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1. Introduction 

The old lithospheric mantle beneath the North China Craton (NCC, Fig. 1a) was extensively 
thinned during the Phanerozoic, especially in the Mesozoic and Cenozoic, resulting in the 
loss of more than 100 km of the rigid lithosphere (Menzies et al., 1993; Fan et al., 2000). This 
inference comes from the studies on the Ordovician diamondiferous kimberlites (Fig. 1b), 
Mesozoic lamprophyre-basalts and Cenozoic basalts, and their deep-seated xenoliths (e.g. 
Lu et al., 1995; Griffin et al., 1998; Menzies & Xu, 1998; Zhang et al., 2002). This remarkable 
evolution of the subcontinental lithosphere mantle, which has had profound effects on the 
tectonics and magmatism of this region, has attracted considerable attention (e.g. Guo et al., 
2003; Deng et al., 2004; Gao et al., 2004; Rudnick et al., 2004; Xu et al., 2004; Ying et al., 2004; 
Zhang et al., 2004a, 2005, 2008; Wu et al., 2005; Tang et al., 2006, 2007, 2008, 2011; Zhao et al., 
2010). However, the cause of such a dramatic change, from a Paleozoic cold and thick (up to 
200 km) cratonic mantle (Griffin et al., 1992; Menzies et al., 1993) to a Cenozoic hot and thin 
(< 80 km) “oceanic-type” lithospheric mantle, is still controversial. 
Based on the Mesozoic basalt development, Menzies and Xu (1998) argued that thermal and 
chemical erosion of the lithosphere was perhaps triggered by circum-craton subduction and 
subsequent passive continental extension. This suggestion was first supported by the 
geochemical studies on the Mesozoic basalts and high-Mg# basaltic andesites on the NCC 
(Zhang et al., 2002, 2003). A partial replacement model was proposed, having a sub-
continental lithospheric mantle in this region composed of old lithosphere in the uppermost 
part and newly created lithosphere in the lower part (Fan et al., 2000; Xu, 2001; Zheng et al., 
2001). The clearly zoned mantle xenocrysts found in Mesozoic Fangcheng basalts (Zhang et 
al. 2004b) provide the evidence for such a replacement of lithospheric mantle from high-Mg 
peridotites to low-Mg peridotites through peridotite-melt reactions (Zhang, 2005). Another 
different model was also proposed that ancient lithospheric mantle was totally replaced by 
juvenile material in the Late Mesozoic (Gao et al., 2002; Wu et al., 2003). On the basis of Os 
isotopic evidence from mantle xenoliths enclosed in Cenozoic basalts, Gao et al. (2002) 
suggested that two times replacement existed in the NCC. They attributed the replacement 
of the old lithospheric mantle beneath the Hannuoba region to the collision of the Eastern 
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Block with the Western Block and the second time perhaps to the collision of the Yangtze 
Craton with the NCC. Based on the study of Mesozoic Fangcheng basalts, Zhang et al. (2002) 
proposed that the replacement of the lithospheric mantle beneath the southern margin of the 
NCC was triggered by the collision between the Yangtze and the NCC. Zhang et al. (2003) 
further suggested that the secular lithospheric evolution was related to the subduction 
processes surrounding the NCC, which produced the highly heterogeneous Mesozoic 
lithospheric mantle underneath the NCC (Zhang et al., 2004a). In contrast, Wu et al. (2003) 
thought that subduction of the Pacific plate during the Mesozoic was the main cause of 
lithospheric thinning. Meanwhile, Wilde et al. (2003) correlated this event with the 
lithospheric thinning resulting from the breakup and dispersal of Gondwanaland and 
suggested that the removal was partial loss of mantle lithosphere, accompanied by 
wholesale rising of asthenospheric mantle beneath eastern China. 
 

 

Fig. 1. (a) Map showing the location of the North China Craton (NCC); (b) Three subdivision 
of the NCC (modified from Zhao et al., 2001). Two dashed lines outline the Central Zone 
(CZ), the Western Block (WB) and the Eastern Block (EB); (c) The distribution of Cenozoic 
basalts, Mesozoic mafic intrusive rocks and of Archean terrains in the studied area. 

