
23 1k ≤ . With the purpose of finding 

out the maximum efficiency of the system in terms of |S21|, it is feasible to substitute k23, 

which is derived above, into equation (15) 

 12 34 1 4 12 34 1 4
21 * *max

23 1 1 4 4 23 1 4 0

L Lk k Q Q R k k Q Q R
S

k L L k L Lω ω ω
= =  (17) 
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It is clear that |S21|max unproportionally depends on *
23k . It means for the sake of a higher 

efficiency, the extent that the highest efficiency can be achievable is shortened. In order to 

get a greater value of |S21|max, 
*
23k  is supposed to decrease. From equation (16), increasing 

Q2 and Q3 is able to reduce the *
23k . In general, making the very high-Q transmitting and 

receiving coils is very crucial so as to achieve the high transfer performance. 

For example, from equation (17), with the value given in Table 1, the maximum value of 

magnitude of S21 parameter is calculated as follows 

6
0 1

1 1

1
83.624 10  [ / ]rad s

L C
ω ω= = ≈ ×  

0 1
1

1

0.84
S

L
Q

R R

ω
= ≈

+
 

0 2
2

2

3623.71
L

Q
R

ω
= ≈  

0 3
3

3

1672.48
L

Q
R

ω
= ≈  

0 4
4

4

0.17
L

L
Q

R R

ω
= ≈

+
 

( )( )2 2
12 1 2 34 3 4* 3

23
2 3

1 1
2.34 10

k Q Q k Q Q
k

Q Q
−

+ +
= ≈ ×  

12 34 1 4
21 *max

23 1 4 0

0.82Lk k Q Q R
S

k L L ω
= ≈  

2.2 Different coupling mechanism systems in wireless power transfer 

As mentioned in Subsection 2.1, the advantage of the four coils system over the two coils 

system is a high efficiency even in far afield condition. Why is that so? To answer this 

question, it is instructive to study three different coupling mechanism based circuits which 

are demonstrated in Fig. 6. A non-resonant inductive coupling circuit in Fig. 6(a) is totally 

based on the principle of an ordinary transformer. This kind of power transfer also uses 

primary and secondary coils as similar as transformer, but a striking feature is an exclusion 

of a high permeability coil. Since an energy transmission is relied on the induction principle, 

more power is dissipated along the coil or ambient environment and it is more difficult to 

achieve a long distance transmission. 

The above limitation can be overcome using the WPT based on resonant coupling shown in 

Fig. 6(b). By adding external capacitors, coils in primary and secondary side are able to 

resonate at the same frequency of interest. In fact, high quality factor coils are considered as 

one of the most critical features for a superior system.  
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Fig. 6. Three different coupling mechanism circuits. 
a. Non-resonant inductive coupling based circuit. 
b. Low-Q resonant coupling based circuit (two-coil system). 
c. High-Q resonant coupling based circuit (four-coil system). 

In case of Fig. 6(b), quality factors of the two resonant circuits are determined by the loading 
provided by RS and RL which are also two major contributors to loss of circuits (Cannon et 
al., 2009). Source and load resistances are leading causes of lower Q resonators, deteriorating 
the system efficiency. A solution for this matter is to separate the RS and RL from the 
resonators, that is illustrated in Fig. 6(c). Certainly, the resonators have larger quality factors 
due to the elimination of the unexpected resistances. It is apparent that the quality factors of 
the transmitting and receiving coils dominantly affect the system performance. In order to 
comprehend more deeply about the three different circuits, an example with circuit 
parameters shown in Table 2 is put forward. Fig. 7 illustrates a comparison result of the 
three different coupling methods including inductive coupling, low-Q resonant coupling 
and high-Q resonant coupling. Note that the two resonant coupling circuits resonate at 8 
MHz. 
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Transmitter Side Receiver Side 

Parameter Value Parameter Value 

RS 50 Ω L3 5 µH 

L1 2 µH R3 0.7 Ω 

R1 0.4 Ω C3 79.2 pF 

C1 198 pF k34 0.1 

k12 0.1 L4 1 µH 

L2 30 µH R4 0.25 Ω 

R2 2 Ω C4 396 pF 

C2 13.2 pF RL 50 Ω 

k23 0.001 frequency 4 – 12 MHz 

Table 2. Example of component values for three circuit models. 
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Fig. 7. Comparison result of three different types of coupling. 

