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Fundamentals of GNSS-Aided Inertial Navigation

Ahmed Mohamed and Apostolos Mamatas
University of Florida

USA

1. Introduction

GNSS-aided inertial navigation is a core technology in aerospace applications from military
to civilian. It is the product of a confluence of disciplines, from those in engineering to the
geodetic sciences and it requires a familiarity with numerous concepts within each field in
order for its application to be understood and used effectively. Aided inertial navigation
systems require the use of kinematic, dynamic and stochastic modeling, combined with
optimal estimation techniques to ascertain a vehicle’s navigation state (position, velocity
and attitude). Moreover, these models are employed within different frames of reference,
depending on the application. The goal of this chapter is to familiarize the reader with the
relevant fundamental concepts.

2. Background

2.1 Modeling motion

The goal of a navigation system is to determine the state of the vehicle’s trajectory in space
relevant to guidance and control. These are namely its position, velocity and attitude at any
time. In inertial navigation, a vehicle’s path is modeled kinematically rather than dynamically,
as the full relationship of forces acting on the body to its motion is quite complex. The
kinematic model incorporates accelerations and turn rates from an inertial measurement
unit (IMU) and accounts for effects on the measurements of the reference frame in which
the model is formalized. The kinematic model relies solely on measurements and known
physical properties of the reference frame, without regard to vehicle dynamic characteristics.
On the other hand, in incorporating aiding systems like GNSS, a dynamic model is used
to predict error states in the navigation parameters which are rendered observable through
the external measurements of position and velocity. The dynamics model is therefore one
in which the errors are related to the current navigation state. As will be shown, some
errors are bounded while others are not. At this point, we make the distinction between
the aided INS and free-navigating INS. Navigation using the latter method represents a form
of "dead reckoning", that is the navigation parameters are derived through the integration
of measurements from some defined initial state. For instance, given a measured linear
acceleration, integration of the measurement leads to velocity and double integration results
in the vehicle’s position. Inertial sensors exhibit biases and noise that, when integrated, leads
to computed positional drift over time. The goal of the aiding system is therefore to help
estimate the errors and correct them.
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2.2 Reference frames

Proceeding from the sensor stratum up to more intuitively accessible reference systems, we
define the following reference frames:

• Sensor Frame (s-frame). This is the reference system in which the inertial sensors operate.
It is a frame of reference with a right-handed Cartesian coordinate system whose origin is
at the center of the instrument cluster, with arbitrarily assigned principle axes as shown in
figure 1.

z
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fz

fx

fy

fz

ωz

ωx

ωy

Fig. 1. IMU measurements in the s-frame

• Body Frame (b-frame). This is the reference system of the vehicle whose motions are of
interest. The b-frame is related to the s-frame through a rigid transformation (rotation
and translation). This accounts for misalignment between the sensitive axes of the IMU
and the primary axes of the vehicle which define roll, pitch and yaw. Two primary axis
definitions are generally employed: one with +y pointing toward the front of the vehicle
(+z pointing up), and the other with +x pointing toward the nose (+z pointing down). The
latter is a common aerospace convention used to define heading as a clockwise rotation in
a right-handed system (Rogers, 2003).

• Inertial Frame (i-frame). This is the canonical inertial frame for an object near the surface
of the earth. It is a non-rotating, non-accelerating frame of reference with a Cartesian
coordinate system whose x axis is aligned with the mean vernal equinox and whose z
axis is coaxial with the spin axis of the earth. The y-axis completes the orthogonal basis
and the system’s origin is located at the center of mass of the earth.

• Earth-Fixed Frame (e-frame). With some subtle differences that we shall overlook, this
system’s z axis is defined the same way as for the i-frame, but the x axis now points toward
the mean Greenwich meridian, with y completing the right-handed system. The origin is
at the earth’s center of mass. This frame rotates with respect to the i-frame at the earth’s
rotation rate of approximately 15 degrees per hour.

4 Automatic Flight Control Systems – Latest Developments
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Fig. 2. Inertial Frame
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Fig. 3. Earth-Fixed Frame

• Local-Level Frame (l-frame). This frame is defined by a plane locally tangent to the surface
of the earth at the position of the vehicle. This implies a constant direction for gravity
(straight down). The coordinate system used is easting, northing, up (enu), where Up is the
normal vector of the plane, North points toward the spin axis of Earth on the plane and
East completes the orthogonal system.

Finally, we remark that the implementation of the INS can be freely chosen to be formulated in
any of the last three frames, and it is common to refer to the navigation frame (n-frame) once it
is defined as being either the i-, e- or l-frames, especially when one must make the distinction
between native INS output and transformed values in another frame.

5Fundamentals of GNSS-Aided Inertial Navigation
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Fig. 4. Local-Level Frame

2.3 Geometric figure of the earth

Having defined the common reference frames, we must consider the size and shape of the
earth itself, an especially important topic when moving between the l- and e- frames or
when converting Cartesian to geodetic (latitude, longitude, height) coordinates. The earth,
though commonly imagined as a sphere, is in fact more accurately described as an ellipse
revolved around its semi-major axis, an ellipsoid. Reference ellipsoids are generally defined
by the magnitude of their semi-major axis (equatorial radius) and their flattening, which is
the ratio of the polar radius to the equatorial radius. Since the discovery of the elipticity
of the earth, many ellipsoids have been formulated, but today the most important one for
global navigation is the WGS84 ellipsoid1, which forms the basis of the WGS84 system to
which all GPS measurements and computations are tied (Hofmann-Wellenhof et al., 2001).
The WGS84 ellipsoid is defined as having an equatorial radius of 6,378,137 m and a flattening
of 1/298.257223563 centered at the earth’s center of mass with 0 degrees longitude located 5.31
arc seconds east of the Greenwich meridian (NIMA, 2000; Rogers, 2003). It is worth defining
another ellipsoidal parameter, the eccentricity e, as the distance of the ellipse focus from the
axes center, and is calculated as

e2 =
a2 − b2

a2
(1)

Figure 5 shows a cross-sectional view of the reference ellipsoid with having semi-major and
semi-minor dimensions a and b, respectively. Note that b is derivable from a and f . A point P
is located at height h normal to the surface. N is the radius of curvature in the prime vertical of
the ellipsoid at this point2. The angle between the x, y plane and the surface normal vector of
P is the geodetic latitude φ. Note that the loci of normal vectors that pass through the centroid
of the ellipsoid are constrained to the equator and the meridians. This means that, in general,
the geodetic latitude φ is not the same as the geocentric latitude ψ, as shown in figure 6. The

