
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



7 

A Combined Petrological-Geochemical Study 
 of the Paleozoic Successions of Iraq 

A. I. Al-Juboury  
 Research Center for Dams and Water Resources, Mosul University, Mosul 

Iraq 

1. Introduction  

Combination of petrographic, mineralogic and geochemical data form the main task of 

petrologic studies that aim to discuss the provenance history of sedimentary siliciclastic 

rocks. Provenance analysis serves to reconstruct the pre-depositional history of sediments or 

sedimentary rocks. This includes the distance and direction of transport, size and setting of 

the source region, climate and relief in the source area, tectonic setting, and the specific 

types of source rocks (Pettijohn et al. 1987). Provenance models of sedimentary rocks have, 

generally taken into account the mineralogical and/or chemical composition of sandstones 

and shales. Intermingling of detritus from different sources and recycling complicate the 

determination of sedimentary provenance. Many attempts have been made to refine 

provenance models using the framework composition and geochemical features (Bhatia and 

Crook, 1986; Dickinson, 1985; Roser and Korsch, 1988; Zuffa, 1987; Armstrong-Altrin et al., 

2004; Umazano et al., 2009 and many others). The chemical composition of the whole rock 

can provide constraints on provenance because abundance and ratios involving relatively 

immobile elements are generally not affected by diagenetic processes. Thus chemical data 

might indicate, in a given sediments, the presence of components which are hard to identify 

petrographically owing to diagenetic alteration. The geochemical signatures of clastic 

sediments have been used to find out the provenance characteristics including; the 

composition of source area (Armstrong-Altrin et al., 2004; Jafarzadeh and Hosseini-Barzi, 

2008; Armstrong-Altrin, 2009; Dostal and Keppie, 2009; Umazano et al., 2009; Bakkiaraji 

etal., 2010), to evaluate weathering processes (Absar et al., 2009; Chakrabarti et al., 2009; 

Hossain et al., 2010), and to palaeogeographic reconstructions (Ranjan and Banerjee, 2009; 

Zimmermann and Spalletti, 2009; de Araújo et al., 2010). 

The Paleozoic succession of Iraq is exposed in the northernmost part of the country (Fig. 1) 

and can be traced south and west wards in the subsurface. The Paleozoic succession 

includes five intracratonic sedimentary cycles, the individual cycles are predominantly 

siliciclastic, or mixed siliclastic-carbonate units. Sedimentation was mainly controlled by 

tectonic and eustatic processes which governed the formation of depositional centres, the 

arrangement of accommodation space within these centres, and the pattern of infilling of the 

basins (Al-Juboury and Al-Hadidy, 2009). Interbedded sandstones and shales from the 

Ordovician Khabour Formation and the Devonian-Carboniferous Kaista Formation are 

selected for this  study to evaluate their provenance history.  
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Fig. 1. (a) The structural provinces of Iraq after Buday and Jassim (1987) and the location of 

the Akkas-1 and Khleisia-1 wells. (b) Paleozoic outcrops in the Ora region including the 

Khabour and Kaista formations (modified from Al-Omari and Sadiq, 1977). (c) Inset map 

shows countries neighboring Iraq. 
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Geochemically derived provenance information from the Paleozoic shales is compared with 

data from petrographical and geochemical studies of interbedded sandstones and siltstones, 

in order to assess agreement between the two approaches and to refine knowledge of the 

provenance for these Paleozoic successions of Iraq. 

2. Geologic setting 

The stratigraphy of Iraq is strongly affected by the structural position of the country 

within the main geostructural units of the Middle East region as well as by the structure 

within Iraq. Iraq lies in the border area between the major Phanerozoic units of the 

Middle East, i.e., between the Arabian part of the African Platform (Nubio-Arabian) and 

the Asian branches of the Alpine tectonic belt. The platform part of the Iraqi territory is 

divided into two basic units, i.e., a stable and an unstable shelf (Figure 1). The stable shelf 

is characterized by a relatively thin sedimentary cover and the lack of significant folding. 

The unstable shelf has a thick and folded sedimentary cover and the intensity of the 

folding increases toward the northeast (Buday 1980). In the Paleozoic, much of the region 

was covered intermittently by shallow epeiric seas that bordered lowlands made up of 

portions of the Nubio-Arabian shelf (Al-Sharhan and Nairn 1997). The areal extent of the 

shelf seas change in response to succeeding transgressions and regressions as the 

Paleozoic era advanced and their setting varied between tropical and temperate latitudes 

of the southern hemisphere (Beydoun 1991).  