Based on the Daxing’anling-Taihang gravity lineament (DTGL), the NCC can be divided 
into western and eastern parts (Ordos and Jiluliao terrains, Fig. 1b). The temporal variations 
in geochemistry of Cenozoic basalts from both sides of the DTGL suggest an opposite trend 
of lithospheric evolution between the western and eastern NCC (Xu et al., 2004), i.e. the 
progressive lithospheric thinning in the western NCC and the lithospheric thickening in the 
eastern NCC during the Cenozoic. Considering that the Taihang Mountains are in the 
Central Zone of the NCC, which geographically coincides with the DTGL (Fig. 1b), the 
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Mesozoic-Cenozoic lithospheric evolution beneath this region is an important issue to 
comprehensively decipher the mechanism for the lithospheric evolution beneath the NCC. 
In this paper, a summary of geochemical compositions of Mesozoic gabbros, Cenozoic 
basalts and their peridotite xenoliths in the Central Zone are presented to trace the 
petrogenesis of these rocks, the Mesozoic-Cenozoic basaltic magmatism, and further to 
discuss the potential mechanism of the lithospheric evolution in this region. 

2. Geological background and petrology 

The NCC is one of the oldest continental cratons on earth (3.8~2.5 Ga; Liu et al., 1992a) and 
is composed of two Archean nuclei of Eastern and Western Blocks (Fig. 1b). The Eastern 
Block has thin crust (<35 km), weakly negative to positive Bouguer gravity anomalies and 
high heat flow because of widespread lithospheric extension during Late Mesozoic and 
Cenozoic, which produced the NNE-trending North China rift system (Fig. 1b), and the 
lithosphere is inferred to be <80~100 km (Ma, 1989). The Western Block has thick crust (>40 
km), strong negative Bouguer gravity anomalies, low heat flow and a thick lithosphere 
(>100 km) (Ma, 1989). The Yinchuan-Hetao and Shanxi-Shaanxi rift systems (Fig. 1b) 
appeared in the Early Oligocene or Late Eocene, and the major extension developed later in 
the Neogene and Quaternary (Ye et al., 1987; Ren et al., 2002). 
The basement of the NCC is composed of amphibolite to granulite facies rocks, such as 
Archaean grey tonalitic gneisses and greenstones and Paleoproterozoic khondalites and 
interlayered clastic, and an overlying neritic marine sedimentary cover (Zhao et al., 1999, 
2001). It was considered that the NCC underwent the ~1.8 Ga subduction/collision between 
the Eastern and Western Blocks (Zhao et al., 1999, 2001) resulting in the amalgamation of the 
NCC. The east edge of the orogenic belt coincides with the Taihang Mountains rift zone. 
 

 

Fig. 2. Major oxide variations of the Mesozoic and Cenozoic basaltic rocks from the Central 
Zone. Data sources: Cenozoic basalts (Zhou & Armstrong, 1982; Xu et al., 2004; Tang et al., 
2006), Mesozoic rocks (Cai et al., 2003; Chen et al., 2003, 2004; Chen & Zhai, 2003; Peng et al., 
2004; Zhang et al., 2004), classification of volcanic rocks (TAS diagram, Le Bas et al., 1986), 
the boundary between alkaline and tholeiitic basalts (Irving & Baragar, 1971). 
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In the Central Zone of the NCC, the Mesozoic mafic intrusions are widespread, e.g. 
Donggang, Guyi, Fushan gabbros (150~160 Ma), Wuan monzonitic-diorites (126~127 Ma), 
Laiyuan gabbro, Wang’anzhen and Dahenan monzonites (135~145 Ma) (Fig. 1c), which were 
cut by minor, late stage calc-alkaline lamprophyres (~120 Ma) that occur as dykes or small 
intrusions (Chen et al., 2003, 2004; Chen & Zhai, 2003; Peng et al., 2004 and references 
therein; Zhang et al., 2004a). These Mesozoic gabbros are of small volume and occur as 
laccoliths, knobs, or as xenoliths in Mesozoic dioritic intrusions.  
Cenozoic basalts in the Central Zone (Fig. 1c) are distributed in the Hebi (~4 Ma), Zuoquan 
(~5.6 Ma), Xiyang-Pingding (7~8 Ma) and Fanshi-Yingxian regions (24~26 Ma) (Liu et al., 
1992b), which are mainly composed of alkaline basalts and olivine basalts, including 
alkaline and tholeiitic sequences (Fig. 2). Abundant mantle-derived peridotite xenoliths are 
found in the basalts from the Fanshi and Hebi regions (Zheng et al., 2001; Xu et al., 2004), 
and mantle olivine xenocrysts are entrained in the Xiyang-Pingding basalts, which are 
interpreted as the relict of old lithospheric mantle (Tang et al., 2004). 