1 A variant of the GRS80 ellipsoid
2 This is also called the normal radius of curvature, hence the symbol N.

6 Automatic Flight Control Systems – Latest Developments
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Fig. 5. Reference Ellipsoid
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Fig. 6. Geodetic vs. Geocentric Latitude

value of N is obtained by

N =
a

√

(1 − e2 sin2 φ)
(2)

Another radius is defined, namely the radius of curvature in the meridian, M, which is given
as

M =
a(1 − e2)

(1 − e2 sin2 φ)3/2
(3)

The two parameters N and M are necessary for calculating the linear distances and velocity
components from the geodetic coordinate system in the local-level frame. In order to relate
geodetic position changes and linear distances, we begin with the simple case of a sphere of
radius Re. Note that the linear distance between two points along a meridian (in the North
direction) is

δn = (Re + h)δψ (4)

7Fundamentals of GNSS-Aided Inertial Navigation
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and the distance along a parallel (in the East direction) is

δe = (Re + h) cos ψδλ (5)

where h is the height above the sphere. In the case of the ellipsoidal earth, one radius does not
suffice to reduce both directions of motion to linear distances and the equations become

δn = (M + h)δφ (6)

δe = (N + h) cos φδλ (7)

2.4 Gravitation and gravity

Inertial navigation relies on measurements made in an inertial reference frame, i.e. one free
of acceleration or rotation. Vehicles near the earth’s surface, of course, are subjected to both
of these factors. As an accelerometer is not capable of distinguishing accelerations due to
motion and accelerations arising from reaction forces in a gravity field, we must have a priori
knowledge of the earth’s gravitation in order to subtract its effects from sensor measurements.
The gravitational field of the earth is described by its potential V at a point P such that

V(P) = G
∫∫∫

earth

ρ(Q)

l
dvQ (8)

where Q is a point within the earth with mass density ρ(Q) and volume element dvQ, located
at a distance l from P and G is the gravitational constant (Hofmann-Wellenhof & Moritz, 2005).
The gravitational vector field is defined as the gradient of the potential:

ḡe = ∇Ve =
∂Ve

∂re
=

⎛

⎝

Vx

Vy

Vz

⎞

⎠ (9)

where ḡe is the gravitational vector associated with the position vector re. In practice,
sensor measurements are further conditioned by the rotation of the earth. The difference of
gravitation and centripetal acceleration caused by Earth’s rotation is embodied in the gravity
vector and is more commonly used in practice. It is defined as

ge = ḡe − ΩeΩere (10)

where Ωie is the skew-symmetric representation of the earth’s rotation rate (the
skew-symmetric matrix representation is treated in section 2.6). In the local-level frame, the
gravity vector is expressed as

gl =

⎛

⎝

0
0

−(γ + σgu)

⎞

⎠ (11)

where γ is normal gravity and σgu is a disturbance in the vertical component of the vector
(Hofmann-Wellenhof & Moritz, 2005).3

3 We leave out the non-vertical deflections here for brevity, but a more detailed treatment should include
them.

8 Automatic Flight Control Systems – Latest Developments
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2.5 Normal gravity

Uneven mass distributions within the earth, as well as departure of its actual shape from
a perfect ellipsoid leads to a highly complex gravity field. It is therefore convenient for
navigation purposes to approximate the gravity field using the so-called normal gravity model,
computed in closed form using Somigliana’s formula (Schwarz & Wei, 1990; Torge, 2001) :

γ0 = γa
1 + k sin2 φ

√

1 − e2 sin2 φ
(12)

where

k =
bγb

aγa
− 1

γa, γb = equatorial and polar gravity values

A computationally faster method to calculate gravity involves expanding (12) by power series
with respect to e2 and truncating, yielding:

γ0 = γa(1 + β sin2 φ + β1sin22φ) (13)

where γa is the gravity at the equator, β is the “gravity flattening” term (Hofmann-Wellenhof
& Moritz, 2005), defined as

β =
γb − γa

γa
(14)

The second parameter in (13) β1 is given by

β1 =
f 2

4
−

5 f ω2
e a

8γa
(15)

where ωe is the earth rotation constant. This approximation of (12) is accurate to
approximately 0.1 μg (Featherstone & Dentith, 1997), which is sufficient for navigation
purposes. Higher-accuracy approximations are given in (Hofmann-Wellenhof & Moritz, 2005;
Torge, 2001).Table 1 gives the relevant WGS84 parameters for computing normal gravity. The
first four are the defining parameters of the system, while the last two are derived for use in
computing normal gravity. Incorporating height h allows a more general formula for gravity

a 6,378,137 m
f 1/298.257223563

ωe 7.292115× 10−5 rad/s

GM 3.986004.418×1014m3/s2

γa 9.7803253359 m/s2

γb 9.8321849378 m/s2

Table 1. WGS84 parameters

away from the ellipsoidal surface:

γ = γ0 − (3.0877 × 10−6 − 4.4 × 10−9 sin2 φ)h + 0.72 × 10−12h2 (16)

9Fundamentals of GNSS-Aided Inertial Navigation
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2.6 Mathematical treatment of rotations

2.6.1 Direction cosines matrix

Before proceeding to linear and rotational models of motion, we must first discuss the
formulation of the rigid-body transformations required to express vectors defined in a
particular frame in terms of another frame. These are comprised of translations and rotations,
the former being the straightforward operation of addition. We shall therefore direct our
attention to rotations and their time-derivatives. In general a rotation matrix is an operator

transforming vectors from one orthogonal basis to another. Let
(

x y z
)T

be a vector pa in

some frame a and
(

x′ y′ z′
)T

be a vector pb in frame b, then

pb = Rb
apa

=

⎛

⎝

ia · ib ja · ib ka · ib

ia · jb ja · jb ka · jb

ia · kb ja · kb ka · kb

⎞

⎠ pa (17)

where
(

ia ja ka
)

and
(

ib jb kb

)
are the orthonormal bases of a and b, respectively. Note the

use of superscripts to indicate the reference frame. The rotation matrix notation indicates a
transformation from the a-frame to the b-frame. Because the basis vectors are of unit length
the dot products in Rb

a define the cosines of the angles between the vector pairs, therefore
the rotation matrix is also commonly known as the direction cosines matrix (DCM). The two
properties of DCMs in a right-handed Cartesian system are:

1. (Rb
a)

−1 = (Rb
a)

T = Ra
b

2. det (Rb
a) = 1

DCMs in R
3 are decomposable into three elemental rotations performed sequentially about a

principal axis in the originating frame, thence about the rotated and twice-rotated remaining
axes(Kuipers, 1999). The elemental rotations about the x, y and z axes are defined as