Sedimentary basins of the Paleozoic of Iraq are characterized by the dominance of clastic 

deposition in the Ordovician and Silurian, with the formation of shallow epeiric seas, which 

covered large areas of the Arabian Platform. The Arabian Plate represented the northeastern 

part of the African Plate which extending north and northeastwards over the region now 

occupied by Iraq, the Arabian Gulf Region, Afghanistan, Pakistan, central, southern, and 

southeastern Turkey (Numan, 1997). This region represents the northern margin of 

Gondwana overlooked the southern margins of the Paleo-Tethys Ocean. Epicontinental seas 

regressed and transgressed over vast areas throughout the Paleozoic, resulting in generally 

various bed thicknesses and lithotype associations with persistence of facies and absence of 

unconformities. These characteristics contravene notions (Beydoun, 1991 and Best et al., 

1993) that is represented a Gondwana passive margin (Numan, 1997). This region of the 

Arabian Plate was evolved in AP2 tectonostratigraphic megasequence through intra-

cratonic setting (Northern Gondwana land intraplate Paleozoic basin sensu Numan, 1997) 

with an extension, subsidence and mild uplifting tectonic phase close to Paleo-Tethys 

passive margin at moderate to high southern latitudes and dominance of clastic 

sedimentation (Husseini, 1992; McGillivary and Husseini, 1992).  

The Paleozoic succession includes five intracratonic sedimentary cycles predominated by 

siliciclastic, or mixed siliclastic-carbonate units. The Paleozoic cycles commence within the 

Ordovician with the deposition of the Khabour Formation. This was followed in Silurian 

times by the Akkas Formation and this is unconformably overlain by the Middle-Late 

Devonian to Early Carboniferous cycle, represented by the Chalki, Pirispiki, Kaista, Ora and 

Harur formations. The overlying Permo-Carboniferous cycle is represented by the Ga'ara 

Formation. The uppermost cycle is late Permian in age and comprises the Chia Zairi 

Formation. The Paleozoic succession contains a series of muddy units distributed 
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throughout the stratigraphy. The oldest is found in the lower part of the Ordovician 

Khabour Formation and comprises up to c. 600 m of black fissile shales. Shale units are also 

present elsewhere within the Ordovician succession, although here they are generally 

interbedded with sandstones and siltstones. Calcareous shale alternates with sandstone and 

few dolomites in the Famenian Kaista Formation. 

The black shales near the base of the Khabour Formation in western Iraq were also 

recognized as a maximum flooding surface within the middle part of the Hiswah 

Formation in Jordan, near the base of the Swab Formation in Syria, and near the base of 

Saih Nihayda Formation in Oman (Sharland et al. 2001). It is also recognized by Al-

Sharhan and Nairn (1997) as a major regional maximum flooding surface separating the 

Sauk and Tippecanoe sequences sensu Sloss (1963). Lithofacies analysis of the succession 

in the well Akkas-1  from the western desert of Iraq (Al-Juboury and Al-Hadidy, 2009) 

revealed that five lithofacies can be recognized. These are; basinal shale facies, transition 

(shelf to shore-face) facies, tidal storm regressive and transgressive facies, and the near-

shore facies.  

In surface section of extreme north Iraq, the Khabour Formation consists of alternations of 
thin-bedded, fine-grained sandstones, quartzites (Cruziana-rich) and silty micaceous 
shales, olive-green to brown in color. The quartzites are generally cross-bedded, both 
finely and coarsely, the thicker beds being generally white in color. Bedding planes are 
usually well-surfaced with smooth films of greenish micaceous shales. Quartzite beds are 
occasionally truncated by the overlying beds and show fucoids markings, in filled trails 
and burrows, pitted surfaces and, other bedding-plane structures of unknown origin. 
Metamorphism is very slight in the thin-bedded shales with quartzites, and almost 
unnoticeable in the thicker shale beds, (van Bellen et al., 1959). Karim (2006) has noted 
that the formation in north Iraq was deposited in a spectrum of environments including 
fluviatile, deltaic, shelf, slope, and deep marine.  The depositional environment of the 
Kaista Formation is interpreted to be a mixed fluvial-marine system. The lower part of the 
Kaista Formation represents the continuation of clastic influx from the former regressive 
sequences of the Pirispiki Formation (early Late Devonian), followed by a transgressive 
phase characterized by a shale facies with glauconite and thin dolostones (Al-Juboury and 
Al-Hadidy. 2008). 

3. Materials and methods 

Sandstones and shale samples were selected from the Paleozoic Khabour and Kaista 

formations from west and North Iraq (Figs. 2 and 3). Totally 50 samples were collected and 

24 sandstone (medium to coarse-grained) samples were studied for modal analysis. Between 

300-350 grains were counted in each thin section using the Gazzi-Dickinson method to 

minimize the dependence of rock composition on grain size. Framework parameters 

(Ingersoll & Suczek, 1979) and detrital modes of sandstones from the studied formations are 

given in Table 1. 