As can be seen, the value of S21 in dB is used for the comparison. It is evident that for the 
inductive coupling mechanism shown in Fig. 6(a), the parameter of S21 is the lowest. In fact, 
this value gradually declines from -70 dB to about -80 dB for a frequency range between 4 and 
12 MHz. By above analysis, the Q factor of the circuit shown in Fig. 6(c) is much greater than 
that of Fig. 6(b). In fact, from Fig. 7, S21 parameter of the high-Q circuit is approximately 20 dB 
higher than that of the low-Q circuit. That completely proves the theoretical presumption. 
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2.3 Wireless energy transmission to multiple devices through resonant coupling 

All the approaches mentioned previously are merely in terms of one to one WPT. That 

means one transmitter, which includes a power coil and a transmitting coil, provides energy 

wirelessly to only one receiver consisting of receiving and load coils in a distance away. In 

reality, however, the cases of multiple small receivers are in favor and needed to be 

considered carefully. Transferring power to a couple of receivers is also based on the same 

principle as one to one case. Nevertheless, an effect of two receivers in proximity is 

considerable. Thus, several cases of multiple receivers wireless energy transmission will be 

investigated. In case of two identical receivers located sufficiently far field and there is no 

interaction between them, the system can be interpreted as a sum of two discrete systems. 

Since the two receivers are identical, their operations are coincident with each other if they 

experience a same condition such as the strength of coupling. With the circuit parameters 

shown in Table 2, only difference in the coupling coefficient between the transmitting and 

receiving coils, the performance of the two receivers is illustrated in Fig. 8. It is undoubtedly 

true that the resonant frequency splits into two peaks as an increase of k, which is the 

coupling coefficient between the two receivers and the transmitter. The stronger the 

coupling is, the more the new resonant frequencies deviate from the original resonant 

frequency. At k of 0.01, for example, the system efficiency hits the peak at 8 MHz. When the 

coupling getting stronger to 0.145 and then 0.3, the original peak respectively breaks in two 

other peaks at about 7.2 and 9.1 MHz; 6.7 and 10.6 MHz. On the other hand, as shown in Fig. 

9, in case of the strong interaction between receiving coils, even at low k, the resonant 

frequency is splitted to two peaks at 7 and 8 MHz. When k reaches 0.145, the maximum 

power transfer occurs at the frequency of 6.7 and 8.5 MHz. The separation among splitted 

frequencies is larger at the stronger coupling between the transmitter and the receivers, 6.3 

and 9.6 MHz. For a situation that the two receivers resonate at the same frequency but their  
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Fig. 8. Performance of two identical receivers in case of no interaction between them. 
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Fig. 9. Performance of two identical receivers in case of strong interaction. 

physical parameters are different, the system transfer efficiency is relatively similar. 

Theoretically, the four circuit model equations derived from the matrix equation (2) can be 

extended for multiple receivers. For one to two system, in particular, the extension of circuit 

equations is straightforward, with six equations instead of four. By using these equations, it 

is possible to predict the characteristic of the system with multiple receivers. 

2.4 Experimental results 

An experiment, which is conducted for WPT, was presented (Imura & Hori, 2011). The 

experimental setup is illustrated in Fig. 10. For S – parameter measurement, a transmitter 

and a receiver of the power transmission system are in turn connected to port 1 and port 2 of 

VNA. As same as theoretical analysis, the transmitting and receiving antennas resonate at 

same frequency. The helical antennas used are short– type antennas, which have separate 

excitation using self-inductances and added capacitors. These antennas have only one turn 

each with a radius of 150 mm and attached capacitors in series to adjust the resonant 

frequency of interest. The experiment is conducted with the distance between two antennas 

respectively 49, 80, 170 and 357 mm. From Fig. 11, at the closed distance of 49 mm, the 

system achieves the highest efficiency, represented as the squared magnitude of S21 

parameter, at the two peaks of roughly 12.4 and 15.2 MHz. When the distance is getting 

smaller, the resonant frequency separation reduces, about 12.7 and 14.6 respectively. And at 

the distance of 170 mm, the two splitted frequencies converge at approximately 13.6 MHz. 

The efficiency significantly degrades with the increasing distance. The special point distinct 

from the presented model of WPT is that there are no power coil and load coil in this model. 

The authors used two resonators in addition to impedance matching structures instead of  
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Fig. 10. Experiment setup. 
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Fig. 11. Efficiency, represented as |S21|2, versus frequency at different distances. 
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the four-coil system. The advantage of this model is a possibility of eliminating the 
magnetically coupled coils so that the system would be simplified. Nonetheless, the benefits 
of cross-coupling effect increasing the system efficiency in the low-mode of resonant 
frequencies can be cancelled out (Sample et al., 2011). 