Rx(ϕ) =

⎛

⎝

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

⎞

⎠ , Ry(θ) =

⎛

⎝

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞

⎠ , Rz(ψ) =

⎛

⎝

cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎞

⎠

(18)

The choice of axis order is mathematically arbitrary, but while working in the ENU definition
of the l-frame we must employ a y, x, z sequence when defining the rotation from the
mechanization frame to the body frame. The transformation from the body frame to the
navigation frame is therefore composed of the inverse (Titterton & Weston, 2004) , that is

Rn
b = RbT

n = Rz(−ψ)Rx(−θ)Ry(−ϕ) (19)

where n is any of the valid mechanization frames given in section 2.2. More explicitly, the
DCM in terms of the Euler angles is

Rn
b =

⎛

⎝

cos ψ cos ϕ − sin ψ sin θ sin ϕ − sin ψ cos θ cos ψ sin ϕ + sin ψ sin θ cos ϕ
sin ψ cos ϕ + cos ψ sin θ sin ϕ cos ψ cos θ sin ψ sin ϕ − cos ψ sin θ cos ϕ

− cos θ sin ϕ sin θ cos θ cos ϕ

⎞

⎠ (20)

10 Automatic Flight Control Systems – Latest Developments
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The sequential angular rotations ϕ, θ, ψ are known as Euler angles; if n = l, the Euler angles
are called roll, pitch, and yaw. Given a DCM, there is no unique decomposition into Euler
angles without prior knowledge of the convention. For example, an equally valid DCM
could be constructed from the sequence z, x, z or any of a number of permutations (Pio,
1966), but we remind the reader that unless the sequence is defined uniformly for the INS
mechanization, the retrieval of heading, roll and pitch angles from a computed DCM may
well be meaningless. We therefore stress the order given in (19) and will employ it exclusively
moving forward. This being the case, we recover roll, pitch and yaw by

(
ϕ θ ψ

)T
=

(

tan−1
(

− R31
R33

)

sin−1 (R32) tan−1
(

− R12
R22

))T
(21)

The representation of rotations as discussed up to now is tied to the historical simplicity
of relating measurements of gimballed IMU axis encoders to the DCM. The careful reader
will note however that singularities exist in this method. For instance, when a vehicle is
pitched up 90 degrees, two axes respond to the same motion and a degree of freedom is lost,
leaving no unique roll and heading values that will satisfy the DCM terms. In strap-down
systems, this is mathematically equivalent to gimbal lock in gimballed INS. Mechanical and
algorithmic solutions exist to the problem, but are beyond the scope of this writing. An
alternative representation of rotations that does not suffer this problem is therefore sometimes
used employing quaternions.

2.6.2 Quaternions

Quaternions are a four-dimensional extension of complex numbers having the form

q = a + bi + cj + dk (22)

where a is the real component and b, c and d are imaginary. Quaternion multiplication is
defined as follows: let q and p be two quaternions having elements {a, b, c, d} and {e, f , g, h},
respectively, then

q · p =

⎛

⎜
⎜
⎝

a −b −c −d
b a −d c
c d a −b
d −c b a

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

e
f
g
h

⎞

⎟
⎟
⎠

(23)

The Euler and Cayley-Hamilton Theorems can be employed to derive multiple formulations
for rotations relying on the fact that any rotation matrix R encodes a single axis of rotation

which is the eigenvector e =
(

e1 e2 e3

)T
associated with the eigenvalue +1. Along with this,

the following relation holds for a rotation φ about this axis:

cos φ =
trace(R)− 1

2
(24)

Through suitable derivation, we may define a rotation therefore by a four-parameter vector λ:

λ =
(

cos φ e1 sin φ e2 sin φ e3 sin φ
)T

(25)

where the first element is the term involving the rotation and the last three define the vector of
the rotation matrix which is sufficient for a single rotation but leaves the problem of propagating

11Fundamentals of GNSS-Aided Inertial Navigation
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the transformation in time. A convenient relation between the elements of λ and quaternions
exists, which allows us to take advantage of some felicitous properties of quaternions . Let q
be the vector of the quaternion elements a, b, c, d as defined in (22). Then

a = ±

√

1 + λ1

2
= cos(||e||/2) (26)

b =
λ2

2a
=(e1/||e||) sin(||e||/2) (27)

c =
λ3

2a
=(e2/||e||) sin(||e||/2) (28)

d =
λ4

2a
=(e3/||e||) sin(||e||/2) (29)

The parameters of the quaternion are properly called the Euler-Rodrigues parameters (Angeles,
2003) which define a unit quaternion. The rotation matrix in (20) in terms of Euler-Rodrigues
parameters is

Rn
b =

⎛

⎝

(a2 + b2 − c2 − d2) 2(bc − ad) 2(bd + ac)
2(bc + ad) (a2 − b2 + c2 − d2) 2(cd − ab)
2(bd − ac) 2(cd + ab) (a2 − b2 − c2 + d2)

⎞

⎠ (30)

2.6.3 Time-derivative of the DCM

Let the vector ωn
nb be the rotation rates of the body axes about the navigation system axes

expressed in the n-frame given by

ωn
nb = Rn

bω
b
nb (31)

and the resulting perpendicular linear velocity is given by

ṙn = ωn
nb × rb

= Rn
bω

b
nb × rb

= Rn
b Ω

b
nbrb (32)

where Ω
b
nb is the skew-symmetric form of ωb

nb, with elements

Ω
b
nb =

⎛

⎝

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞

⎠ (33)

We also have

ṙn = Ṙn
b rb (34)

Equating (32) and (34) yields the time derivative of the rotation matrix

Ṙn
b = Rn

b Ω
b
nb (35)

12 Automatic Flight Control Systems – Latest Developments

www.intechopen.com



Fundamentals of GNSS-Aided Inertial Navigation 11

Over short periods of time for discrete measurements, the change in Rn
b can be computed

using the small angle approximation of (20), where sin ϕ ≈ ϕ, sin θ ≈ θ and sin ψ ≈ ψ, which
is

Rn
b ≈

⎛

⎝

1 −ψ θ
ψ 1 −ϕ
−θ ϕ 1

⎞

⎠ (36)

so that

Rn
b (t + δt) = Rn

b (t)R
n
b (t, t + δt) (37)

where Rn
b (t, t + δt) is the incremental rotation between the b and n-frames from time t to time

t + δt. It is worth noting that under small incremental angles, the order of the rotations is not
important.