Whole-rock chemical analyses were performed for 28 samples, which include  16 sandstone 
and 12 shale. Analyses were performed by X-Ray Fluorescence (XRF) and inductively 
couple plasma-mass spectrometry (ICP-MS) at laboratories of Earth Science Department of 
Royal Holloway of London University, UK and the results are provided in Tables 2 and 3 
respectively. Some X-Ray diffraction (XRD) and scanning electron microscope (SEM) 
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analyses were done at laboratories of Wollongong University (Australia) and Bonn 
University (Germany). 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 2. Generalized lithological succession of the Khabour Formation in Akkas-1 and 
Khleisya wells of west Iraq and outcrop section at Amadia on north Iraq showing 
lithological description and location of the analyzed samples. 
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Fig. 3. lithological section of the upper part of the Kaista Formation at Ora region of extreme 
north Iraq 

4. Results 

4.1 Sandstone petrography 
Quartz is the most dominant constituent of the studied Khabour and Kaista sandstones. 
Mono-crystalline quartz is the most abundant framework grains. The monocrystalline quartz 
grains with or without inclusions, the most common inclusions recognized are vacuoles, 
acicular rutile, spherulitic zircon, muscovite, apatite and iron oxides. Straight to slightly 
undulatory extinction is frequent type in the quartz studied. According to the genetic and 
empirical classification of the quartz types (Folk, 1974), the monocrystalline quartz grains are 
dominantly plutonic and polycrystalline quartz grains are recrystallized and stretched 
metamorphic types. Sedimentary (Ls), metasedimentary (metamorphic, Lm), and volcanic 
lithics (Lv), occur in few and varying proportions throughout the sequences of the Khabour 
and Kaista sandstones (Figs. 4 and 5). Sedimentary lithics (Ls) are the major rock fragments 
and are dominantly chert. The feldspars are dominated by plagioclase, untwined orthoclase, 
and twinned microcline (cross-hatching). Mica commonly observed  in  the studied sandstones 
in forms of mica laths and biotite. All samples contain accessory minerals, in minor or trace 
amounts. The dominant heavy minerals identified are zircon, tourmaline, and rutile. 
Framework composition of the studied Paleozoic sandstones varies from litharenite 
(sublitharenite, chertarenite) to subarkose and few quartzarenites (Fig. 6). The sandstones are 
generally cemented by carbonates, secondary silica, ferruginous,  and clayey materials.    
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Fig. 4. Photomicrographs of the Khabour sandstones showing (a), monocrystalline quartz 
and fresh feldspar (F) in carbonate cemented medium grained sandstone. (b), polycrystalline 
quartz (Qp) and chert (Ch) in medium grained sandstone, note the corroded edges of quartz 
grains (c), fine-grained sanstones with mica laminations (d), fine-medium grained 
sandstone, pure quartzarenite with very rare calcite cement patches (e), ferruginous 
medium grained sandstone (f)  fine-grained poorly sorted micaceous sandstone 
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Fig. 5. Photomicrographs of the kaista sandstones showing (A), monocrystalline quartz 
grains floating in carbonate cement, (B), sandstone with patchy carbonate cement  (arrows),  
(C), iron oxides (sulphides) scattered in quartz rich sandstone, note secondary quartz 
overgrowth over detrital quartz grain with a chlorite rim between them, (D), highly 
compacted quartzarenite, note the sutured contacts between grains and two common zircon 
heavy mineral grains (arrows), (E, and enlarged view in F), compacted  sandstone with 
long-tangential contacts , note chert  grains (Ch) and common biotite (B). 
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Table 1. Detrital and authigenic modes of 24 selected samples of Khabour and Kaista 
sandstones. Qm, monocrystalline quartz, Qp, polycrystalline quartz, Qt, total quartz, P, 
plagioclase, K, K-feldspar, Ft, total feldspar, Lv, igneous rock fragments, Lm, metamorphic 
rock fragments, Ls, sedimentary (chert) rock fragments, Lt, total ( labile) rock fragments, 
Mtx, matrix,  Cements (C, calcite, D, dolomite, F, ferruginous, S, sericite and illite), others 
mostly iron oxides, sulphides and heavy minerals. 
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Fig. 6. Minerlaogical classification of the Khabour and Kaista sandstones (Folk, 1974). Q, 
total quartz; F, Feldspar; RF, rock fragments,  SRF, sedimentary rock fragments; VRF, 
volcanic (igneous rock fragments); MRF, metsedimentary (metamorphic) rock fragments;  
CHT, chert; CRF, carbonate rock fragments ; SS, sandstone, and SH, shale. 
Open circles represents Khabour sandstones and solid circles are Kaista sandstone samples 

4.2 Geochemistry 
4.2.1 Major elements 
Major element distribution reflects the mineralogy of the studied samples. Sandstones are 
higher in SiO2 content than shales (Tables 2 and 3 and Fig. 7). Similarly, shales are higher in 
Al2O3, K2O, Fe2O3 and TiO2 contents than sandstones, which reflect their association in clay-
sized phases (Cardenas et al., 1996; Madhavaraju and Lee, 2010). The Al2O3 abundances are 
used as normalization factor to make possible the comparison between different lithologies 
as it is likely to be immobile during weathering, diagenesis, and metamorphism (Bauluz et 

