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1. Introduction 

It has been widely accepted that Euclidean geometry plays an important role in shaping the 
way natural forms are viewed in science and mathematics, arts and even the human psyche 
(Hastings & Sugihara, 1993). This happens because man always seeks to find simplicity and 
order in nature, and often makes approximation on natural forms that may be essentially 
complex and irregular.  Hence, leaves are roughly ellipses, planets are spheres and spruce 
trees are cone-shaped.  However, shapes such as coastlines, fern leaves and clouds are not 
easily described by traditional Euclidean geometry.  Nevertheless, they often possess a 
remarkable invariance under changes of magnification.  With a certain scale of magnification, 
the pattern is seen as repeating itself. Since the term ‘fractal’ was first coined by Mandelbrot 
(Mandelbrot, 1983), study of fractals has increasingly become an interest for scientists and 
mathematicians. Consequently many researchers study the growth and shapes of fractals 
through theoretical modeling and computer simulations of fractal patterns.  
Simulation model of fractal patterns found in polymer electrolyte membranes provides 
another interesting perspective in the study of ion conductive polymer membranes. The 
characteristics and scientific aspects of the model have been studied and computer program 
s to simulate the growth of the patterns have been developed. Fractal aggregates especially 
diffusion-limited aggregate involve the random walk of particles and their subsequent 
sticking (Chandra & Chandra, 1994). To obtain fractal aggregates in laboratory framework, a 
system with particles in random walk is required. In most polymer electrolytes, the anions 
as well as the cations are found to be mobile and thus can be considered as a natural 
framework for fractal growth. The polymers act as a host while the inorganic salts dissociate 
in them to provide the ions necessary for conduction. According to Chandra (1996), fractals 
formed in the PEO-NH4I polymer electrolyte films are principally due to the random walk 
and subsequent aggregation of iodine ions. In other research as well, Fujii et al. (1991) have 
successfully carried out fractal dimension calculations of dendrite, of fractal patterns 
observed on the surface of a conducting polymer polypyrrole, after an ‘undoping’ process. 
Recent studies of fractals in polymers that involved modeling and/or simulation include 
Janke & Schakel (2005), Lo Verso et al. (2006) and Marcone et al. (2007). On the other hand, 
Rathgeber et al. (2006) have done some work on theoretical modeling and experimental 
studies of dendrimers. There have also been experimental studies of crystal pattern 
transition from dendrites through fourfold-symmetric structures to faceted crystals of ultra 
thin poly(ethylene oxide) films which were carried out by Zhang et al. (2008). These research 
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works on fractals were done only on laboratory experiments, theoretical modeling and 
experimental studies, or modeling and computer simulations. Most recently, Amir et al. 
(2010a; 2011a) succeeded in integrating all the three approaches; experimental, modeling 
and simulation in studying fractals in different ion conductive polymer membranes (Amir et 
al., 2010a; 2010c; 2011a; 2011b). The study of fractal growth on ion conductive polymer 
membranes is useful in understanding the movement of ions in the films and can also be 
used to study heavy metal accumulation in diseased glands in humans and fishes (Chandra, 
1996). 

2. An overview of fractals 

Benoit B. Mandelbrot (Mandelbrot, 1983) introduced the term ‘fractal’ that refers to a family 
of complex geometrical that can be characterized by a fractional or non-integer 
dimensionality. The concept of fractals has attracted the interest of scientists in many fields 
(Feder, 1988). A huge number of papers related to the word ‘fractal’ has been published, 
spanning fields ranging from physical geometry, such as surface structure of sea beds 
(Golubev et al., 1987), non-equilibrium growth phenomena (Shibkov et al., 2001) and 
distribution of intervals between earthquakes (Dargahi-Noubary, 1997), to ecology that 
involves fungal structure (Tordoff et al., 2007) and power law relationship between the area 
of a quadrate and the structure of peat systems (Sławinski et al.,2002). Even in cosmology 
with the study of the structure of star clusters and galaxies, the big bang theory of the origin 
of the universe and also in developmental biology portrayed by lung branching patterns, 
heart rhythms and structure of neurons (Hastings & Sugihara, 1993).  
The most amazing thing about fractal is the variety of its applications. Besides theoretical 
applications, it can be used to compress data in the Encarta Encyclopedia and to create 
realistic landscapes in movies like Star Trek. The places where fractals can be found include 
almost every part of the universe, from bacteria cultures to galaxies and to human body. 
Many studies of fractals related to fields such as astronomy (Combes, 1998), biology (Stanley 
et al., 1994) and chemistry (Villani & Comenges, 2000). In mathematics, the study of fractals 
revolves around data compression, fractal art and diffusion. 
Many of fractal growth models were also found to be suitable with  experimental studies of 
electrochemical electrodeposition (Barkey, 1991), electrochemical polymerization 
(Kaufmann et al., 1987) and DLA growth structures of many metal aggregates in the 
presence of a magnetic field as external stimuli (Okubo et al., 1993). The formation of fractals 
without using any external stimuli has been reported by Chandra & Chandra (1993); 
Mohamed & Arof (2001) and Amir et al. (2010a; 2010c; 2011a; 2011b). 

2.1 Fractal geometry 

Fractal or fractional dimension is something that can never be understood inside the realm 
of elementary geometry. It is another field in which at least one of Euclid’s postulates does 
not hold, and where other mathematical realities emerge. Thus, it can be said that there are 
two types of geometry: Euclidean and non-Euclidean geometries. In the first group, are the 
plane geometry, solid geometry, trigonometry, descriptive geometry, projective geometry, 
analytical geometry and differential geometry. In the second group, there are hyperbolic 
geometry, elliptic geometry and fractal geometry. Almost all geometric forms used for 
building man made objects belong to Euclidean geometry. They compromised of lines, 
planes, rectangular volumes, arcs, cylinders, spheres and defined shapes. These elements 
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can be classified as belonging to an integer dimension: 1, 2, or 3. Table 1 gives the summary 
of the major differences between fractal and the traditional Euclidean geometry. 
 