3. Methodology and samples 

Experiments have demonstrated that more SiO2-undersaturated magmas are produced at 

higher pressures than tholeiitic lavas (e.g., Falloon et al., 1988). Because the lithospheric 

mantle and asthenosphere generally are different in geochemical signatures, it can be 

inferred that the lithosphere is >80 km thick if the alkali basalts have an isotopic signature of 

sub-continental lithospheric mantle. Conversely, if the tholeiitic basalts have an 

asthenospheric signature the lithosphere is inferred to be <60 km thick (DePaolo and Daley, 

2000). The geochemistry of mantle-derived magmas is dependent on the depth of melting 

(Herzberg, 2006), thus the geochemistry of basaltic rocks can be used to monitor variation in 

lithospheric thickness and geochemistry through time (e.g., DePaolo and Daley, 2000).  

Ideally, tracing the chemical evolution of the mantle lithosphere would be accomplished by 

measuring the compositions of coherent, pristine suites of direct mantle samples, lacking 

metasomatic overprints, and with a well-determined age and geological context. The 

chemical compositions of direct mantle samples such as abyssal peridotites and peridotite 

xenoliths, and of indirect probes of the mantle such as basalts from MORBs and OIBs, have 

provided strong evidence for chemical complexity and heterogeneity of the mantle 

(Hofmann, 2003). Complexity in the interpretation of chemical compositions of basalts often 

results from the modification of primary melt compositions due to crustal contamination 

during their generation and ascent. For this reason, the most primitive basalts, usually with 

the highest-MgO content, are taken to be the least affected by crustal interaction and 

therefore the best record of mantle compositions. 

Mesozoic basaltic rocks in the Central Zone are dominantly gabbroic intrusions, which are 

derived from lithospheric mantle (Tan & Lin, 1994; Zhang et al., 2004). Some of them contain 

peridotite and/or pyroxenite xenoliths (Xu & Lin, 1991; Dong et al., 2003). Previous 

petrological and geochemical studies indicate that the gabbroic rocks have compositions of 

original basaltic magmas (Tan & Lin, 1994; Zhang et al., 2004). Although some workers 

report crustal contamination (Chen et al., 2003; Chen & Zhai, 2003; Chen et al., 2004), others 

suggest that in many cases isotopic composition of these rocks still reflect variation in the 

mantle source and can provide the information on the continental lithospheric mantle 

beneath the region (Tan & Lin, 1994; Dong et al,. 2003; Zhang et al., 2004). 
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In contrast, the geochemical features of Cenozoic basalts from Taihang Mountains (Tang et 
al., 2006), are very similar to those of the Cenozoic Hannuoba basalts (e.g. Zhou & 
Armstrong, 1982; Song et al., 1990; Basu et al., 1991), suggest their derivation mainly from 
asthenosphere with negligible crustal contamination. The occurrence of mantle xenoliths 
and xenocrysts suggests that these lavas ascended rapidly, implying that significant 
interaction with crustal wall rocks could not happen. So, their chemical compositions can be 
used to probe their mantle sources. Although these basalts are dominantly of asthenospheric 
source, their variable Sr-Nd isotopic ratios indicate some contributions of lithospheric 
mantle (Tang et al., 2006), whereby we could indirectly trace the feature of the Cenozoic 
mantle lithosphere. Meanwhile, some available data of mantle xenoliths entrained in these 
Cenozoic basalts can be used to directly infer the nature of the lithospheric mantle beneath 
the craton.  
Due to the biases brought about by variable assimilation-fractional crystallization processes, 
we use only gabbros and basalts with the geochemical compositions of relatively primitive 
samples (MgO >6 wt.%) from each region, as well as their hosted peridotite xenoliths, to 
study the nature of mantle lithosphere beneath the Central Zone of the NCC. 

4. Variations in geochemical compositions 

Figures 2-7 show clear variations in geochemical compositions between the Mesozoic and 

Cenozoic basaltic rocks in the Central Zone. Compared with the Cenozoic basalts, the 

Mesozoic mafic intrusive rocks are: (1) higher in SiO2, lower in FeOT and TiO2 contents (Fig. 