al., 2000). In Fig. 7, major oxides are plotted against Al2O3. Average UCC(Upper Continental 
Crust) and PAAS (post Archaean Australian shale) values (Taylor and McLennan, 1985) are 
also included for comparison. Among other major elements Fe2O3, MgO, K2O, TiO2 and 
P2O5 are consequently showing strong positive correlations with Al2O3, whereas CaO, Na2O 
and MnO do not have any trend (Fig. 7). This, strong positive correlations of major oxides 
with Al2O3 indicate that they are associated with micaceous/clay minerals.  
The studied samples are normalized to UCC (Taylor and McLennan, 1985) and are given in 
Fig 8. In comparison with UCC the concentrations of most major elements in sandstones are 
generally similar, except for Na2O, with consistently lower average relative concentration 
value specially for the Kaista sandstones. The depletion of Na2O (< 1%) in sandstones can be 
attributed to a relatively smaller amount of Na-rich plagioclase in them, consistent with the 
petrographic data. K2O and Na2O contents and their ratios (K2O/Na2O > 1) are also 
consistent with the petrographic observations, according to which K-feldspar dominates 
over plagioclase feldspar and common presence of mica as veinlets and patchy distribution 
in the sandstones of the Khabour Formation (Fig. 4). Some of Kaista sandstones are enriched 
in CaO and MgO due to the presence of diagenetic calcite and dolomite cements.  
In comparison with UCC, the studied shales are low in CaO and Na2O contents and high in 
Al2O3, K2O, and TiO2 contents. Whereas, Kaista shales are enriched in Fe2O3  in comparison  
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Fig. 7. Major elements versus Al2O3 graph showing the distribution of samples from the 
khabour and Kaista formations. Average data of UCC and PAAS (Taylor and McLennan, 
1985) are also plotted for comparison. 
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with UCC. Al and Ti are easily absorbed on clays and concentrate in the finer, more 
weathered materials (Das et al., 2006). K2O enrichment relates to presence of illite as 
common clay mineral in the studied shales (Fig. 9). On average, the studied shales have 
lower SiO2 abundances relative to UCC therefore the observed variations are may be due to 
quartz dilution effect (Bauluz et al., 2000; Dokuz and Tanyolu, 2006). 

4.2.2 Trace elements 

4.2.2.1 Large ion lithophile elements (LILE): Rb, Ba, Sr, Th, and U 

On average, except Rb all studied sandstones and shales are depleted in Ba, Sr, while they 
have higher content of Th, and U as compared with UCC (Fig. 8). Th and U show similar  
 

 

Fig. 8. Spider plot of major and trace elements composition for the Khabour and Kaista 
sandstones and shales normalized against UCC (Taylor and McLennan, 1985). The trace 
elements ordered with the large ion-lithophile (LILE) on the left (Rb-U), followed by high 
field strength elements (HFSE) on the right (Y-Hf) and the transition metals (V-Sc). 
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geochemical behavior due to their high positive correlation coefficient (r = 0.65; n=16 and r = 
0.7; n=12) for sandstones and shales respectively. Except for U and Th, the remaining LILE 
of the studied Khabour and Kaista sandstones have significant correlations with Al2O3. The 
trace elements such as Sr, Rb, and  Ba are correlated positively (r = 0.50, r = 0.60 and r = 0.73, 
respectively; n=28) against Al2O3. These correlations suggest that their distribution is mainly 
controlled by phyllosilicates. Th weak positive correlation with Al2O3 but have strong 
positive correlations with other elements, such as Ti and Nb (r = 0.72 and r = 0.76, 
respectively; n=28), implying that it may be controlled by clays and/or other phases (e .g. 
Ti- and Nb-bearing phases) associated with clay minerals. Rb and Ba are strong positively 
correlated (r = 0.89; n=16) in sandstones indicating a similar geochemical behavior, and they 
are also well correlated with K2O (r = 0.90 and r = 0.89, respectively; n=16). These 
correlations suggest that their distributions are mainly controlled by illites.  

4.2.2.2 High field strength elements (HFSE): Y, Zr, Nb, and Hf  

The HFSE elements are enriched in felsic rather than mafic rocks (Bauluz et al., 2000). The 

concentrations of relatively all HFSE are much higher than UCC (Fig. 8). The well positive 

correlations for the studied sandstones obtained for TiO2 with Zr (r = 0.59; n=20), Nb (r = 

0.78; n=16), and Hf (r = 0.63; n=16) suggest that their behavior is mainly controlled by the 

detrital heavy mineral fraction. Zr and Hf behave similar as showed by their high positive 

correlation coefficient value (r = 0.90; n=16). The Zr/Hf ratio in the analyzed samples ranges 

from ~ 25-45. This suggests that these elements are controlled by zircons, since these values 

are nearly identical to those reported by Murali et al. (1983) for zircon crystals. Mean Zr 

content in shales are lower than the associated sandstones, which indicate that the mineral 

zircon tends to be preferentially concentrated in coarse-grained sands. These differences 

between shales and sandstones indicate that sedimentary process such as mineral sorting 

has played an important role.  

4.2.2.3 Transition trace elements (TTE): V, Co, Cu, Ni, and Sc 

TTE in the studied sandstones and shales are depleted in comparison with UCC (Fig. 8) 

except Sc which is more than UCC in shales. The transition trace elements do not behave 

uniformly. Among TTE, Sc is correlated positively with Al2O3 (r = 0.8; n=16) where others 

are well correlated in sandstones, which indicates that it is mainly concentrated in the 

phyllosilicates.  