EUCLIDEAN NON EUCLIDEAN (FRACTAL) 

Traditional (>2000 yrs) Modern monsters (~ 30 yrs) 

Based on characteristic size or scale No specific scaling 

Suits man made objects Appropriate for natural shapes 

Describes by formula (Recursive) algorithm 

Table 1. A comparison of Euclidean and fractal geometry (Peitgen & Saupe, 1988) 

Fractal geometry allows length measurements to change in a non-integer or fractional way 

when the unit of measurements changes. The governing exponent D is called fractal 

dimension (Smith et al., 1990). The fractal dimension is a statistical quantity that gives an 

indication of how completely a fractal appears to fill space, as one zooms down to finer and 

finer scales. Fractal object has a property that more fine structure is revealed as the object is 

magnified, similarly like morphological complexity, which means that more fine structure 

(increased resolution and detail) is revealed with increasing magnification. Fractal 

dimension measures the rate of addition of structural detail with increasing magnification, 

scale or resolution. The fractal dimension, therefore, serves as a quantifier of complexity. 

2.1.1 Self similarity 

The main idea behind fractal geometry is self similarity. Self-similarity means that a 

structure (or process) can be decomposed into smaller copies of itself. This means that a self-

similar structure is infinite. Self-similarity entails scaling. For an observable A(x), which is a 

function of a variables x: A = A(x), obeys a scaling relationship: 

 A (λx) = λs A(x) (1) 

where λ is a constant factor and s is the scaling exponent, which is independent of x. For 

example, in a three-dimensional Euclidean space, volume scales as the third power of linear 

length, whereas fractals according to their fractal dimension (Focardi, 2003). Approximate 

self-similarity means that the object doesn’t display perfect copies of itself. For example a 

coastline is a self-similar object, a natural fractal, but it does not have perfect self-similarity. 

A map of a coastline consists of bays and headlands, but when magnified, the coastline isn’t 

identical but statistically the average proportions of bays and headlands remain the same no 

matter the scale (Judd, 2003). 

It is not only natural fractals that display approximate self-similarity, the Mandelbrot set is 

another example. Identical pictures do not appear straight away, but when magnified, 

smaller examples will appear at all levels of magnification (Judd, 2003). Statistical self-

similarity means that the degree of complexity repeats at different scales instead of geometric 

patterns. Many natural objects are statistically self-similar where as artificial fractals 

geometrically self-similar (Yadegari, 2003).  

Geometrical similarity is a property of the space-time metric, whereas physical similarity is a 
property of the matter fields. The classical shapes of geometry do not have this property; a 
circle if on a large enough scale will look like a straight line. This is why people believed that 
the world was flat, the earth just looks that way to humans (Carr & Coley, 2003). 
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2.1.2 Fractal dimension 

Fractal dimension is a measure of how complicated a self-similar figure is. In a rough sense, 

it measures how many points lie in a given set. The fractal dimension is often fractional. 

However, in algebra, the dimension of a space is defined as the smallest number of vectors 

needed to span that space (Rucker, 1984). In the 3 dimensional space, mathematicians 

traditionally denote the coordinates of three orthonormal vectors x, y and z. But sets are 

usually not vector spaces. Nevertheless, for aggregates, a fractal dimensionality in terms of 

scaling relationship between two different aggregate’s properties X and Y (e.g. mass and 

length) can be observed such as (Meakin, 1988): 

 

 YX df (2) 

where df is all purpose fractal dimension as described by Meakin (1988). 
Mandelbrot (1983) developed the ‘concept of homothetic dimension’ relative to geometric 

fractals. Let X be a complete metric space and let A  X. If N (A, є) is the least number of 

balls of radius less than є that are needed to cover A, then the number D (A) defined by 

    
0

lnN A,
D A lim

1
ln






  (3) 

and is called the fractal dimension of A. 

For each part (N) of the fractal deducted from the whole and having a homothetic ratio r(N) , 

the fractal dimension df  is defined as: 

 
 

f
Log N

d
1

Log
r


 
 
 

 (4) 

For example, the Von Koch’s snowflake iteration as illustrated in Figure 1, each side of unit 

1 of a triangle is divided by 3, hence. r = 1/3. The central third of one side is replaced by 2 

smaller lines of length 1/3. Therefore, one line is now subdivided in 4 smaller lines of length 

1/3, hence. N = 4. Its fractal dimension now becomes: 

 
 
 f

Log 4
d 1.262

Log 3
   (5) 

 

 

 

Fig. 1. Construction of the Von Koch’s snowflake 
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2.1.3 Types of fractals 
Fractal geometry is the geometry of structures that have a scaling symmetry. The simplest 
types of fractals are self-similar fractals that are invariant to an isotropic change of length 
scale (Meakin, 1991). Another approach to fractals is the way they are generated, for 
example by an iterative process. This process of iteration leads to different categories of 
fractals. Generally fractals can be divided into two main categories: 
1. Deterministic Fractals 
2. Random Fractals 

2.1.3.1 Deterministic fractals 

Deterministic fractals are generated by an iterative process. The term deterministic means 

that a simple process of iteration is applied to build the fractals such as the iteration of a 

complex function that generates the ‘Mandelbrot Set’ as shown in Figure 2. The iteration 

process is a geometrical transformation called generator on an object. This object is called 

initiator. For the construction of the so-called ‘Koch’s Curve’ the transformation for each 

iteration is repeated. To build this fractal, a line of unit 1 is divided by 3 and the central 1
3

 is 

taken out and is replaced by 2 lines of length 1
3

. On the next iteration, the same 

transformation is applied on the remaining lines repeatedly. Its construction is described in 

Figure 2 as follows: 
 

 

Fig. 2. Construction of Koch’s curve (Addison, Paul S., 1997) 
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An important property of this fractal is its length that is infinity. The length of the initiator is 

1, therefore, after the first iteration; the calculated length of the object is 4 lines of length 1
3

, 

that is 4
3

. Then the second iteration gives 16 lines of length 1
9

. The length now becomes equal 

to 16
9

. More generally, at each iteration n, the length becomes equal to (4/3)n. As n tends to 

infinity, the length is (4/3) = . The property of self-similarity can also be easily seen, as 

illustrated in Figure 3. 