3. Modeling

3.1 Linear motion

Using Newton’s second law, the motion of a particle in the i-frame is given as

r̈i = fi (38)

where r̈i is the second time derivative of position and fi is the specific force acting on the
particle. Incorporating the accelerations due to gravitation, we have

r̈i = fi + ḡi (39)

Equation (39) represents a set of second-order differential equations which can be rewritten as
a set of first-order equations:

ṙi = vi (40)

v̇i = fi + ḡi (41)

in which ṙ, the first time derivative of position is equated with velocity v. We now turn to the
derivation of the model equations for navigating in the i-, e- and l-frames

3.2 State models for kinematic geodesy

3.2.1 The i-frame

Because a vehicle is oriented arbitrarily with respect to the i-frame as defined above, the
measurements of specific force will not be in this frame, but rather in the body-frame.4. A
rotation matrix Ri

b is used to resolve the forces in the i-frame:

fi = Ri
bfb (42)

In this notation, superscript of the measurement vector f and subscript of the rotation
matrix cancel, yielding the representation of the vector in the desired frame. In navigation

4 after the rigid transformation between the IMU and the vehicle has been applied

13Fundamentals of GNSS-Aided Inertial Navigation
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applications, the time derivative of Ri
b is a function of the angular velocity expressed by the

vector ωb
ib between the two reference frames. Here, ωb

ib is the representation of the rotation

rate expressed in the body frame whose skew-symmetric form is the matrix Ω
b
ib, giving

Ṙi
b = Ri

bΩ
b
ib (43)

which is, of course, a particular realization of (35), in which n = i. Assuming now that the
gravity vector is computed by (11), we must apply a transformation from the l-frame to the
i-frame to formulate (41) as

v̇ = Ri
bfb + Ri

l ḡ
l (44)

The time derivatives of position, velocity and attitude are now represented as

ẋi =

⎛

⎝

ṙi

v̇i

Ṙi
b

⎞

⎠ =

⎛

⎝

vi

Ri
bfb + Ri

l ḡ
l

Ri
bΩ

b
ib

⎞

⎠ (45)

The solution to (45) is the navigation state of the vehicle: position, velocity and attitude in the
inertial frame. The equations in (45) are known as the mechanization equations for the inertial
navigation system.

3.2.2 The e-frame

To arrive at the state equations in the e-frame, we begin by considering the transformation of
the position vector in the e-frame into the i-frame:

ri = Ri
ere (46)

The first and second derivatives are then

ṙi = Ri
e (ṙ

e + Ω
e
iere) (47)

r̈i = Ri
e

(

r̈e + 2Ω
e
ie ṙe + Ω̇

e
iere + Ω

e
ieΩ

e
iere

)

(48)

As the rotation rate between the e and i frames is constant, we see that Ω̇
e
ie is zero leaving

r̈i = Ri
e (r̈

e + 2Ω
e
ie ṙe + Ω

e
ieΩ

e
iere) (49)

The second derivative of position in the e-frame is obtained using (10) and (39), yielding

r̈e = Re
bfb − 2Ω

e
ie ṙe + ge (50)

The second term in (50) is due to the Coriolis force, whereas the last term is the gravity vector
represented in the e-frame, which can be found in (Schwarz & Wei, 1990).

Putting this together to form the state-variable equations, we have

ẋe =

⎛

⎝

ṙe

v̇e

Ṙe
b

⎞

⎠ =

⎛

⎜
⎝

ve

Re
bfb − 2Ω

e
ieve + ge

Re
b

(

Ω
b
ie − Ω

b
ib

)

⎞

⎟
⎠ (51)

14 Automatic Flight Control Systems – Latest Developments
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3.2.3 The l-frame

Navigation states expressed in the inertial and earth-fixed frames do not lend themselves to
easy intuitive interpretation near the surface of the earth. Here, the more familiar concepts of
latitude and longitude along with roll, pitch and heading are preferable. We therefore must
mechanize the system in the l-frame, which necessitates a reformulation of the state-variable
equations. To begin with, we note

rl =
(
φ λ h

)T
(52)

whose time rate is

ṙl =
(
φ̇ λ̇ ḣ

)T
(53)

Rather than express velocity in terms of the geodetic coordinates, it is preferable to represent
them in the enu system:

vl =
(
ve vn vu

)T
(54)

Now, the time derivative of position in φ, λ, h is related to vl through

ṙl = D−1vl (55)

or

⎛

⎝

φ̇
λ̇

ḣ

⎞

⎠ =

⎛

⎜
⎝

0 1
(M+h)

0
1

(N+h) cos φ
0 0

0 0 1

⎞

⎟
⎠

⎛

⎝

ve

vn

vu

⎞

⎠ (56)

The first two non-zero elements of D−1 are clearly derivable from the derivatives of equations
(6) and (7) with respect to time. Acceleration is now given by

v̇l = Rl
i r̈

i − (2Ω
l
ie + Ω

l
el)v

l − Ω
l
ieΩ

l
elr

l

= Rl
bfb − (2Ω

l
ie + Ω

l
el)v

l + gl (57)

where Ω
l
ie is the angular velocity of Earth’s rotation expressed in the l-frame, Ω

l
el is the angular

velocity of the l-frame with respect to the e-frame expressed in the l-frame and gl is as defined
in (11). Finally, the transformation Rl

b is the solution to

Ṙl
b = Rl

bΩ
b
ib = Rl

b(Ω
b
ib − Ω

b
il) (58)

The state-variable equations in the local-level reference frame are therefore

ẋl =

⎛

⎝

ṙl

v̇l

Ṙl
b

⎞

⎠ =

⎛

⎝

D−1vl

Rl
bfb − (2Ω

l
ie + Ω

l
el)v

l + gl

Rl
b(Ω

b
ib − Ω

b
il)

⎞

⎠ (59)
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Fig. 7. Mechanization in the l-frame

3.3 Mechanization in the l-frame

Because of its wide applicability and intuitiveness, we shall focus on the mechanization of
the state-variable equations described above in the local-level frame. To begin with, an initial
position in geodetic coordinates φ, λ, h must be known, along with an initial velocity and
transformation Rb

l in order for the integration of the measurements from the accelerometers
and gyroscopes to give proper navigation parameters. We shall consider initial position and
velocity to be given by GPS, for example, and will treat the problem of resolving initial attitude
later. The block diagram in figure 7 shows the relationships among the components of the
state-variable equations in the context of an algorithmic implementation.