4.2.2.4 Rare earth elements (REE) 

The ΣREE concentrations of the Khabour and Kaista sandstones are generally lower or 

nearly  same than that  of UCC. However, Khabour and Kaista shales are higher than those 

of UCC.  Generally the studied sandstones have less content of REE than shales  (ΣREE = 

182.2, 281.8 and 126.0, 292.3 for the sandstones and shales of the Khabour and Kaista 

formation respectively). REE are generally reside in minerals like zircon, monazite, allanite, 

etc (McLennan, 1989). High REE in Kaista sandstones is due to high zircon content. 

However, the liner correlation coefficients between ΣREE and Al2O3 suggest that clays are 

also important in hosting the REE (Condie, 1991). If LREE, MREE and HREE are separately 

considered, all of them show positive correlations with Al2O3 (r = 0.48, 0.39 and 0.40, 

respectively; n=16) and weak positive correlation with Zr.. These positive correlations seem 

to indicate the variable influence of mineral phases such as phyllosilicates and less effect of 

zircon in controlling the REE contents.  
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Fig. 9. A- X-Ray diffractogram showing the main clay and non-clay minerals content. B- 
SEM image illustrating the illite fibers (arrows) and degraded kaolinite hexagonal (K) in the 
Kaista shale. C- common illite fibers and flakes (arrows) filling pores in Khabour sandstone, 
Qz is quartz with secondary overgrowth.  
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Table 2. Major and trace elements concentration of selected Khabour sandstone (S and Ss) 
and shale (Sh) samples. (See Figure 2 for samples location) 
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Sample KS1 KS2 KS3 KS4 KSh1 KSh2 KSh3 KSh4 
SiO2 94.43 89.26 71.11 63.82 50.58 47.53 53.78 52.5 
TiO2 1.07 0.46 1.06 0.65 1.32 1.23 1.02 0.93 
Al2O3 1.93 2.71 14.68 6.65 25.84 26.80 23.36 20.81 
Fe2O3 0.88 4.99 2.45 3.80 7.83 9.81 5.41 6.20 
MnO 0.009 0.029 0.01 0.13 0.01 0.01 0.01 0.14 
MgO 0.04 0.40 1.25 0.92 1.51 1.31 2.23 2.67 
CaO 0.03 0.08 0.14 14.32 0.41 0.43 0.54 4.86 
Na2O 0.04 0.03 0.11 0.28 0.32 0.24 0.18 1.51 
K2O 0.49 0.05 5.29 2.27 5.60 6.68 7.08 3.40 
P2O5 0.02 0.02 0.03 0.07 0.10 0.09 0.07 0.19 
L.O.I. 0.34 1.07 3.37 6.79 6.12 5.29 5.80 6.35 
SUM 99.28 99.1 99.5 99.7 99.64 99.42 99.48 99.56 
CIA 77.5 91.9 28.6 29.3 80.3 78.5 75.0 68.1 
Ni 6.1 22.2 19.8 9.4 48.9 61.9 49.1 39.9 
Co 1.1 11.9 2.0 3.5 7.5 8.3 13.8 15.3 
Cr 38.0 20.7 86.5 37.2 120.0 129.2 126.5 104.8 
V 38.5 15.6 93.1 58.5 124.5 149.8 175.6 129.1 
Sc 2.7 1.7 15.6 5.5 25.1 20.9 22.4 20.0 
Cu 9.8 7.7 3.4 9.5 3.5 3.7 4.0 27.1 
Zn 4.6 22.7 21.5 21.7 71.4 55.7 60.9 80.7 
Ga 2.2 2.9 22.4 9.1 28.7 27.7 32.1 13.7 
Pb 14.6 8.9 5.2 7.3 12.1 16.6 9.0 36.9 
Sr 23.6 28.5 40.5 147.9 108.8 161.3 69.1 193.4 
Rb 10.5 2.5 224.3 85.6 184.4 189.5 271.0 96.7 
Ba 29.0 31 895 295 542 542 467 495 
Zr 1115 343 445 668 306 226 128 178.8 
Hf 31 8.0 12 15 8 6 5 9 
Nb 21.5 8.9 28.9 14.5 30.0 31.5 27.1 8.9 
Ta 2.8 2.0 3.5 1.2 2.4 3.3 2.7 1.4 
Th 22.9 9.4 22.5 12.8 27.1 24.2 21.8 7.4 
U 4.1 2.1 3.0 1.8 6.0 4.8 5.3 1.5 
Y 30.3 15.4 21.5 33.1 38.2 51.8 22.4 19.7 

L.a 16.2 21.1 34.1 34.5 31.7 92.1 44.9 100.1 
Ce 31.0 42.7 64.2 63.8 55.5 170.1 76.4 193.8 
Pr 3.7 5.5 6.7 7.6 6.1 18.1 8.2 20.4 
Nd 14.3 23.7 24.3 31.2 22.6 75.0 29.6 84.5 
Sm 2.1 5.1 3.4 6.2 3.8 14.2 4.3 15 

Eu 3.0 1.0 0.6 1.0 0.8 2.9 0.8 2.7 
Gd 0.5 4.5 2.9 5.3 3.5 10.8 3.8 10.9 
Tb 2.9 0.8 0.6 1.0 0.7 1.8 0.7 1.6 
Dy 0.5 3.8 3.2 4.9 4.0 8.8 3.8 6.9 