 

 

Fig. 3. Self similarity property of the Koch Curve 

2.1.3.2 Random fractals 

Random fractals are generated by stochastic processes, for example, trajectories of the 

Brownian motion, Lévy flight, fractal landscapes and the Brownian tree. The latter yields the 

so-called mass- or dendritic fractals, for example, diffusion-limited aggregation clusters. In 

the 1980’s, Meakin developed different aggregation models in order to study the various 

ways an aggregate could be generated (Meakin, 1988; Meakin, 1991). Those aggregation 

models which are similar to the L-system are computer-generated where a set of 

transformation is applied on the generator that, in this case, would be an initial particle or 

cluster in the model. Random fractals have been used extensively in computer graphics to 

model natural objects (Ebert, 1996). 

Many attractive images and life-like structures can be generated using models of physical 
processes from areas of chemistry and physics. One such example is diffusion limited 
aggregation (DLA) which describes, among other things, the diffusion and aggregation of 
zinc ions in an electrolytic solution onto electrodes. ‘Diffusion’ is because the particles 
forming the structure wander around randomly before attaching themselves (aggregating) 
to the structure. ‘Diffusion-limited’ because the particles are considered to be in low 
concentrations so they do not come in contact with each other and the structure grows one 
particle at a time rather then by chunks of particles. Other examples can be found in coral 
growth, the path taken by lightning, coalescing of dust or smoke particles, and the growth of 
some crystals. 

2.2 Significance of fractals 

The term fractals have always been associated with the complex geometric shapes which can 
be characterized by non-integer dimensions. Generally, fractals can be found in unbalanced 
phenomena either naturally or experimentally developed in laboratories. The fractal concept 
has been used in many fields like chemistry, biology, medicine, weather forecast and 
engineering where it provides understanding of the extraordinary patterns and chaos 
(Radnoczy et al., 1987; Chandra & Chandra 1996; Neimeyer et al., 1984). 
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2.2.1 Fractals in physical sciences 

Fractals obviously generate some convincing models of natural phenomena such as 
mountains and clouds for use in computer graphics imagery, and they provide very 
compelling abstract pictures. But since 1980’s until 1990’s, about one third of all physics 
papers submitted to journals for publication at least mentioned fractals somewhere 
(Musgrave, 1993). It is also known that many universities all around the world have now 
offered courses on the subject fractals mainly concerning the field of mathematics and 
physics. 
Looking at fractals in mathematics, some fractal patterns exist only in mathematical theory, 
but others provide useful models for the irregular yet patterned shapes found in nature such 
as the branching of rivers and trees. Mathematicians tend to rank fractal dimensions on a 
series of scales between 0 and 3. One-dimensional fractals (such as a segmented line) 
typically rank between 0.1 and 0.9, two-dimensional fractals (such as a shadow thrown by a 
cloud) between 1.1 and 1.9, and three-dimensional fractals (such as a mountain) between 2.1 
and 2.9. Most natural objects, when analyzed in two dimensions, rank between 1.2 and 1.6 
(Ouellette, 2001). 
The nonlinear mathematics models nature more accurately, but is intractable in comparison 
to the linear approximations. When computers made it possible for scientists to begin to 
cope with these previously-intractable nonlinear systems, they discovered something very 
surprising which is in any perturbation to the initial state of the system, no matter how 
small or seemingly insignificant, will cause the system to diverge; that is to evolve into an 
arbitrarily different future state, within a finite period of time. This discovery is known as 
deterministic chaos or sensitivity to initial conditions. 

2.2.2 Fractals in biological sciences 

Biologists have traditionally modeled nature using Euclidean representations of natural 
objects or series. Examples include the representation of heart rates as sine waves, conifer 
trees as cones, animal habitats as simple areas, and cell membranes as curves or simple 
surfaces. However, scientists have come to recognize that many natural constructs are better 
characterized using fractal geometry. Biological systems and processes are typically 
characterized by many levels of substructure, with the same general pattern being repeated 
in an ever-decreasing cascade. Relationships that depend on scale have profound 
implications in human physiology (West & Goldberger, 1987), ecology (Loehle, 1983; Wiens, 
1989), and many other sub-disciplines of biology. The importance of fractal scaling has been 
recognized at virtually every level of biological organization. 
Fractal geometry may prove to be a unifying theme in biology (Kenkel & Walker, 1993) since 
it permits generalization of the fundamental concepts of dimension and length 
measurement. Most biological processes and structures are non-Euclidean, displaying 
discontinuities, jaggedness and fragmentation. Classical measurement and scaling methods 
such as Euclidean geometry, calculus and the Fourier transform assume continuity and 
smoothness. However, it is important to recognize that while Euclidean geometry is not 
realized in nature, neither is strict mathematical fractal geometry. Specifically, there is a 
lower limit to self-similarity in most biological systems, and nature adds an element of 
randomness to its fractal structures. Nonetheless, fractal geometry is far closer to nature 
than is Euclidean geometry (Deering & West, 1992). 
The relevance of fractal theory to biological problems is dependent on objectives. To the 
forester interested in estimating stand board-feet, a Euclidean representation of a tree trunk 
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(as a cylinder or elongated cone) may be quite adequate. However, for an ecologist 
interested in modeling habitat availability on tree trunks (say, for small epiphytes or 
invertebrates), fractal geometry is more appropriate. Using the approach of fractal 
geometry, the complex surface of tree bark is readily quantified.  
A forester's diameter tape ignores the surface roughness of the bark, giving but a crude 

estimate of the circumference of the trunk. For an insect 10 mm in length, the distance that it 

must travel to circumnavigate the trunk is much greater than the measured diameter value. 

For an insect of length 1 mm, the distance traveled is even greater. This has consequences on 

the way that the tree trunk is perceived by organisms of different sizes. If the bark has a 

fractal dimension of D = 1.4, an insect an order of magnitude smaller than another perceives 

a length increase of 10D-1 = 100.4 = 2.51, or a habitat surface area increase of 2.512 = 6.31. By 

contrast, for a smooth Euclidean surface, D = 1 and both insects perceive the same 'amount' 

of habitat. The higher the fractal dimension D, the greater the perceived rate of increase in 

length (or surface) with decreasing scale. 