Given an initial attitude, velocity and the earth’s rotation rate ωe, the rotation of the l-frame
with respect to the e-frame and thence the rotation between the e-frame and the i-frame is
computed and transformed into a representation of the rotation of the l-frame with respect to
the i-frame expressed in the b-frame (ωb

il). The quantities of this vector are subtracted from the
body angular rate measurements to yield angular rates between the l-frame and the b-frame
expressed in the b-frame (ωb

lb). Given fast enough measurements relative to the dynamics of

the vehicle, the small angle approximation can be used and Rb
l can be integrated over the time

{t, t + δt} to provide the next Rb
l which is used to transform the accelerometer measurements

into the l frame. The normal gravity γ computed via Somigliana’s formula (12) is added while
the quantities arising from the Coriolis force are subtracted, yielding the acceleration in the
l-frame. This, in turn, is integrated to provide velocity and again to yield position, which are
fed back into the system to update the necessary parameters and propagate the navigation
state forward in time.
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3.4 Updating the transformation Rl
b

The solution of (35) propagates the transformation matrix Rl
b in time. As both Rl

b and Ω are
time dependent, no closed form solution exists

(Kohler & Johnson, 2006). During a small time interval δt relative to the dynamics of the
vehicle, however, we may assume a constant angular rate ω. The angular changes of the
b-frame with respect to the l-frame are expressed as α = ωδt. The skew-symmetric form Ωδt
is now constant over a short time. This presents the discrete closed form solution

Rk+1 = RkeΩδt = Rk

∞

∑
n=0

1

n!
(Ωnδtn) = Rk

∞

∑
n=0

1

n!
Ω̄

n
(60)

The powers of Ω̄ are expressed as

Ω̄
3
= −||α||2Ω̄

Ω̄
4
= −||α||2Ω̄

2

Ω̄
5
= ||α||4Ω̄

Ω̄
6
= ||α||4Ω̄

2

...

which allows us to collect the terms in (60) in sine and cosine components of the series
expansion to obtain

Rk+1 = Rk

(

I +
1

||α||
sin(||α||)Ω̄ +

1 − cos(||α||)

||α||2
Ω̄

2
)

(61)

3.4.1 Quaternion update

The quaternion parametrization requires a four-element vector as we have seen. A discrete
solution to the quaternion update follows similarly to that of the DCM. The difference here is
that now the skew-symmetric representation of the rotation rate vector is 4×4. In block form,
we have

Ωq =

(
−Ω ω

−ωT 0

)

(62)

Letting Ω̄q = Ωqδt, the discrete solution to (??) is

qk+1 =

(
∞

∑
n=0

1

2nn!
Ω̄

n
q

)

qk

= qk +
1

2

(

2

(

cos
||α||

2
− 1

)

I +
2

||α||
sin

||α||

2
Ω̄q

)

qk (63)

Implementation in either the DCM or the quaternion parametrizations involves employing
numerical integration techniques, which we shall not cover here.
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3.5 Initialization

As stated above, the implementation of an INS requires the knowledge of initial position,
velocity and attitude. Initial position and velocity can be provided through any appropriate
means, but most commonly are retrieved through GPS measurements. The initial attitude, on
the other hand, can be resolved using the raw measurements of the IMU and the known or
computed gravity and earth rotation rate. “““‘Initialization can be performed from a static
position or during maneuvers, the latter being more complex and beyond the scope of this
chapter.

3.5.1 Alignment of a static platform

Alignment refers to the process of determining the initial orientation of the INS body axes
with respect to the navigation frame by rotating the system until expected measurements are
observed in the transformed output. Specifically, with respect to the x and y axes, we define
the process as leveling, while the heading (about the z axis) is termed gyro-compassing. First,
we begin by noting that the measured specific forces in the body frame are related to gravity
in the local-level frame through

gl =Rl
bfb (64)

Through the orthogonality of Rl
b, we see that

⎛

⎝

R31

R32

R33

⎞

⎠ =−
1

g

⎛

⎝

fx

fy

fz

⎞

⎠ (65)

which defines one basis vector of the transformation. The sensed rotation rates are similarly
related to the earth rotation rate through

ωl
ie =Rl

bω
b
ie (66)

or

⎛

⎝

0
ωe cos φ
ωe sin φ

⎞

⎠ =

⎛

⎝

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞

⎠

⎛

⎝

ωx

ωy

ωz

⎞

⎠ (67)

It is easy to show that

⎛

⎝

R21

R22

R23

⎞

⎠ =
1

ωe cos φ

⎛

⎝

ωx

ωy

ωz

⎞

⎠− tan φ

⎛

⎝

R31

R32

R33

⎞

⎠ (68)

from which the second basis of the transformation is found. To complete the rotation matrix,
we take advantage again of its orthogonality, arriving at

⎛

⎝

R11

R12

R13

⎞

⎠ =

⎛

⎝

R21

R22

R23

⎞

⎠×

⎛

⎝

R31

R32

R33

⎞

⎠ (69)
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We have thereby resolved the planar tilt of the body frame with respect to the local-level frame
as well as the rotation about the leveled z axis in the body frame that would bring about a
zero-rate measurement along the transformed x axis of the IMU. In practice, sensor noise of
vehicle disturbance would not allow for the exact solutions presented above, leading to an
initial alignment error. One way to minimize the error is to collect stationary measurements
over an extended period of time and compute the mean values or apply another type of
low-pass filter. It is worth noting here that the estimate of this alignment step is considered
coarse and can be further improved through a fine alignment process in which external aiding,
in the form of position and/or velocity updates, are used.

3.6 Error dynamics

The state-variable equations described up to now for determining the navigation parameters
of the vehicle represent non-linear dynamic system with the general form

ẋ(t) = f(t, x(t), u(t)) (70)

where x are the physical parameters of the system and u are inputs to the system. The true
values of x are generally not known, with only an approximation available. For example, in an
INS, the approximation comes from the integration of sensor output over time. Let x̃ represent
the approximation, then the true parameters are

x̃ = x + δx (71)

where δx are the error states. Replacing x with x̃, we have

˙̃x(t) = f(t, x̃(t), u(t)) = f(t, x(t) + δx(t), u(t)) (72)

Taylor series approximation to the error term yields

δẋ(t) =
∂f

∂x
δx(t) (73)

which is the linearized form of the state equations in terms of the errors, called the error state
equations. It takes the familiar form

δẋ(t) = Fxδx(t) (74)

Where Fx is the dynamics matrix. So far, we have a model for a purely deterministic system
(one free of sensor errors). Taking the input as part of the (noisy) sensor output, the second
set of differential equations is formed:

δu̇ = Fuδu(t) + Gw(t) (75)

Where Fu is the dynamics matrix for the sensor errors, w(t) is a random Gaussian sequence
with a shaping matrix G. The general state-variable form of the error model is therefore

(
δẋ
δu̇

)

︸ ︷︷ ︸

ẋ(t)

=

(
Fx Fxu

0 Fu

)

︸ ︷︷ ︸

F

(
δx
δu

)

︸ ︷︷ ︸

x(t)

+

(
0
G

)

︸ ︷︷ ︸

G

w (76)
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The terms in Fxu account for the dependence of the navigational errors upon the sensor errors
and the full state vector includes the elements of u. In an INS mechanized in the l-frame, the
error state vector is explicitly written

x(t) =
(

δφ δλ δh δve δvn δvu ǫe ǫn ǫu dx dy dz bx by bz
)T

(77)

where the first three elements are position errors, the next three are velocity errors and after
which come alignment errors, gyro drifts and accelerometer biases. We shall now derive the
equations governing each.