2); (2) enriched in light rare earth element (LREE) and large ion lithophile element (LILE, 

such as Ba, Th and U), but depleted in high field strength element (HFSE, e.g. Nb, Ta, Zr and 

Ti; Figs. 3 & 4); (3) high Sr and low Nd and Pb isotopic ratios (most 87Sr/86Sri=0.705~0.7065, 
143Nd/144Ndi<0.512; Fig. 5; 206Pb/204Pbi<17.5, 207Pb/204Pbi<15.5, 208Pb/204Pbi<38.0, Fig. 6), 

typically EM1 features. These features are completely different from those of MORB, OIB 

and Cenozoic basalts in this region, which are generally lower in SiO2, higher in FeOT and 

TiO2 contents (Fig. 2), depleted in Sr-Nd isotopes (Fig. 5) and have no HFSE depletion (Figs. 

3 & 4). These geochemical distinctions reflect their mantle source differences between 

Mesozoic and Cenozoic times. 

 

 

Fig. 3. Primitive mantle-normalized trace element diagrams for the basaltic rocks from the 
Central Zone. Data sources: primitive mantle (McDonough & Sun, 1995), others as in Fig. 2. 
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5. Discussion 

5.1 Petrogenesis of Cenozoic basalts and lithospheric thickness 
Cenozoic basalts from the Taihang Mountains have many similar features to those of 
Cenozoic Hannuoba basalts (Zhou & Armstrong, 1982; Peng et al., 1986; Song et al., 1990; 
Basu et al., 1991; Liu et al., 1994) and many alkali basalts from both oceanic and continental 
settings (Barry & Kent, 1998; Tu et al., 1991; Turner & Hawkesworth, 1995) in their elemental 
and isotopic compositions (Figs. 2-7). Their common geochemical features of OIB and/or 
MORB are interpreted as having been derived from the asthenospheric mantle. 
 

 

Fig. 4. Variations in trace-element ratios for the basaltic rocks from the Central Zone. Data 
sources: BSE, N-MORB and OIB (Sun & McDonough, 1989; McDonough & Sun, 1995); NCC-
granulite, the average composition of old granulite terrains on the NCC (Gao et al., 1998); 
Continental crust (Rudnick & Gao, 2003). Other data sources and symbols as in Fig. 2. 

Their incompatible trace element ratios, e.g. Ba/Nb, La/Nb, Zr/Nb, Ce/Nb, Ce/Ba, Nb/U 
and Ce/Pb values, are very close to those of OIB (Fig. 4). Some slightly lower and variable 
Nb/U ratios for these Cenozoic basalts (Fig. 4d) might suggest the involvement of 
lithospheric mantle in their source, because the metasomatised lithospheric mantle is 
probably involved in producing the negative Nb anomalies (Arndt & Christensen, 1992). 
Moreover, the lower initial ratios of 143Nd/144Ndi (<0.5125) and higher 87Sr/86Sri (>0.705; Fig. 
5) also indicate the involvement of old lithospheric mantle beneath the NCC. Three low 
ratios of Pb isotopes (206Pb/204Pbi<16.9) of the Cenozoic basalts (Fig. 6) are close to the field 
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of the Smoky Butte lamproites that were believed to have been derived from ancient EM1-
type lithospheric mantle (Fraser et al., 1985). They are also similar to those of Cenozoic 
potassic basalts in the Wudalianchi, northeastern China (Zhang et al., 1998), whose source is 
interpreted as metasomatically enriched mantle. Integrating the isotopic ratios with the 
element compositions, the Cenozoic basalts from the Taihang Mountains are inferred to be 
derived from partial melting of an asthenospheric source with different degrees of the 
involvement of old lithospheric mantle. 
 