2.3 Fractal growth models 

Many fractal growth phenomena found in experiments and numerical simulations explored 

the properties of aggregation kinetics, gelation, and sedimentation (Aharony, 1991). The 

aggregation of particles often produces fractal clusters. A typical aggregate is the commonly 

known computer generated simulation of ‘diffusion limited aggregation’. The shape looks 

very similar to those arise in many natural aggregation processes, including diffusion 

limited electrodeposition (Matsushita et al., 1984), growth in aqueous solutions (Sawada et 

al., 1986), dielectric breakdown (Niemeyer et al., 1984), viscous fingers in porous media 

(Maloy et al., 1985), and fungi and bacterial growth (Matsuura & Miyazima, 1992; 

Matsuyama et al., 1993; Ben-Jacob et al., 1994).  

To describe these aggregates, one must first characterize their structures quantitively 

(Aharony, 1991). Characterization on its fractal dimensionality, or exponents, each of which 

determines one of its physical properties is very important. Growth models are used to 

understand the relationship between the microscopic interactions which are responsible for 

its growth, and the specific complex macroscopic shapes. This is done by setting up a few 

simple microscopic growth rules, by which particles are added to the aggregate and with 

repeated iteration it gives rise to the macroscopic cluster. Some of the well known fractal 

growth models normally used for simulation of fractals are described in the following 

sections. 

2.3.1 Eden model 

The Eden model is the simplest growth model (Eden, 1961) and the one that probably 

applies in most cases.  Starting from an initial seed, a new particle is added to cluster on one 

of the surface sites. A surface site here is defined as a site sharing a side with the existing 

cluster. The way in which the surface site is chosen can vary. One version of the Eden model 

selects with equal probability among all the surface sites where a new particle will be added. 

Another version counts the number of neighbors of each surface site and the probability that 

a new particle is added is directly proportional to the number of neighbors. The third 

version of the Eden model chooses a ’mother cell’ with equal probability among the particles 

which are not completely surrounded by other particles. 
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2.3.2 Percolation model  

The randomness of a fluid spreading through a medium maybe of two quite different types 
(Feder, 1988). The first type is the random walks of the fluid particles in the familiar 
diffusion processes. The other case in which the randomness is frozen into the medium itself 
and it is known as a ‘percolation process’, since it behaves like coffee in a percolator 
(Broadbent & Hammersley, 1957). 
Compared to diffusion process where a diffusing particle may reach any position in the 
medium, percolation process has a feature, where there exists a ‘percolation threshold’, 
under which the spreading process is confined to a ‘finite’ region. For example, spreads of 
blight from one tree to the other in an orchard where the trees are planted on the 
intersections of a square lattice. Here, when the spacing between the trees is increased so 
that the probability for infecting a neighboring tree falls below a critical value, then the 
blight will not spread over the orchard. Thus, the value of the percolation threshold has to 
be determined by simulations. 

2.3.3 Ballistic deposition model  

Ballistic deposition was introduced as a model of colloidal aggregates, and early studies 
concentrated on the properties of the porous aggregate produced by the model (Family, 
1990: Horvath et al., 1991). The particles in the ballistic deposition model follow a straight-
line trajectory until they first encounter a particle on the surface, or a particle in one of the 
nearest-neighbor columns. As soon as a particle reached such a position, it permanently 
sticks to the surface and becomes part of the deposit. Evolution of an interface in a ballistic 
deposition model can be described by the dynamic scaling approach (Family & Vicsek, 
1985). Moreover the surface of the deposit is a self-affine fractal, since the atoms are not 
allowed to diffuse on the surface. 

2.3.4 Dielectric breakdown model  

Dielectric breakdown refers to the formation of electrically conducting regions in an 

insulating material exposed to a strong electric field. For example, the intense electric fields 

during thunderstorms can produce a conducting path in the air along which many electrons 

flow (lightning). A formal model, ignoring the physical details of the processes, was 

proposed in 1984 by Niemeyer, Pietronero and Weismann (Niemeyer et al., 1984). Dielectric 

breakdown patterns exhibit a branching, fractal pattern with a dimension of about 1.7. 

2.3.5 Viscous fingering model  

In viscous fingering the principal force is due to viscous forces in the defending fluid 

(Aharony, 1991). The process is obtained by injecting a low viscosity fluid into a medium of 

high viscosity fluid with a high injection rate. The capillary effects and the pressure drop in 

the invading fluid are negligible. The structures typically consist of fingers of invading fluid 

that propagate through the medium with only a few small trapped clusters of defending 

fluid left behind. Viscous fingering was first studied in a Hele-Shaw channel where one 

observes fingering patterns when glycerol is displaced by air (Saffman & Taylor, 1958). A 

Hele-Shaw cell consists of two transparent plates separated by a given distance and the 

patterns obtained are fully described by Darcy's equation and the capillary pressure due to 

the interfaces between the two phases. In 1985, Chen and Wilkinson (Chen & Wilkinson, 

1985) and Måløy and coworkers (Måløy et al., 1985) studied viscous fingering in a porous 
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medium where they concluded that the disorder of the system has significant effect on the 

fingering process.  

2.3.6 Diffusion limited aggregation model 

Diffusion limited aggregation (DLA) is a model of irreversible growth to generate fractal 
structures as proposed by Witten and Sander (1981). It has been used to study a great 
variety of processes including dendritic growth, viscous fingering in fluids, dielectric 
breakdown and electrochemical deposition. The model is set by the following simple rules:  

A seed is fixed at the origin of some coordinate system and one particle is released from 
a far-away boundary and allowed to take random walks (diffuse). If the particle touches 
the seed, it irreversibly sticks to the seed and forms a two-particle aggregate. As soon as 
the random walker is removed either by being captured or escaping the boundary, the 
next walker is released and the process is repeated. Now it can stick to any particle in 
the aggregate as well as the original seed. 

The resulting clusters are highly branched since DLA enhances the instability of growth. 

The arriving particles are far more likely to stick to the tips of outer branches than to 

maneuver their way deep into the fjords (narrow inlet of a section) before contacting the 

surrounding branches. Thus the tall branches of the cluster screen the small ones and grow 

faster. The growth on the tips, however, is not always in the outward radial direction. 