3.6.1 Position errors

Recall that in section 3.2.3, we preferentially expressed velocities in the l-frame in terms of
ve, vn, vu rather than directly as functions of φ, λ, h, using

vl = Dṙl (78)

where

D =

⎛

⎝

0 (N + h) cos φ 0
(M + h) 0 0

0 0 1

⎞

⎠ (79)

which, after linearization, yields the error equation

δvl = Dδṙl + δDṙl (80)

Recognizing that the first term in (80) is simply Dδvl , we see that it is the second term that
contains the position errors. We can rewrite (80) then as

δvl = Dδṙl + Drδrl (81)

where Dr is a coefficient matrix. The position error equation is then

δṙl = D−1δvl − D−1Drδrl (82)

3.6.2 Velocity errors

The approximate form of (57) is

˙̃vl = R̃l
b f̃b − (2Ω̃

l
ie + Ω̃

l
el)ṽ

l + γ̃l

= (I + El)Rl
b(f

b + δfb)− (2(Ωl
ie + δΩ

l
ie) + Ω

l
el + δΩ

l
el)(v

l + δvl) + (γl + δγl) (83)

where El is the skew-symmetric form of the alignment error. After subtracting the true
acceleration and ignoring second-order terms, we have

δv̇l = ElRl
bfb − (2Ω

l
ie + Ω

l
el)δvl − (2δΩ

l
ie + δΩ

l
el)v

l + δγl + Rl
bδfb − δgl

= −Flǫl − (2Ω
l
ie + Ω

l
el)δvl + Vl(2δωl

ie + δωl
el) + δγl + Rl

bb (84)

where Fl is the skew-symmetric matrix representation of fl , ǫl is the misalignment vector, Vl

is the skew-symmetric form of vl and b is the vector of accelerometer biases, in which the
gravity disturbance vector δgl is also included. The terms δωl

el and δωl
ie are the errors in the

transport rate and the Earth rotation rate, respectively, both of which are dependent on errors
in position and velocity. Finally, δγl is the error in the calculation of normal gravity, which is
dependent on the position error and any errors in the model.
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3.6.3 Alignment errors

The alignment errors ǫl represent misalignment between the b and l frames expressed in the
l-frame. The vector ǫl can be expressed in skew-symmetric form as El , so that the approximate
transformation between frames is

R̃l
b = (I + El)Rl

b (85)

The differential equations for the alignment errors are

ǫ̇l = −Ω
l
ilǫ

l − δωl
il − Rl

bd (86)

where Ω
l
il is the skew-symmetric form of the angular rates ωl

il with corresponding errors δωl
il .

Here, d is the vector of gyro drift biases.

3.6.4 Gyroscope drifts and accelerometer biases

Gyroscopes and accelerometers exhibit noise behavior that is characterizeable at different time
scales such that one can generally separate errors that are long-term stable and those that
behave stochastically during the period of interest. Errors of the former type are characterized
in a laboratory setting, prior to field deployment and their effects can generally be removed
from the measurements, leaving residual errors that are modeled stochastically.

The noise in gyro and accelerometer measurements exhibit varying degrees of temporal
correlation, depending on the quality of the devices. The underlying random processes are
therefore conveniently modeled as first-order Gauss-Markov processes. Their equations are

ḋ = −αd + wd (87)

ḃ = −βb + wb (88)

where α and β are diagonal matrices whose non-zero elements are the reciprocals of the
correlation time constants and wd and wb are white noise sequences.

3.6.5 Error state equations in the l frame

Combining the derivations for the error equations of position, velocity, alignment, gyro drift
and accelerometer bias gives the state-variable equations for the navigation errors:

ẋl(t) =

⎛

⎜
⎜
⎜
⎜
⎝

δṙl

δv̇l

ǫ̇l

ḋ

ḃ

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D−1δvl − D−1Drδrl

−Flǫl − (2Ω
l
ie + Ω

l
el)δvl + Vl(2ωl

ie + δωl
el) + δγl + Rl

bb

−Ω
l
ilǫ

l − δωl
il − Rl

bd

−αd + wd

−βb + wb

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(89)

To derive the elements of the dynamics matrix F, we need to specify all the matrix elements in
(89).
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3.6.6 Matrix formulation of position errors

Assuming M and N to be constant over small distances

δvl = Dδṙl + Drδrl

=

⎛

⎝

0 (N + h) cos φ 0
M + h 0 0

0 0 1

⎞

⎠

⎛

⎝

δφ̇
δλ̇

δḣ

⎞

⎠+

⎛

⎝

−λ̇(N + h) sin φ 0 λ̇ cos φ
0 0 φ̇
0 0 0

⎞

⎠

⎛

⎝

δφ
δλ
δh

⎞

⎠ (90)

With Dr in hand,

δṙl =

⎛

⎜
⎝

0 1
M+h 0

1
(N+h)

cos φ 0 0

0 0 1

⎞

⎟
⎠

︸ ︷︷ ︸

F12

⎛

⎝

δve

δvn

δvu

⎞

⎠−

⎛

⎜
⎝

0 0
−φ̇

M+h

λ̇ tan φ 0 −λ̇
N+h

0 0 0

⎞

⎟
⎠

︸ ︷︷ ︸

F11

⎛

⎝

δφ
δλ
δh

⎞

⎠ (91)

where F11 and F12 are the first two 3×3 sub-matrices of F.