 

Fig. 5. 87Sr/86Sri vs. 143Nd/144Ndi diagrams for the basaltic rocks from the Central Zone, 
compared with the Hannuoba basalts (Song et al., 1990; Zhi et al., 1990; Basu et al., 1991; Xie 
& Wang, 1992), old lithospheric mantle (OLM) beneath the NCC (Zhang et al., 2002), CPX in 
peridotite xenoliths in the Fanshi (Tang et al., 2008; 2011), Yangyuan (Ma & Xu, 2006) and 
Hannuoba basalts (Song & Frey, 1989; Tatsumoto et al., 1992; Fan et al., 2000; Rudnick et al., 
2004), DM, MORB and OIB (Zindler & Hart, 1986), Mesozoic Fangcheng basalts (Zhang et 
al., 2002), Mesozoic Jinan gabbros (Zhang et al., 2004) and Zouping gabbros (Guo et al., 2003; 
Ying et al., 2005), the upper-middle crust and lower crust of the NCC (Jahn & Zhang, 1984; 
Jahn et al., 1988). Other data sources and symbols as in Fig. 2. 

The clinopyroxenes (CPX) in mantle peridotite xenoliths entrained in the Cenozoic basalts 
have significant variations in Sr-Nd isotopic compositions (87Sr/86Sr = 0.7022 ~ 0.7060 and 
143Nd/144Nd = 0.5135 ~ 0.5118; Fig. 5), that could be explained by the peridotite-melt 
reaction (Tang et al., 2008). On the one hand, the difference between major-element 
compositions of basaltic melt derived from partial melting of asthenosphere (Fo in olivine 
~89) and those of mantle peridotites (Fo in olivine ~92) is relatively small and thus the 
decrease of olivine Fo in mantle peridotites, caused by the asthenospheric melt-peridotite 
reaction, is small. On the other hand, the asthenospheric melt-peridotite interaction causes 
the depletion in Sr-Nd isotopic compositions of mantle peridotites due to the depleted Sr-
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Nd isotopic ratios in asthenospheric melts. Possibly, the peridotite-melt interaction could 
not cause a large variation in Re-Os isotopic system of mantle peridotites because Os isotope 
systematics for cratonic peridotites appear to be dominantly influenced by the ancient 
differentiation events that caused them to separate from the convecting mantle, whereas Sr-
Nd isotope systematics record later events (Pearson, 1999). Thus, the debate between Os 
isochron ages (~1.9 Ga) and Sr-Nd isotopic compositions (depleted) of Hannuoba mantle 
xenoliths can be explained with the fairly recent effect of the peridotite-melt reaction. The 
abundance of garnet-bearing pyroxenites in Hannuoba xenoliths indicates the presence of 
peridotite-melt reaction (Liu et al., 2005; Zhang et al., 2009). 
 

 

Fig. 6. 206Pb/204Pbi vs. 208Pb/204Pbi and 207Pb/204Pbi diagrams for the basaltic rocks. Data 
sources: Fields of I-MORB (Indian MORB), P&N-MORB (Pacific & North Atlantic MORB) 
and NHRL (north hemisphere reference line) (Barry & Kent, 1998; Hart, 1984; Zou et al., 
2000), field for Smoky Butte lamporites (Fraser et al., 1985), Wudalianchi basalts (Liu et al., 
1994), Hannuoba basalts as in Fig. 5, other data sources and symbols as in Fig. 2. 

Similarly, some peridotite xenoliths entrained in the Hannuoba and Fanshi basalts have 
pyroxenite veins, indicating the presence of peridotite-melt reaction in the mantle 
lithosphere beneath the Central Zone of the NCC. The variations in isotopic ratios of these 
xenoliths might indicate the heterogeneity of peridotite-melt reaction (Tang et al., 2011). As 
a result, the enriched isotopic composition of cpx from the Fanshi and Yangyuan peridotite 
xenoliths could represent the signatures of old lithospheric mantle, which have 
experienced/or not such a peridotite-melt reaction.  
The existence of old lithospheric mantle beneath the Central Zone during the Cenozoic is 
also proved by the discovery of mantle olivine xenocrysts in the Xiyang-Pingding basalts 
(Tang et al., 2004) and high Mg# (Fo≥92) peridotite xenoliths hosted by the Hebi basalts 
(Zheng et al., 2001), which are interpreted as the relics of old lithospheric mantle. The 
involvement of old lithospheric mantle in asthenospheric mantle source might well account 
for the isotopic features of the Cenozoic basalts (Fig. 5). In terms of Sr and Nd elemental 
contents and isotopic ratios of 87Sr/86Sri and 143Nd/144Ndi, the hypothetical mixing modeling 
between depleted mantle (DM; Zindler & Hart, 1986; Flower et al., 1998) and old 
lithospheric mantle (represented by the mantle-derived xenoliths with radiogenic isotopic 
compositions) reveals that the addition of 4~20% old lithospheric component into the DM 
will generate the observed Sr-Nd isotopic compositions for these Cenozoic basalts (Fig. 5). 
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According to the modelling results from the classic, non-modal batch melting equations of 
Shaw (1970), small degrees of partial melting of a garnet-bearing lherzolitic mantle source 
are required to explain the REE patterns observed in these basalts (Fig. 7, Tang et al., 2006), 
which is consistent with the low HREE contents of these Cenozoic basalts. The systematic 
presence of garnet as a residual phase requires melting depth in excess of 70-80 km, where 
garnet becomes stable. The results (Fig. 7) also suggest a deeper origin for the Zuoquan and 
Xiyang-Pingding basalts due to the higher garnet contents in their mantle source than those 
for the Fanshi-Yingxian basalts, as garnet becomes more with increasing depth. 
A lithospheric profile model (Fig. 8c) illustrates the lithospheric evolution and the Cenozoic 