Sometimes a few new branches are spun off from one tip site as occurred in the original 

seed. The tip-splitting makes the DLA clusters a self similar fractal. 

2.4 Methods for determination of fractal dimension 

Fractal dimension is a statistical quantity that gives an indication of how completely a fractal 

appears to fill space, as one zooms down to finer and finer scales. There are many specific 

definitions of fractal dimension. Summary of some of the more commonly used methods for 

determination of fractal dimension of natural forms are presented in this section. These 

methods include the information dimension method, mass dimension method and box 

counting method. 

i. Information dimension method 
This method requires the use of boxes but is generally different from the box counting 
method. It does not consider the number of boxes occupied regardless of whether it 
contains one point of relatively large number of  points. Instead, the information 
dimension effectively assign weights to the boxes in such a way that boxes containing a 
greater number of points count more than boxes with fewer points (Dierking, 2000). The 
fractal dimension Di is given from the proportionality 

 I(d) ~ -Dilog(d) (5) 

with I(d) is the information entropy of  N(d) boxes of size d, given by 

 I(d) = -
N( d)

i i
i 1

m log(m )

  (6) 

with mi = iM

M
 where Mi is the number of points in the ith box and M the number of total 

points in the data set. 
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ii. Mass dimension method 
The mass dimension method also known as the Scholl method, which yields the fractal 
dimension Dm, following the proportionality 

 m(r) ~ rDm (7) 

where m(r) = M(r)/M is the ‘mass’ within a circle of radius r, where M(r) is the data set 
of points contained within a circle and M the total number of points in the set. If the set 
is a fractal, the plot of log m(r) versus log r will follow a straight line with a positive 
slope equal to Dm (Dierking, 2000). This method is best suited to objects that follow 
some radial symmetry, such as the dendritic growth in radial axis. 

iii. Box-counting dimension 
In fractal geometry, the box-counting dimension is a way of determining the fractal 
dimension of a set S in a Euclidean space Rn. To calculate this dimension for a fractal S, 
imagine this fractal lying on an evenly-spaced grid, and count how many boxes are 
required to cover the set. The box-counting dimension is calculated by seeing how this 
number changes as the grid becomes finer. 
Suppose that N (s) is the number of boxes of side length s required to cover the set 
(Hastings & Sugihara, 1993), then S has box dimension D if N (s) satisfies the power law 

 N (s) ≈ c(1/s)D (8) 

asymptotically in the sense that 

   D

s 0
lim N s s c


  (9) 

By solving equation (8) asymptotically for D, the box-counting dimension is computed 
as: 

 
 

s 0

log N s
D lim

logs

 
  

 
 (10) 

This method is a favorite among most researchers and is considered the easiest to perform 
(McNamee, 1991). The box-counting dimension can be used to analyze irregularities in 
surfaces filling space volume and suitable for images, however complex. The use of a mesh 
grid overlapped over a structure allows the box counting method to conduct both textural 
and structural analysis of a structure. In addition, the mesh grid also allows the analysis of 
objects scattered in an image and this method can be adapted to measure objects or 
processes in multiple dimensions (Cross, 1997). 

3. Simulation of fractals 

3.1 Simulation of fractals using DLA model  

DLA is one of the most important models of fractal growth. This model is based on the 
Brownian motion theory. It refers to a simple growth algorithm in which individual 
particles are added to a growing cluster through diffusion-like process. Starting from any 
suitable immobile aggregate seed in a plane, a new particle is launched at a random position 
far away from the aggregate seed and is allowed to undergo Brownian motion. When the 
random walking particle touches the seed, it is stopped and incorporated to the aggregate. 
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The process of launching a random walker and adding it to the aggregate on its first contact 
is repeated until the aggregate reached a desired number of particles (Witten & Sander, 
1981). Figure 4 gives a visual representation of the above mentioned process. 
 

 

Fig. 4. An off the scale model of aggregation of cluster particles 

3.2 Simulation of fractal pattern using a grammar based model (L-systems) 

L-systems; a mathematical formalism as a foundation for an axiomatic theory of biological 
development (Lindenmayer, 1968) was proposed by a biologist, Aristid Lindenmayer in 
1968. L-systems have found several applications in computer graphics especially in areas 
which include generation of fractals and realistic modeling of plants. Central to L-systems, is 
the notion of rewriting, where the basic idea is to define complex objects by successively 
replacing parts of a simple object using a set of rewriting rules or productions. The rewriting 
can be carried out recursively. 
Aristid Lindenmayer's L-systems introduced a new type of string rewriting mechanism. In 
L-systems, grammars productions are applied in parallel, replacing simultaneously all 
letters in a given word. There are a number of different types of L-systems. The two major 
classifications are reflected in the naming conventions:  
1. Deterministic 
2. Stochastic 
The two classes of L-systems make it possible to generate simple and complex geometric 
patterns in the study of fractals. 

3.2.1 Deterministic L-systems 

Also known as D0L-systems, deterministic L-system is the simplest classes of L-systems. 
D0L stands for deterministic and 0-context or context-free L-systems. The rewriting process 
starts from a distinguished string or initiator called the axiom, and followed by a generator 
(rules) that is applied to the axiom to generate a new string. This generation can be iterated 
to produce strings of arbitrary length, which then can be interpreted as a series of turtle 
commands by a turtle graphic system (Abelson & diSessa, 1982). This turtle concept is 
explained in detail in section 3.2.3. 
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3.2.2 Stochastic L-systems 

L-systems are usually deterministic and they provide description based on individual 
patterns. Consequently, every time a word is derived using a given system, the resulting 
words will be the same (Prusinkiewicz & Lindenmayer, 1990). This may lead to restrict a 
certain pattern to a certain form and would not always be desired. Imagine visualizing 
complex fractal patterns found in many natural processes, such as electrodeposition, growth 
in aqueous solutions, dielectric breakdown, viscous fingers in porous media, and fungi and 
bacterial growth. If only one L-System was used to describe every pattern, then the results 
would look unrealistic (Kaandorp, 1994). On the other hand, creating a single L-System with 
individual productions for each pattern would be a tedious task, and it still could not 
guarantee similarity between individuals.  
Instead of using only one L-system to describe these patterns, it is wiser to use 

probabilistic/stochastic L-Systems. Each of these production/rules is assigned a probability. 