3.6.7 Matrix formulation of velocity errors

Next, we turn to the first term in the second equation of (89):

−Flǫl =

⎛

⎝

0 fu − fn

− fu 0 fe

fn − fe 0

⎞

⎠

︸ ︷︷ ︸

F23

⎛

⎝

ǫe

ǫn

ǫu

⎞

⎠ (92)

The second term is

−(2Ω
l
ie + Ω

l
el)δvl =

⎛

⎝

0 (2ωe + λ̇) sin φ −(2ωe + λ̇) cos φ
−(2ωe + λ̇) sin φ 0 −φ̇
(2ωe + λ̇) cos φ φ̇ 0

⎞

⎠

⎛

⎝

δve

δvn

δvu

⎞

⎠ (93)

The third term is as follows:

2δωl
ie + δωl

el =

⎛

⎝

−δφ̇
−(2ωe + λ̇) sin φδφ + cos φδλ̇
(2ωe + λ̇) cos φδφ + sin φδλ̇

⎞

⎠

=

⎛

⎜
⎜
⎝

0 0
φ̇

M+h

−2ωe sin φ 0
−λ̇ cos φ

N+h

2ωe cos φ + λ̇
cos φ 0

−λ̇ sin φ
N+h

⎞

⎟
⎟
⎠

⎛

⎝

δφ
δλ
δh

⎞

⎠+

⎛

⎜
⎝

0 −1
M+h 0

1
N+h 0 0
tan φ
N+h 0 0

⎞

⎟
⎠

⎛

⎝

δve

δvn

δvu

⎞

⎠ (94)

Multiplying by Vl yields

Vl(2δωl
ie + δωl

el) =
⎛

⎜
⎝

2ωe(vu sin φ + vn cos φ) + vn
λ̇

cosφ 0 0

−2ωeve cos φ − ve λ̇
cos φ 0 0

−2ωeve sin φ 0 0

⎞

⎟
⎠

⎛

⎝

δφ
δλ
δh

⎞

⎠+

⎛

⎜
⎝

−vu+vn tan φ
N+h 0 0

−ve tan φ
N+h

−vu
M+h 0

ve
N+h

vn
M+h 0

⎞

⎟
⎠

⎛

⎝

δve

δvn

δvu

⎞

⎠ (95)
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The fourth term is

δγ l =

⎛

⎝

0
0

− ∂γ
∂h δh

⎞

⎠ =

⎛

⎝

0
0
2γ

Reδh

⎞

⎠ (96)

where Re is the mean Earth radius. The last term is the transformed accelerometer biases.
Combining all the terms, we have

δv̇l =

⎛

⎜
⎜
⎝

2ωe(vu sin φ + vn cos φ) + vn λ̇
cos φ 0 0

−2ωeve cos φ − ve λ̇
cos φ 0 0

−2ωeve sin φ 0 2γ
Re

⎞

⎟
⎟
⎠

︸ ︷︷ ︸

F21

δrl+

⎛

⎜
⎝

−ḣ+φ̇ tan φ(M+h)
N+h (2ωe + λ̇) sin φ −(2ωe + λ̇) cos φ

−2(ωe + λ̇) sin φ −ḣ
M+h −φ̇

2(ωe + λ̇) cos φ 2φ̇ 0

⎞

⎟
⎠

︸ ︷︷ ︸

F22

δvl+

⎛

⎝

0 fu − fn

− fu 0 fe

fn − fe 0

⎞

⎠

︸ ︷︷ ︸

F23

ǫl +

⎛

⎝

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞

⎠

︸ ︷︷ ︸

F25

b (97)

3.6.8 Matrix formulation of alignment errors

The third equation in (89) can be derived similarly as

ǫ̇l =

⎛

⎝

0 (ωe + λ̇) sin φ −(ωe + λ̇) cos φ
−(ωe + λ̇)sinφ 0 −φ̇
(ωe + λ̇) cos φ φ̇ 0

⎞

⎠

︸ ︷︷ ︸

F33

ǫl+

⎛

⎜
⎜
⎝

0 0
φ̇

M+h

−ωe sin φ 0
−λ̇ cos φ

N+h

ωe cos φ + λ̇
cos φ 0

−λ̇ sin φ
N+h

⎞

⎟
⎟
⎠

︸ ︷︷ ︸

F31

δrl+

⎛

⎜
⎝

0 −1
M+h 0

1
N+h 0 0
tan φ
N+h 0 0

⎞

⎟
⎠

︸ ︷︷ ︸

F32

δvl +

⎛

⎝

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞

⎠

︸ ︷︷ ︸

F34

d (98)
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3.6.9 Matrix formulation of sensor errors

The matrices associated with the gyro drift and accelerometer bias equations in (89) are
diagonal, given as

F44 =

⎛

⎝

−αx 0 0
0 −αy 0
0 0 −αz

⎞

⎠ (99)

F55 =

⎛

⎝

−βx 0 0
0 −βy 0
0 0 −βz

⎞

⎠ (100)

where the α and β terms are the reciprocals of the time constants associated with the first-order
Gauss-Markov model of each sensor.

Finally, we can define the error dynamics matrix F in terms of the sub-matrices derived above
as

F =

⎛

⎜
⎜
⎜
⎜
⎝

F11 F12 0 0 0
F21 F22 F23 0 F25

F32 F32 F33 F34 0
0 0 0 F44 0
0 0 0 0 F55

⎞

⎟
⎟
⎟
⎟
⎠

(101)

3.7 Error analysis and Schüler oscillation

In figure 7, it is shown that the rotation rate of the l-frame with respect to the i-frame expressed
as a vector in the b-frame is subtracted from the raw gyroscope measurements when the
system is to be mechanized in the l frame. The relative rotations between the frames, or
the transport rate, itself is a function of the computed velocity and misalignment between
the l and e frames. If there is an error in the computed transformation Re

l or in the initial

values in Rb
l , the computation of Rl

b will be in error. In the simple case that the vehicle
is actually perfectly level and either stationary or at a constant velocity, but the computed
value of Rl

b indicates that it is not level, a component of the gravity vector will be resolved in
the horizontal axes of the system. This component is integrated and provides an erroneous
velocity value, which is fed back to compute ωl

il , which, in turn is transformed through Rb
l

and is subtracted from the angular rate measurements. Finally, a second integration occurs
using the “corrected” measurements to update Rl

b and the process repeats.

The dynamics of the system described above are described by the characteristic equation in
the Laplace domain as

s2 +
g

Re
= 0 (102)

where g is gravity and Re is the mean radius of the earth. This represents a simple oscillation
whose natural frequency is

ω0 =

√
g

Re
(103)
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and is called the Schüler oscillation, after Maximilian Schüler who showed that the bob of
a hypothetical pendulum whose string was the length of the Earth’s radius would not be
displaced under sudden motions of its support. The period of such a pendulum (and of
the Schüler oscillation) is 84.4 minutes. This implies that positional errors caused by either
accelerometer bias or initial velocity errors are bounded over this period. On the other hand,
positional errors due to misalignment or gyro drift are not bounded.