Ho 2.7 0.7 0.7 1.0 0.9 1.7 0.8 1.3 
Er 1.6 2.0 2.4 2.8 2.7 4.8 2.5 3.7 
Tm 0.2 0.3 0.4 0.4 0.4 0.7 0.4 0.6 
Yb 1.6 1.9 3.0 3.1 3.2 5.2 2.9 4.2 

Lu 0.2 0.3 0.5 0.4 0.5 0.8 0.5 0.5 

Table 3. Major and trace elements concentration of selected sandstone (KS) and shale (KSh) 
samples of the Kaista Formation (See Figure 3 for samples location) 
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5. Provenance information from sandstones 

5.1 Source rocks 
As pointed out above, sandstones petrographic investigation revealed that they are variable 

(Table 1) with detrital quartz being the most abundant and constant component. The 

average quartz content of the Khabour sandstones is 63% and 65% for the Kaista sandstones. 

The feldspar content range from 6% to 12 %, and from 2% to 3% in the Khabour and Kaista 

sandstones respectively. Rock fragments range from 1 % to 9% in the Khabour sandstones 

and from 1% to 7% in the Kaista sandstones with sedimentary rock fragments dominated by 

chert being the dominant and small and occasional content of igneous and metamorphic 

fragments.  

The qualitative petrography study provides important information on the nature of the 

source area. Mono-crystalline quartz is the most abundant framework grains. Whereas, few 

polycrystalline quartz grains of (> 3 grains) per each polycrystalline grain were identified. 

Most of monocrystalline quartz grains are of straight to slightly undulatory extinction, with 

or without inclusions; where present, the most common inclusions are vacuoles, acicular 

rutile, spherulitic zircon, muscovite, apatite and iron oxides. Quartz types, inclusions and 

undulosity indicate a derivation from a dominantly plutonic (granitic) provenance with 

subordinate input from low rank metamorphic rocks. (Basu et al., 1975). 

to discriminate provenance fields for the studied rocks, a TiO2 vs. Ni bivariate plot (Fig. 10; 

Floyd et al., 1989) is used. The majority of samples plot in the acidic field, even though few 

samples plot outside the field assigned for felsic source. 

On a the La/Th vs. Hf bivariate (Fig. 11; Floyd and Leveridge, 1987) suggests the felsic 

source rocks although there are some differences in source rocks between shales and 

sandstones.  Furthermore, La/Sc versus Th/Co bivariate diagram (Fig. 12; Cullers, 2002), 

shows that nearly all the studied samples plot near to the silicic rock provenance 

composition. In addition, the REE patterns and the size of the Eu anomaly have been also 

used to infer sources of sedimentary rocks (Taylor and McLennan, 1985). Since basic igneous 

rocks contain low LREE/HREE ratios and little or no Eu anomalies, whereas silicic igneous 

rocks usually contain higher LREE/HREE ratios and negative Eu anomaly (Cullers, 1994; 

Cullers et al., 1987). The average chondrite normalized REE patterns of the studied rocks are 

shown in Figure 13. 

For comparison average REE patterns of Continental Crust , Continental Arc, Mid-Oceanic 

Ridge, and Oceanic Island Basalt are also included in this Figure 13. The chondrite 

normalized REE patterns for the Khabour and Kaista sandstones and shales are comparable 

to Continental Crust and Continental Arc. The REE patterns suggest that the samples were 

mainly derived from an old upper continental crust composed chiefly of felsic components. 

Similarly, in the Eu/Eu* and Th/Sc plot (Fig. 14; Cullers and Podkovyrov, 2002) the samples 

plot between the average values of granite and granodiorite source rocks with rare mafic 

provenance. 

The post-Archean pelites have low concentrations of mafic elements, particularly Ni and Cr, 

when compared to Archean pelites (McLennan et al., 1993). The reason for the high 

concentrations of Ni and Cr in the Archean pelites is due to the deficiency of ultra-mafic 

rocks in the post Archaean Period (Taylor and McLennan, 1985). The studied sandstones  

plot in the post Archaean field (Fig. 15) and suggest that the felsic component was dominant 

in the source area of the Khabour and Kaista formations. The (Gd/Yb)CN ratio also 

www.intechopen.com



 
Petrology – New Perspectives and Applications 

 

186 

document the nature of source rocks and the composition of the continental crust 

(Nagarajan et al., 2007; Taylor and McLennan, 1985). On a Eu/Eu* vs. (Gd/Yb)CN diagram 

(Fig. 16), the studied shales and most of the sandstones plot in the post Archean field and 

near to PAAS value, which suggest that the post Archean felsic rocks could be the source 

rocks for the Khabour and Kaista formations. Archean sources could be compared with 

those sources recorded for Paleozoic clastics in southern Turkey (Kröner and Sengör, 1990) 

and Iran (Etemad Saeed etal., 2011).   

 

 

Fig. 10. TiO2 versus Ni bivariate plot for the studied sandstones (Floyd et al., 1989). Majority 
of samples plot near the acidic sources. 