All fractal growth patterns generated by the same deterministic L-system are identical. An 

attempt to combine them in the same picture would produce a striking, artificial regularity 

(Prusinkiewicz & Lindenmayer, 1990). In order to prevent this effect, it is necessary to 

introduce one-to-one variations that will preserve the general aspects of a pattern but will 

modify its details. Variations can be achieved by randomizing the turtle interpretation, the 

L-system, or both.  

In order to achieve this, it is necessary to use suitable production rules with the 

implementation of the turtle graphics command in a turtle graphics system. Stochastic L-

Systems was considered a more suitable simulation technique for the simulation of fractals 

formed without using any external stimuli. 

3.2.3 Graphical representation of L-systems 

The most common turtle interpretation used in L-system today is based on the LOGO-style 
turtle (Abelson & diSessa, 1982), as introduced by Prusinkiewicz (1986). The main concept is 
that some modules in the L-system string are interpreted as commands executed by a turtle. In 
2D, the state of the turtle (S) is characterized by its position and orientation. Turtle graphic 
interpretations can exhibit different levels of complexity (Alfonseca & Ortega, 2001). Papert 
(Papert, 1980) created turtle graphics in 1980, describing it as a trail left by an invisible ‘turtle’ 
whose state at every instant is defined by its position and the direction in which it is looking. 
Set of instructions (commands) to the turtle (Peitgen et al., 1992) are explained as follows: 

 F moves the turtle one step forward, in the direction of its current angle, leaving a 
visible trail. We call F a ‘draw ‘letter. 

 f moves the turtle one step forward, in the direction of its current angle, with no visible 
trail. 

 +(plus) increases the turtle angle by θ. 
 -(minus) decreases the turtle angle by θ. 
 [  stacks the current position and orientation of the turtle. 

 ] moves the turtle invisibly to the position and orientation stacked at the top of the stack 
and pops it. 

A state of the graphic turtle is defined as a triplet (x, y, θ), where the Cartesian coordinates 

(x, y) represent the turtle's position in 2D space, and the heading, the angle θ is interpreted 

as the direction in which the turtle is heading. 

The following is an example of an L-system specification. 
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 Axiom: F 
 Production rules: F → F[+F]F[-F] [F]  
 Angle, θ: 30o 

Derivation of a string from an L-system is done in much the same way that a string is 
formed from a traditional grammar. It begins with the axiom, F. At any point in the 
derivation, all Fs in a string are replaced in parallel by a particular replacement string. In the 
L-system described above, each F in a string is replaced by F[+F]F[-F] [F] . So, starting with 
the axiom, F, the string after one substitution would be 

F[+F]F[-F] [F]  

and the string after two substitutions would become  

F[ +F]F[ -F] [F] [ +F[ +F]F[ -F] [F] ]F[+F]F[ -F] [F] [ -F[+F]F[ -F] [F] ][F[+F]F[-F][F]] 

A generated object is often referred to by the number of string substitutions that has been 
performed. The numbers of iterations are defined as being one greater than the number of 
string substitutions. Figure 5 illustrates the objects for four different iterations that have 
been generated from the L-system described above. 
 

 

Fig. 5. Objects generated from an L-system until the fourth iteration 

4. Fractals in ion conductive polymer electrolytes 

Eversince the introduction of the ‘Fractal Geometry’ concept by Mandelbrot (Mandelbrot, 
1983) in 1977, much work was concentrated on theoretical simulation/modeling of this 
concept. Theoretical simulation of fractal patterns, in particular Diffusion Limited Aggregate 
(DLA) requires particles of uniform as well as non-uniform size performing random walk. 
In the case of polymer electrolyte membranes, studies have been done to develop polymer 
electrolytes with high ionic conductivities especially in the field involving advanced 
materials known as superionic solids or fast ionic conductors (Amir et al., 2010b). In this 
type of conductors, the conductivity is due to the motion of ions. Superionic solids or fast 
ionic conductors brought about the development of high energy density batteries (Armand 
et. al, 1979; Murata, 1995; Borghini et. al, 1996), electrochomic devices (Ratner, 1987; Scrosati, 
1990), fuel cells (Prater, 1990), chemical sensors (Somov et. al, 2000) and capacitors (Pernaut 
and Goulart, 1996) etc. Initially, the fractals observed in the polymer electrolytes were 
discovered by chance. Some of the fractals observed in the polymer electrolyte membranes 
are shown in Figures 6(a)-(c). The study of these fractals may be useful in understanding the 
movement of ions in the polymer electrolyte membranes. 
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Fig. 6. Fractal aggregates of different sizes in (a) chitosan (b) PEO and (c) PVDF-HFP based 
electrolyte membranes       

4.1 Fractal growth patterns identification and simulation 
It has been identified that the formation of fractals without using any external stimuli 
resulted into isotropic DLA patterns as reported by Chandra (1996) and Amir et al. (2010a; 
2011b). Amir et al. (2010a; 2011a; 2011b) have succeeded to obtain fractal aggregates of 
different sizes in the films such as PEO, chitosan and PVDF-HFP polymers infused with an 
inorganic salt without any external stimuli. As can be observed in Figure 6, fractals are 
formed at the different nucleation centers and then grow in certain directions away from the 
nucleation site. The fractals grow irregularly and in an unpredictable motion. Among the 
techniques used to simulate such fractal patterns are DLA model which is based on the 
Brownian motion theory and fractal dialect called L-systems. 

4.2 Simulation of fractals in ion conductive polymer membranes 
Simulation of the DLA model gives a simple yet effective way to represent fractals obtained 
in polymer membranes. On the other hand, the simulation using the L-system technique 
provides a general approach on how to visualize growth of fractals with respect to the 
production rules involved and the governing number of iterations required to actually 
simulate a model that best represent the original pattern observed in the experimental 
outcome.  