3. Maximizing efficiency with adaptive circuits 

From the above analysis of the relationship between the system efficiency and the resonant 
frequency, it is clear that the operating frequency is the critical factor determining the 
performance of the system. Besides, the flexibility of impedance matching structures also 
plays an important role enabling high transfer efficiency (Chen et al., 2010). Of considerable 
interest for applications of WPT relied on electromagnetic resonance, the cases of mobile 
receiver or multiple receivers are absolutely typical. However, there exists a drawback that 
degenerates the efficiency in these cases. In fact, the transfer efficiency significantly 
decreases with distance variations between the transmitter and the receiver or in case of 
multiple receivers. In order to overcome the limitations, adaptive circuits are proposed. 
These circuits are so-called ALL which help to maintain the optimal resonant condition and 
realize the maximum wireless power transfer efficiency as well. 

3.1 Efficiency optimization based on frequency control 

For the situation of one transmitter and one portable receiver, the transfer efficiency 
represented as |S21|, which the function of the distance, the relative orientation and 
alignment between the resonators, is analytically clarified in the previous section. Remind 
that magnitude of S21 parameter is relatively small when a transmitter and a receiver are too 
far away. When they get approach each other, |S21| goes up and at a certain point, the 
phenomenon of frequency splitting occurs degrading the system performance. Therefore, an 
optimal control mechanism of efficiency based on frequency control is needed to stabilize 
the transfer efficiency. 
Generally, a range of control frequency is confined, with a high limit caused by the coil 
characteristic and a low limit due to the low efficiency. In that range, the frequency can be 
determined and tuned in order for high efficiency to be achieved. From the equations (7) 
and (8), it is possible to derive a following equation 

 
3

12 23 34
21 2 2 2 2 2 2 4 2 2

1 2 3 4 12 3 4 23 1 4 34 1 2 12 34

2 Lj M M M R
S

Z Z Z Z M Z Z M Z Z M Z Z M M

ω
ω ω ω ω

=
+ + + +

 (18) 

In which mutual inductance M23 is calculated by using Neumann formula (Imura & Hori, 
2011, as cited in Sallan et al., 2009) 

 

2 3

0 2 3
23

4
C C

dl dl
M

D

μ
π

= ∫ ∫  (19) 

However, due to complicated calculations, it is reasonable to use an approximation of the 
mutual inductance given as below (Karalis et al., 2008 as cited in Jackson, 1999) 

 2 2 3
23 0 2 3 3

( )
2

N N
M r r

D
πμ≈  (20) 
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Fig. 12. Adaptive circuit of frequency control. 

Note that in (18), typically, almost all components would be identified with given 

specifications of circuit setup including radius of coils’ cross-section a, number of turns N, 

radius of coils ri (i=2,3) , and distance between power coil, load coil and resonators. So, by 

substituting (19) into (18), there are merely the three unknown variables of frequency ω, S21 

parameter and distance between the resonators D. With the given requirement of efficiency, 

represented as the magnitude of S21, and identified distance between the resonators, it is 

able to figure out the frequency of interest. An adaptive circuit used to stabilize the system 

transfer efficiency is demonstrated in Fig. 12. A current sensor is used to detect a current 

flow in the transmitting coil. Due to the fact that the transmitting coil is not connected to the 

ground, the sensed signal is in terms of differential signal. The signal is then compared with 

reference sources in an adjacent block, hence it is essential to utilize a differential amplifier 

in order to transform the differential signal to a single-ended signal. An output voltage of Vd 

is then switched to a block of distance identification, where Vd is in turn compared with 

reference voltages to determine a distance between the resonators. Like the preceding 

analysis, with the found parameter, a new tuned ft is established. This frequency is the 

wanted frequency of the power source as well. Subsequently, in order to control all coils 

resonating at the frequency of ft, a capacitor tuning control block is required to control 

variable capacitors attached at each coil as below 
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1

, 1 ~ 4
2

t
i total i

f i
L Cπ −

= =  (21) 

 , 1 ~ 4ti total i iC C C i−= − =  (22) 

Note that C2 and C3 here are lumped components representing approximately the parasitic 
capacitances of the transmitting and receiving coils. The capacitors Cti with i from 1 to 4 are 
respectively connected in parallel with the capacitors of four coils.  
In general, when the frequency tuning mechanism is enabled, the controller picks the resonant 
frequency of interest and tracks it as the receiver is moved away from the transmitter. 