magmatism in the Central Zone. The Cenozoic tensional regime likely related to the Indian-

Eurasian collision (Ren et al., 2002; Liu et al., 2004; Xu et al., 2004) might reactivate old faults, 

then the old lithospheric mantle was heated by progressively thermo-mechanical erosion 

processes with the upwelling of asthenosphere. As a result, the base lithosphere was 

gradually removed by the convecting mantle, forming a mixture of material from the old 

lithospheric mantle with the magmas from the asthenosphere, which finally produced the 

Cenozoic basalts through partial melting. 

 

 

Fig. 7. Chondrite-normalized REE patterns for the Cenozoic basalts (Tang et al., 2006). Mean 

values of the REE for the basalts (a). Non-modal batch melting models used to approach 

partial melts for Fanshi (b), Xiyang-Pingding (c) and Zuoquan basalts (d). Data sources: 

Chondrite (Anders & Grevesse, 1989), OIB (Sun & McDonough, 1989). 
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5.2 Nature of the Mesozoic lithospheric mantle 
Compared with the Cenozoic basalts, the Mesozoic basaltic rocks have obviously higher 
SiO2 content with lower FeOT and TiO2, and are depleted in HFSE, displaying typical EM1 
character in isotopic compositions, which show the clear distinction between their mantle 
sources. 
Element ratios, such as Nb/U, Ce/Nb, Zr/Nb, Ce/Ba and Ce/Pb, are demonstrated to be 

effective indicators for discriminating mantle source of asthenospheric or lithospheric origin 

and whether there were subducted materials involved in magma geneses (Salters & 

Shimizu, 1988; Kelemen et al., 1990; Hofmann, 1997; Turner & Foden, 2001). Plots of trace-

element ratios (Fig. 4) show the remarkable differences between Mesozoic and Cenozoic 

basaltic rocks. Strong depletion in HFSE reveals some similarities of mantle sources between 

the Mesozoic rocks and arc magma in mantle wedges (Kelemen et al., 1990; Turner & Foden, 

2001). Higher Ce/Nb, Zr/Nb, Ba/Nb, but lower Nb/U ratios (Fig. 4) in Mesozoic rocks 

relative to the Cenozoic basalts indicate that the source for these intrusive rocks are enriched 

in LREE and Zr relative to the Nb, and depleted in Nb. Their isotopic differences between 

Mesozoic and Cenozoic basaltic rocks are also obvious (Figs. 5 & 6). These geochemical 

signatures suggest that the Mesozoic rocks originated from a modified lithospheric mantle, 

and their low Nb/U ratios (Fig. 4d) and depletion in HFSE (Fig. 3) indicate the involvement 

of subducted crustal materials in magma geneses (Hofmann, 1997). 

Geochemical compositions of the Mesozoic basaltic rocks from the Central Zone indicate 

that the secular evolution of old cratonic lithospheric mantle underwent processes of 

modification, which are believed to have originated from the influx of materials with old 

provenance age, which over time would develop isotopic enrichment (Zhang & Sun, 2002). 