4.2.1 Simulation using DLA model on a square lattice 
Computer simulations of the fractals are performed based on the DLA model described earlier. 
The simulation starts with a single seed at the centre of a square lattice. Then the seed will start 
to grow gradually until a full single cluster is formed. This cluster grows outward, one 
generation after another. The basic algorithm of the whole process is as follows: 
1. A list called occupiedSites is created, containing the lattice site {0, 0}. 
2. Determine the lattice site nearest to a randomly chosen location along the circumference 

of a circle whose radius, rad, equals a specified value, s, plus the maximum absolute 
coordinate value in occupiedSites.  

3. Starting at the selected lattice site, execute a lattice walk until the step location is either 
at a distance greater than (rad + s), or on a site that is contiguous (adjacent) to a site in 
occupiedSites. Call the final step location of the walk, loc.  

4. Check if loc is adjacent to a site in the occupiedSites list and if it is, add loc to 
occupiedSites.  

5. Execute the sequence of steps 2 through 4 until the length of occupiedSites reaches a 
value n. 
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Figure 7 gives an illustration of the implementation of the DLA algorithm. 

 

Fig. 7. An illustration of the simulation of DLA model on a square lattice 

In summary, the algorithm adds a particle as a result of random walk of a drifter from the 
perimeter to a point on the boundary of the structure. The drifters were introduced into the 
grid at a point chosen at random from the points equidistant from the origin, where the 
initial particle was placed. If the movement of a drifter would take it beyond this perimeter, 
it is reflected back to the interior. If it moves to a point on the boundary of the structure, it is 
transformed into a part of the structure. This process is repeated until the desired stage has 
been achieved. 
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For simulation purposes, the images of the fractal patterns such as those displayed in Figure 

8 are chosen specifically.  

 
 
 

 

 

Fig. 8. DLA fractals in a PEO-NH4I membrane 

The simulation of the fractal patterns can be carried out on a square lattice. The animation 

for a single cluster of the pattern can be created using a computer program developed in 

order to show how the cluster grows starting from the original nucleation centers that 

eventually grow according to a specific size desired. There are some properties of the 

clusters that have been identified. These properties are as follows: 

1. Branching and screening 
The random growth process leads to the formation of  small tips which are likely to 

capture diffusing particles. They screen their surroundings which later have the effect of 

screening that will self-stabilize the tip until it grows even larger forming new tips which 

are delicate, branched and tree–like objects. 

2. Scale invariance, lack of a typical length-scale 
As the stage of growth increases, it seems like they are a hierarchy of arms, branches, 

twigs and sprouts with fjord like empty regions of all sizes.  

3. Stochastic self–similarity 
Substructures of the cluster are found to be self-similar i.e. they can be reproduced after 

proper rescaling.  

Apart from the identified properties of the DLA cluster, it is also important to know the 

growth site probabilities for every particle released during the simulation. It has been 

discovered that diffusing particles are highly unlikely to wander into one of the inner fjords. 

The diffusing particles have a high probability to attach to the protruding tips. They are 

already visible from the marking of most recent particles and growth occurs essentially only 

in a small active zone within the predetermined radius. 

Figures 9(a) (i-v) present the fractals of PEO-NH4I (60:40 wt %) membrane as observed in 

figure 8. Their patterns simulated using DLA model are shown in Figures 9(b) (i-v). 
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Fig. 9. The experimentally observed (a) and simulated (b) DLA patterns in PEO-NH4I 
system using DLA model 

The fractal dimensions for the simulated and cultured fractals are listed in Table 2. The 

fractal dimensions of the cultured fractals are determined using a computer software tool, 

utilizing the box-count method, developed by Suki et. al. (2007) while those of simulated 

fractals are calculated automatically by a subprogram incorporated in the simulation 

program. The table shows that the fractal dimension values of the simulated fractals are 

comparable with the fractal dimension values obtained from their respective experimentally 

cultured ones. For example, the fractal dimension of experimentally cultured fractal in 

Figure 9(a) (v) is 1.742 ± 0.044 while its corresponding simulated fractal, Figure 9(b) (v) has a 

fractal dimension of 1.778 ± 0.043. In every calculation of the fractal dimension, the error 

values for both experimentally and simulated patterns are found to be so small with 

standard deviation of less than 1.6%. 

 

Experimentally cultured 
fractals 

Simulated fractals using DLA 
model 

Percentage of 
difference (%) 

Figure Fractal dimension Figure Fractal dimension 

9(a)(i) 1.688 ± 0.049 9(b)(i) 1.725 ± 0.044 1.29 

9(a)(ii) 1.719 ± 0.043 9(b)(ii) 1.765 ± 0.049 1.56 

9(a)(iii) 1.754 ± 0.047 9(b)(iii) 1.759 ± 0.042 0.16 

9(a)(iv) 1.706 ± 0.045 9(b)(iv) 1.747 ± 0.045 1.41 

9(a)(v) 1.742 ± 0.044 9(b)(v) 1.778 ± 0.043 1.19 

Table 2. Fractal dimension values of the fractals simulated using DLA model and their 
respective experimentally cultured fractal patterns. 

From the table, it is clear that the percentage difference of fractal dimension values between 

the experimental and simulated patterns are marginally close. The highest percentage 

difference is found to be less than 1.6% that is 1.56%. The lowest percentage difference is 

0.16%. These show that the simulated fractal patterns were of fairly good conformity with 

the fractal patterns observed in the PEO-NH4I polymer films. 

The small difference of fractal dimension values between the experimental and simulated 

patterns maybe attributed to the way the simulation was done in the simulation. The 
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simulation of fractal patterns using the modeling of DLA on a square lattice written in a 

computer program chosen for this study has a run time restriction. To actually simulate a 

larger fractal pattern requires a longer time to complete as a particle that moves close to the 

cluster has to investigate all neighbor sites, whether these already belong to the cluster. The 

particle should either stick or walk freely. The information about the neighborhood should 

be assigned to each site, so that a walker only make contact with the site which it is on 

instead of all four (in a square lattice) possible neighbors.  