3.2 Efficiency optimization based on impedance matching control 

In addition to the efficiency optimization technique based on frequency tuning, impedance 
matching tuning method is a potential candidate for an adaptive circuit that also maximizes 
the system efficiency. In some cases, the usage of wide range of frequency tuning has 
limitations that can affect these other bands such as ISM bands which were internationally 
reserved. Thus, utilizing the technique of flexible impedance matching is really essential.  
In fact, by changing the strength of coupling between the load coil and the resonator and 
slightly retuning the receiving coil, it is possible to achieve the maximum transfer efficiency 
(Chen et al., 2010, as cited in Kurs et al., 2007). For practical interest, however, an adjustment 
in the coupling coefficient between the coils in the transmitting part is preferred. The change 
in coupling strength can be made by varying the distance between those coils, the relative 
orientation and alignment of them. However, it is not viable to automatically control them 
in the system consisting of four coils. Thus, a model of two resonators and other impedance 
matching structure is used. A circuit of adaptive impedance matching in the transmitter side 
is shown in Fig. 13. Based on a current sensed from the transmitting resonator, a control 
circuit block is able to identify distance variations, different orientation, misalignment 
between the resonators or in case of multiple receivers, then automatically control a power 
amplifier (PA) and a tunable impedance matching block so as to maximize the transfer 
efficiency. Actually, for situations of relatively large distance length, significantly different 
orientation or misalignment between the two resonators, in spite of utilizing the adaptive 
impedance matching, increasing the output power of the power amplifier is recommended 
to improve the system transfer efficiency. The striking feature of the circuit is that the 
system frequency is fixed and it is very helpful in many applications. 
 

 

Fig. 13. Adaptive circuit of impedance matching control in transmitter side 
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Fig. 14. Adaptive circuit of Q-tuning. 

3.3 Adaptive Q tuning circuit 

From the analysis of different coupling mechanisms in Subsection 2.2, the high-Q magnetic 

resonant coupling provides the best transfer performance of system. In some applications, 

however, the low-Q magnetic coupling system has its own advantages. As seen from Fig. 7 

which shows the comparison between three kinds of coupling, despite the lower efficiency, 

the low-Q coupling mechanism operates in a wide range of frequency rather than the high-

Q coupling. That is why the low-Q factor can be used to detect any possible incoming 

power. An adaptive Q-tuning circuit is illustrated in Fig. 14. There is no added capacitor in 

the power coil to set the expected frequency. Actually, the power coil inductively couples 

with the transmitting coil. Regarding the power coil, L1 has a number of turns N1 and L1‘ 

with N1‘. These coil turns are connected together by a switch which is implemented by a 

power MOSFET M1. As same as the previous explanation in Subsection 3.1, a current sensor 

and a differential amplifier are used. In case of the detection of either an absence of any 

receivers or multiple of them, the sensed current is low causing a small value of Vd. This 

value is then compared with a reference voltage Vref by a comparator. Because of the lower 

value of Vd than Vref, the output of the comparator is set to low, which makes the switch M1 

turn on while M2 turn off. By the way, the number of coils turns increase by N1‘, which 

reduces the quality factor Q of the transmitting resonator due to a lower turns ratio between 

the power coil and the transmitting coil (Cannon et al., 2009). On the other hand, in case of 

one to one system, the switch of M1 is degenerated while M2 is activated providing a higher 

turns ratio which raises the Q factor of the resonator. 

4. Conclusion 

A general and insightful analysis of WPT system based on electromagnetic resonance is 

presented. Frequency splitting phenomenon is demonstrated by theoretical derivations 
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and simulation results as well. Besides, the comparison between different kinds of 

coupling and case of multiple receivers are also analyzed to impress the need for adaptive 

circuits to maintain the high performance of the system. Called Antenna- Locked Loops, 

these circuits offer practical possibilities of WPT with any physical changes. With the 

wireless power know-how, it is able to counter the transmission of power over distances 

about tens of feet, although ideally it is very less but still it is impressive. The most 

interesting fact is that the wireless power transmission is omni directional in nature. If the 

technology is enhanced and sharpened to be a datum where it can be “generative”, it will 

be able to remain firm to turn the interest of an infinite number of industries. Although, 

nowadays wireless power is a major obstacle in terms of advancement in the retail sector 

and also there are many issues regarding the safety, applying and affordability in 

attentiveness to WPT, but this will likely to be enhanced as the technology further grows 

up. Generally, this work lays down the ground work of innovative wireless power 

technology and open opportunities to commercially implement advanced electromagnetic 

resonance based WPT systems. 
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