The Sr-Nd isotopic compositions for these Mesozoic rocks indicate that the source was 

depleted in Rb but enriched in LREE. Their low Pb isotopic ratios (Fig. 6) define a trend 

towards the field for Smoke Butte lamproites, which originated from an EMI-like 

lithospheric mantle. These features, coupled with the clear depletion in HFSE and 

enrichment in LILE, suggest the involvement of an old component with low Sm/Nd, Rb/Sr 

and U/Pb ratios. It’s the secular evolution of modified lithospheric mantle by old 

component leads to the striking features of very low ratios of 143Nd/144Ndi (<0.5120) and 
206Pb/204Pbi (16.5~17.5), slightly low 87Sr/86Sri ratios (most = 0.7050~0.7065) of the Mesozoic 

basaltic rocks from the Central Zone (Figs. 5 & 6). 

Mantle xenoliths, discovered in Palaeozoic kimberlites from the NCC, have very restricted 

Nd isotopic compositions (Fig. 5). In contrast, Nd isotopic compositions for Mesozoic Jinan 

gabbros, in the centre of the NCC, are slightly lower than those of Palaeozoic kimberlite-

borne mantle xenoliths. The interpretation is that their mantle source inherited the 

characteristics of old lithospheric mantle with slight modification because the significant 

crustal contamination or AFC process during magma evolution has been excluded (Guo et 

al., 2001; Zhang et al., 2004a), as shown by their high MgO contents and the lack of a 

positive correlation of 87Sr/86Sri with SiO2 or Mg# in these gabbroic rocks. Similarly, 

Mesozoic rocks from the Central Zone are lower in Nd isotopic ratios than the Jinan 

gabbros, indicating that the Mesozoic lithospheric mantle beneath the Central Zone was 

modified considerably by some mantle enrichment processes. It is interesting to note that 

the Nd isotopic ratios of the Mesozoic rocks are nearly equal to those of the Mesozoic 

Zouping gabbros from the centre of the NCC (Fig. 5), and the genesis of the latter are linked 

to carbonatitic metasomatism of lithospheric mantle (Ying et al., 2005).  
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On the basis of the above discussions, we propose that carbonatitic and silicic metasomatism 
may be a suitable candidate for the modification of the old lithospheric mantle beneath the 
Central Zone. The metasomatised agents should be enriched in LILE and Sr-Nd isotopic, 
depleted in HFSE and Pb isotopic ratios, and low in Sm/Nd, Rb/Sr and U/Pb ratios, whose 
geochemical features suggest that they can only be derived from old subducted crustal 
materials. As yet, there is no clear evidence to explain the occurrence of Phanerozoic 
subduction/collision in the interior of the NCC, except the Paleoproterozoic collision (~1.8 
Ga) between the Eastern Block and the Western Block of the NCC (Gilder et al., 1991; Zhao 
et al., 2001; Wang et al., 2004). Thus, the carbonatitic and silicic metasomatism for the old 
lithospheric mantle beneath the Central Zone were probably related to the Paleoproterozoic 
collision between the two blocks. 

5.3 Tectonic and magmatic model 
The North China Craton is bounded on the south by the Paleozoic to Triassic Qinling-Dabie-

Sulu orogenic belt (Li et al., 1993) and on the north by the Central Asian Orogenic Belt (Şengör 

et al., 1999; Jahn et al., 2000). The Triassic ages for the Dabie-Sulu UHP rocks in the southern 

margin of the NCC have been summarized (Zheng et al., 2003). The Central Asian Orogenic 

Belt formed through a complicated subduction and accretion processes and post-collisional 

magamtism over a long period of time ranging from the Early Paleozoic through the Triassic 

(Jahn et al., 2000). These subduction and the subsequent collisions may have affected the 

stability of the lithospheric mantle beneath the NCC (Zhang et al., 2003 and references therein). 

The westward subduction of the Pacific plate beneath the Euroasian continent provides the 

geodynamic setting of back-arc extension for the massive occurrence of Early Cretaceous 

igneous rocks in the east China continent (Wu et al., 2005). However, these magmatism just 

took place in Early Cretaceous rather than continuously from Jurassic to present, which 

requires a thermal pulse to cause the short-lived but large-scale anatexis of thickened 

lithosphere as a remote response to the Pacific superplume event (Zhao et al., 2005). This 

event may essentially act as mantle superwelling beneath the Euroasian continent that 

supply the excess heat to fuse the lithospheric mantle and overlying crust because material 

contribution of mantle plume hasn’t been identified in the contemporaneous igneous rocks 

from the eastern edge of China continent. 