4.2.2 Fractal growth simulation using L-systems 

Stochastic L-system allows various shapes to be drawn. The recursive nature of the L-system 

rules leads to self-similarity and thereby complex geometric patterns which are easy to 

describe with an L-system. The rules of the L-system grammar are applied iteratively 

starting from the initial state which is called the axiom and a set of production rules. 

To develop an L-system for a particular simulation of the complex geometric patterns, some 

steps (Hashim_Ali et al., 2000) have to be followed: 

i. the fractals must be analyzed to infer its stages of growth. 
ii. define the axiom and production rules into a string of symbols that assigned a 

particular meaning. 
iii. execute the rules as a computer program and show the results as a graphical output and 

calculate its fractal dimension. 
iv. compare the simulation with the real patterns obtained in the polymer membranes. 
As observed in Figure 8, the fractal patterns found in polymer electrolytes take on a 

branching structure. The branching structure is represented by the square bracket symbols 

(refer section 3.2.3). When a branch point is reached, the turtle encounters the left square 

bracket ‘[‘ where it should remember its current position and heading. This is called the 

state of the turtle. Technically the state S is given by S ={x, y, θ}. In mathematical terms, the 

turtle has a state consisting of its current position, given by two coordinates x and y, and a 

current heading, specified by an angle θ.  On the other hand when the turtle reaches the 

corresponding closing bracket ‘]’ the commands are terminated and the turtle will then 

return to the branching point which it must remember. In the analysis of fractal growth 

patterns, there are a few important factors to be considered in performing the simulation. 

The main criterion is the structure of the fractal such as the number of branches, the size of 

the structure, and most of all the production rules that suit the original pattern. For the 

fractals shown in Figure 8, to achieve a good result, three key components in the simulation 

were identified. They are as follows: 

i. Generally, the numbers of branches in most of the observed fractal patterns are about 
four. 

ii. The size of the object differs from one to the other but to obtain the best model for the 

structure; when running the simulation, the stage of iteration should be at least six. 

The purpose of choosing the stage of iteration is because if the stage of iteration was 

too low or too high, it would be hard to get a generally satisfying model for the 

structure. This is to ensure a ‘mature’ fractal growth pattern is obtained that 

resembles the real fractals.  

iii. To best describe the growth of complex geometric patterns in polymer membrane, three 
production rules have been chosen and they are: F[+FF]F[-FF]F, F[+FF]F, and F[-FF]F. 
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Figures 10(a) (i-v) present the fractals observed in the PEO-NH4I membrane shown in Figure 
8. Their patterns simulated using L-systems are shown in Figures 10(b) (i-v). 
 

 

Fig. 10. The experimentally observed (a) and simulated (b) DLA patterns in PEO-NH4I 
system using L-Systems 

Table 3 gives the fractal dimensions for the original and simulated fractals. The table shows 

that the fractal dimension values of the simulated fractals are comparable with the fractal 

dimension values obtained from their respective experimentally cultured ones. For example, 

the fractal dimension of experimentally cultured fractal in Figure 10(a) (v) is 1.742 ± 0.044 

while its corresponding simulated fractal, Figure 10(b) (v) has a fractal dimension of 1.751 ± 

0.045. The error values for both experimentally and simulated patterns are found to be so 

small with standard deviation of less than 1.6%. 

 

Experimentally cultured 
fractals 

Simulated fractals using L-
Systems Percentage of 

difference (%) 
Figure 

Fractal 
dimension 

Figure Fractal dimension 

10(a)(i) 1.688 ± 0.049 10(b)(i) 1.645 ± 0.052 1.51 

10(a)(ii) 1.719 ± 0.043 10(b)(ii) 1.756 ± 0.043 1.25 

10(a)(iii) 1.754 ± 0.047 10(b)(iii) 1.737 ± 0.047 0.55 

10(a)(iv) 1.706 ± 0.045 10(b)(iv) 1.761 ± 0.044 1.54 

10(a)(v) 1.742 ± 0.044 10(b)(v) 1.751 ± 0.045 0.26 

Table 3. Fractal dimension values of the fractals simulated using L-system and their 
respective experimentally cultured fractal patterns. 

In the simulation using L-system technique, the branches grew completely one after the other 
from their nucleation center and thus making it difficult to get a complete full grown cluster 
that matched exactly as the experimentally cultured fractal patterns. These are among the 
factors which make it difficult to get absolute accuracy thus giving way to the small percentage 
differences of fractal dimension values between the experimental and simulated patterns. 

5. Future research 

Fujii et al. (1991) have studied the growth of fractal patterns in a conducting polymer. 
Furthermore, studies done by Shui et al. (2004) and Rosso (2007) have also gained significant 
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improvements toward the understanding of these phenomena. However the effects of such 
phenomena in secondary battery have not been fully understood. It is difficult to actually 
study directly the growth of fractal pattern that forms in the electrode since the fractal 
patterns could be easily damaged during accumulation. Thus as a substitute, fractals can be 
cultured in ion conducting polymer electrolyte membrane to replicate the condition in a 
similar environment via laboratory experiments. With this simple approach, study of the 
temporal images of the fractal growth pattern by utilizing a programmable image data 
acquisition device can also be done to get a more accurate simulation. For future research, 
extension of the basic DLA model or modifications on the L-systems can be carried out to 
get better results for the morphological evaluations of the fractal growth patterns. Then the 
dependence of the fractal dimension on the stages of growth can be evaluated and the effect 
of fractal dimension on the growth process in laboratory scale can further be investigated. 

6. Conclusion 

Many studies on fractals have been carried out either in applications, usually involving 
experimental works, or in theory, where most simulations on fractal patterns models are on 
nature-based fractals such as river flows, coastline and tree branching. This chapter focuses 
on the simulation of laboratory cultured fractals using ion conductive polymer electrolyte 
membranes as the media of growth. The simulation developed here is a DLA model based 
on the Brownian motion theory and a fractal dialect known as L-systems. A computer 
program has been developed to simulate and visualize the fractal growth. This computer 
program was also built to calculate the fractal dimension values of the simulated fractal 
patterns. Comparisons of the fractal dimension values between the laboratory cultured and 
the simulated fractals indicate an acceptable conformity with each other.  
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