 

 

Fig. 11. Hf versus La/Th diagram (Floyd and Leveridge, 1987). 

McLennan et al. (1990) recognized four distinctive provenance components on the basis of 

geochemistry: old upper continental crust, young undifferentiated arc, young differentiated 

(Intracrustal) arc and Mid-Ocean ridge basalt (MORB). This study reveals that the studied 
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sandstones and shales were derived from an old and well-differentiated upper continental 

crust provenance, which is characterized by high abundances of large ion lithophile (LILE) 

elements, high Th/Sc, La/Sm, Th/U ratios and negative Eu anomaly (McLennan et al., 

1990). It seems that the felsic source for the Khabour and Kaista formations are similar to the  

 

 

Fig. 12. Th/Co versus La/Sc plot (Cullers, 2002). The studied  sandstones and shales plot 
near the silicic source. 

 

 

Fig. 13. Chondrite normalized rare earth element plots for the studied sandstones and 
shales. Average Continental Crust , Continental Arc, Mid-Oceanic Ridge, and Oceanic 
Island Basalt are also included. Data sources: Average Upper continental crust (Taylor and 
McLennan, 1995), N-MORB (average Sun and McDonough 1989) Continental arc (average 
from Georoc database query basaltic andesite convergent margin, ICPMS, REE only ), Ocean 
Island basalt (Sun and McDonough 1989) 
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acidic and basic igneous basement rocks of Iraq. The crystalline basement rocks of Iraq is 
interpreted from seismic and geophysical data to range in depth from about 6–10 km and is 
composed mostly of granitic, basic and ultra basic igneous and metamorphic rocks (Buday, 
1980; Al-Hadidy, 2007). 
 
 
 

 
 
 

Fig. 14. Eu/Eu*-Th/Sc bivariate plot for the samples from the Khabour and Kaista 
formations (Cullers and Podkovyrov, 2002). 

 
 
 

 
 
 

Fig. 15. Ni-Cr bivariate plot for the samples from the Khabour and Kaista formations 
(McLennan et al., 1993). 
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Fig. 16. Plot of Eu/Eu* versus (Gd/Yb)CN for the samples of the studied formations. Fields 
are after McLennan and Taylor (1991). 

5.2 Implications for tectonic setting 
Petrographic data from various framework constituents (Quartz, Feldspar, and Rock 
Fragments) were plotted on various ternary and bivariate diagrams to show their 
positions on various schemes in order to discriminate their tectonic settings and show 
their paleoclimatic and weathering conditions. On the Qt-F-L and Qm-F-Lt diagrams 
(Figure 17A) of Dickinson and Suczek, (1979), the Khabour sandstones plot in the recycled 
orogen and continental block provenances with stable craton sources and with uplifting in 
the basement complexes. Whereas, Kaista sandstones were plotted in the recycled Orogen 
Provenance.  Similarly, in the Lm-Lv-Ls and Qp-Lvm-Lsm ternary diagrams of Ingersoll 
and Suczek (1979) (Figure 17B) the studied sandstones plot mostly in mixed arc and 
subduction continental margin and in rifted continental margins and partly in sutured 
belt provenances. 
Within recycled orogens, sediment sources are dominantly sedimentary with subordinate 

volcanic rocks derived from tectonic settings where stratified rocks are deformed, uplifted 

and eroded (Dickinson, 1985; Dickinson and Suczek, 1979). As pointed out by Dickinson et 

al. (1983), sandstones plotting in craton interior field are mature sandstones derived from 

relatively low-lying granitoid and gneissic sources, supplemented by recycled sands from 

associated platform or passive margin basins. The detrital modal compositions of both 

Khabour and Kaista sandstones are plotted in the Q-F-L diagram (Fig. 18; Yerino and 

Maynard, 1984), which indicates that these sandstones are related to trailing-edge margin.  

Bhatia (1983) and Roser and Korsch (1986) proposed tectonic setting discrimination fields for 

sedimentary rocks to identify the tectonic setting of unknown basins. These tectonic setting 

discrimination diagrams are still extensively used by many researchers to infer the tectonic 

setting of ancient basins (Drobe et al., 2009; Gabo  et al., 2009; Maslov et al., 2010; Wani and 

Mondal, 2010 Bakkiaraji et al., 2010; Bhushan and Sahoo, 2010; de Araújo et al., 2010). 

However, the functioning of major elements tectonic setting discrimination diagrams 

proposed by Bhatia (1983) and Roser and Korsch (1986) have been evaluated in many 

studies. Armstrong-Altrin and Verma (2005) observed that the tectonic setting 

discrimination diagram proposed by Roser and Korsch (1986) works better than Bhatia’s 
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(1983) diagram. In this study, K2O/Na2O versus SiO2 tectonic setting discrimination 

diagram (Fig. 19) shows that most of the Khabour and Kaista samples fall in the Active 

continental and passive margin fields. 