On the basis of the above discussion and previous documents (Zhao et al., 2001, 2010; Zhang 
and Sun, 2002; Zhang et al., 2003; Wang et al., 2004; Faure et al., 2007; Zheng et al., 2009, 
2010), we summarize a tectonic and magmatic model for the secular evolution of the 
lithospheric mantle beneath the Taihang Mountains (Fig. 8): 
1. In the Late Archean to Paleoproterozoic, the Western Block (Zhao et al., 2001, 2010; 

Wang et al., 2004) and/or Eastern Block (Faure et al., 2007; Zheng et al., 2009) was 
subducted beneath the Central Zone with subduction of old continental and oceanic 
crustal component to mantle depths. Meanwhile, sedimentary rocks of the Eastern and 
Western Blocks were thrust over the Central Zone, which caused crustal-scale folding, 
thrusting and metamorphism, associated with the initial metasomatism of old 
lithospheric mantle by carbonatitic and silicic agents. At ~1.85 Ga, the orogenic belt 
suffered post-collision extensional collapse, which was associated with the subducted 
slab detachment and the development of the mantle metasomatism for the old 
lithospheric mantle. As a result, the Paleoproterozoic collision between the Eastern and 
Western Blocks led to the assembly of the NCC and the modification of old lithospheric 
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mantle by carbonatitic and silicic metasomatism (Fig. 8a). According to recent studies 
(Zhao et al., 2010; Zheng et al., 2010), the direction of subduction polarity in the Central 
Zone has still not been resolved. Whether the subduction polarity is westward or 
eastward the event(s) had led to the modification of the old lithospheric mantle by 
subducted crustal materials. 

 

 

Fig. 8. Schematic cartoons of tectonic and magmatic model, showing the secular evolution of 

lithospheric mantle beneath the Central Zone of the NCC (a~c). Sketch map (a) is modified 

from Zhao et al. (2001), Wang et al. (2004) and Zheng et al. (2009); map (b) is modified from 

Zhang et al. (2003); map (c) is modified from Tang et al. (2006) and Menzies and Xu (1998). 

AB, alkaline basalt; AOB, alkaline olivine basalt; BA, Basanite; NE, nephelinite; OTH, olivine 

tholeiite. See text for the detail. 
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2. Subduction and collisions along the northern and southern margins of the North China 
Craton especially in Triassic initiated the cracking in the NCC interior. Late Mesozoic 
lithospheric thinning and mafic magmatism might have occurred with the upwelling of 
the asthenosphere probably also as a remote response to the Pacific superplume event 
(Zhao et al., 2005). With the change from convergent to extensional regime, the 
Mesozoic intrusive rocks might be generated by the partial melting of the 
metasomatised old lithospheric mantle beneath the Taihang Mountains (Fig. 8b). 

3. With the continental extension in the Central Zone, possibly related to the Early 
Tertiary Indian-Eurasian collision, the Cenozoic basalts were produced by the 
decompression melting of asthenosphere and the interaction between asthenospheric 
magmas and old lithospheric mantle (Tang et al., 2006). The substantive existence of old 
lithospheric mantle with some modification by asthenospheric melt in the Central Zone 
is remarkably different from the Cenozoic lithospheric accretion in the eastern North 
China Craton (Fig. 8c).  

6. Conclusion 

Geochemical compositions indicate that the Mesozoic basaltic rocks from the Central Zone 
originated from lithospheric mantle, which was enriched in LREE, LILE and Sr-Nd isotopic 
ratios and depleted in HFSE and Pb isotopic compositions. The lithospheric mantle with 
these geochemical features had been probably produced by the modification of old cratonic 
lithospheric mantle with carbonatitic and silicic metasomatism, which were mainly derived 
from the subducted crustal materials during the Paleoproterozoic collision between the 
Eastern and Western blocks of the NCC.  
Cenozoic basalts from the Central Zone were generated from the partial melting of 
asthenospheric mantle with/without some contributions of old lithospheric mantle during 
continental extension, which might be related to the Early Tertiary Indian-Eurasian collision. 
In conjunction with the data of mantle peridotite xenoliths, the Cenozoic lithospheric mantle 
has inherited the isotopic features of old lithosphere mantle in spite of some signatures of 
the modification by the asthenospheric melt-peridotite reaction.  
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