 

 

 

 
 
 

Fig. 17. Provenance diagrams for the studied sandstones (A) Qt-F-L and Qm-F-Lt 
plots.Tectonic setting fields after Dickinson and Suczek (1979), and (B) Lm-Lv-Ls and Qp-
Lvm-Lsm after Ingersoll and Suczek (1979). Data and definitions are given in Table 1. 

As discussed above, the Khabour and Kaista sandstones posses similar characteristics of a  
passive margin setting as described by McLennan et al. (1993). Passive margin sediments are 
largely quartz-rich, derived from plate interiors or stable continental margins. Bhatia (1983) 
opined that the sedimentary rocks deposited on passive margins are characterized by 
enrichment of LREE over HREE with pronounced negative Eu anomaly on chondrite-
normalized patterns.  
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Fig. 18. Q-F-L tectonic provenance diagram for the Khabour and Kaista  sandstones, after 
Yerino and Maynard (1984). The studied sandstones plot near the TE field. TE: trailing edge 
(also called passive margin); SS: strike-slip; CA: continental-margin arc; BA: back arc to 
island arc; FA: fore arc to island arc. 

 

 

Fig. 19. Tectonic-setting discrimination diagram after Roser and Korsch (1986). PM = passive 
margin; ACM = Active continental margin; ARC = Island arc. 
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Fig. 20. Illustrating the effect of climate on the composition  of the Khabour sandstones  
using, A- Suttner et al., (1981) diagram. Q:Quartz; F: Feldspar, R: Rock fragments. B- 
Bivariate log/log plot (Suttner and Dutta, 1986). Qt: total Quartz, F: Feldspar, RF: Rock 
fragments, Qp: Polycrystalline quartz. C- Weathering diagram and semi-quantitative 
weathering index after Weltje (1994). CE: Carbonate clasts. D- Evaluate of paleoclimate  
condition based on relation between quartz and feldspar grains and degree of weathering of 
feldspar grains (Folk, 1974).  
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5.3 Weathering, relief, and climate  
In the Q-F-R ternary diagram (Suttner et al., 1981), Khabour and Kaista sandstones plot in 

the field of the metamorphic source area with humid climate (Fig. 20A). In addition, in the 

bivariate diagram of Suttner and Dutta (1986) the studied sandstones reveal the differences 

in climate condition from semi-arid to humid (Fig. 20B). Similarly, in the Grantham and 

Velbel (1988) weathering index wi = c* r and Weltje (1994) diagrams (Fig. 20C), the studied 

sandstones plot into the field of wi = 2 and 4 indicating moderate to high degree of 

weathering in low plains relief and from semi-arid to semi-humid climate conditions and 

mainly between metamorphic and plutonic compositions. Furthermore, in the Folk (1974) 

weathering intensity diagram (Fig. 20D), some of the Khabour and Kaista sandstones plot in 

the mixed moderately weathered field and fresh feldspars plot in the temperate to arid 

climate field, whereas quartzite sandstones of both formations plot in the humid climate 

field. The intensity and duration of weathering in clastic sediments can be evaluated by 

examining the relationships among alkali and alkaline rare earth elements (Nesbitt and 

Young, 1996; Nesbitt et al., 1997). Various investigators have utilized the so-called "Chemical 

Index of Alteration" (CIA) of Nesbitt and Young (1982) to evaluate the intensity and the 

degree of chemical weathering: CIA = [Al2O3/( Al2O3 + CaO + Na2O + K2O)] * 100, where 

the oxides are expressed as molar proportions and CaO represents the Ca in silicate 

fractions only. The high CIA values in shales (mean 79 and 76, for the Khabour and Kaista 

formations respectively) and most of the studied sandstones (see Tables 2 and 3) indicate a 

moderate to intense weathering of first cycle sediment, or alternatively, recycling could have 

produced these rocks.  

6. Conclusions 

The Ordovician Khabour Formation in subsurface sections of west Iraq and in surface 

section of extreme north Iraq consists of sandstones and shales. Whereas, sandstone 

units of Devonian-Carboniferous Kaista Formation intercalate with limestone and 

shales The provenance of these formations has been assessed using integrated 

petrographical and geochemical data of the interbedded sandstones and shales to arrive 

at an internally consistent interpretation. The Khabour sandstones are subarkose and 

sublitharenite with few quartzarenite and derived largely from recycled orogen and 

continental block provenances while Kaista sandstones are mostly quartzarenite from 

recycled orogen. Both studied sandstones are predominantly derived from a felsic and 

rare mafic sources with a component from pre-existing sedimentary and volcanic rocks. 

Compositional differences and increase in the degree of weathering from sandstones to 

shales indicate climatic variations (semi-arid to humid) in the source area. In general, 

the acidic (felsic sources) and rare mafic sources with a prevailing continental margin 

tectonic setting for the Khabour sandstones, in accordance with higher values of 

Thorium/Scandium (Th/Sc) and Thorium/Uranium (Th/U) values seem  that the felsic 

and mafic sources for the Khabour sandstone are likely consisted of basement rocks of 

Iraq. The Kaista sandstones were recycled from older sedimentary succession and were 

deposited in a fluvio-marine depositional system with dominating moderate to high 

degree of weathering in low plains regions and from semi-arid to semi-humid climate 

conditions. 
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