Characterization of INS errors in each channel (East, North, Up) can be performed analytically
in the case of a level platform traveling at a constant velocity and height where there is no
coupling between them. For example, under the conditions stated above, a derivation of
error propagation for the North channel proceeds from formulating an error dynamics matrix
composed only of terms affecting the position, velocity and error states relating to it and
deriving the state transition matrix Φ by

Φ(t) =L−1{(sI − F)−1} (104)

where L−1 denotes the inverse Laplace transform. The effect of a particular error source upon
the error state under investigation is simply the term in Φ(t) whose row index corresponds to
the index of the state whose column index corresponds to the index of the error source. For
example, the effect of a constant velocity error δv upon the North position is

δrn(t) =δv
sin ω0t

ω0
(105)

where ω0 is the Schüler frequency. Because the errors in position due to gyro drift and
misalignment are unbounded, as previously mentioned, the largest single quantity of merit in
the sensor specifications of an IMU is in the gyro drift rate. We finish by noting that for more
general trajectories, characterization of error propagation is best done through simulation.

4. Sensors

IMU measurements are made from two triads of orthogonally-mounted accelerometers and
gyros; one sensor for each degree of freedom in three-dimensional space. Accelerometers
measure specific force along a sensitive axis. Gyroscopes measure either rotations or rotation
rates along a sensitive axis. Although the current state of the art in sensor design makes use of
the principles of lasers and quantum mechanics, Newtonian mechanics gives us the tools to
design both accelerometers and gyroscopes. Presented below is a brief discussion of the basis
of such classical designs.

4.1 Accelerometers

Recalling Newton’s second law:

Fi = mr̈i (106)

where i represents the inertial frame, expresses the fact that force is proportional to the
acceleration of a constant proof mass. Conversely, the force needed to keep this mass from
accelerating is a measure of linear acceleration, a principle employed in most accelerometers.
It can be seen as a realization of the law of conservation of linear momentum:
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Fi = ṗi = mr̈i = 0 (107)

where p is the momentum of the proof mass, i.e. the rate of change of the momentum is equal
to the applied force. The external forces acting on the system are balanced by internal forces, so
the motion of the proof mass remains constant in an inertial frame. In theory there is a problem
realizing such a sensor on Earth because the planet is undergoing constant acceleration in its
orbit around the Sun and so forth. This makes defining zero acceleration impossible in an
inertial frame, but we can simply treat any signal arising from these conditions as a constant
instrument bias and remove it from the measurements. From here on, we will only consider
this situation.

To see how (107) can be realized in a measurement device, consider the classical
spring-mass-damper system shown in figure 8. A mass m is constrained to move along the

m

C

ck

case

x

0

r

OO

Fig. 8. a spring-mass-damper system

x axis of the device (the sensitive axis). It is restrained by a spring and its motion is damped
by a damping device. Finally, there is a scale and a housing for the assembly. Point C is the
center of mass of the sensitive element and point O indicates the equilibrium position when
the device is not subjected to any external force along the sensitive axis. The output of the
device is measured along the r scale, which is made proportional to the internal signal along
x. The spring provides a restoring force proportional to the displacement of the proof mass
by Hooke’s Law:

F = −kx (108)

where k is the spring constant. The damper is present to minimize oscillations in response to
sudden changes in applied force and can be made of a viscous fluid-filled piston or the like.
The force produced by the damper is proportional to the velocity of the proof mass or −cẋ,
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where c is the damping or viscosity constant. If we assume that the sensor is located on the
Earth with the x axis facing opposite the direction of the pull of gravity, Newton’s second law
gives the second-order differential equation

mr̈C + cẋC + kxC − mg = 0 (109)

where g is present to account for the reaction force of the case against the surface of the Earth.
Letting

rC = xC + r0 (110)

we have

ẍC +
c

m
ẋC +

k

m
xC = g − r̈0 (111)

This system will therefore have an output of g − r̈0 = f , which is the specific force. This is the
observable obtained from accelerometers near the surface of Earth. In this case, without extra
applied force, the output is simply g.

It is not possible to separate the effects of inertia and gravity in a non-inertial frame,
a consequence of Einstein’s equivalence principle. In other words, forces applied to an
accelerometer through accelerations of the vehicle are indistinguishable from the acceleration
caused by the gravity field of the planet. Without knowledge of the vehicle’s acceleration at a
particular time, it is not possible to measure the local gravitational vector and vice versa. The
forces acting on the vehicle other than gravity include those induced by Earth’s rotation, so
we must be careful in how we eliminate instrument biases depending upon which reference
frame we are to work in.

Equation (109) is an open-loop mechanization of the mass-spring-damper system, where the
displacement is directly measured. Modern high-accuracy designs are by contrast closed-loop
systems, where the mass is kept at the null position by a coil in a magnetic field. The force
required to keep the mass stationary under various accelerations is then the quantity that is
measured. Several other realizations of accelerometers are possible, but most are still modeled
by similar differential equations.

Finally, we note that though the observable we shall deal with is specific force, the actual
output of the sensor is change in velocity ∆v. This is a consequence of the internal mechanisms
of modern accelerometers, where several measurements are integrated over a short period of
time (usually a few milliseconds) to smooth out measurement noise. The general form of the
measurement model of specific force from an accelerometer triad is given by the observation
equation

ℓa = f + b + (S1 + S2)f +Nf + γ + δg + ǫ f (112)

where

ℓa is the measurement

f is the specific force

b is the accelerometer bias

S1 and S2 represent the linear and non-linear matrix of scale factor errors, respectively
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N is a matrix representing the non-orthogonality of the sensor axes

γ is the vector of normal gravity

δg is the anomalous gravity vector

ǫ f is noise

4.2 Gyroscopes

Gyroscopes measure angular velocity with respect to an inertial reference frame. A schematic
of a simple two-axis gyroscope is shown in figure 9. In this device, a spinning disc is mounted
within a set of gimbals which allow it to pivot in response to an applied torque, a behavior
known as precession.

spin axis

inner gimbal

inner gimbal axis
outer
gimbal
axis

outer gimbal

Base

Fig. 9. a two-axis rigid rotor gyroscope

We can analyze the behavior of this system beginning with Newton’s second law in terms of
momentum again:

Fi = ṗi (113)

The cross product with the vector r gives the moment of this force about the origin, or

ri × Fi = ri × ṗi (114)

Now, we observe that the angular momentum, L of the spinning disc is

L = ri × pi (115)

the time derivative of which is

L̇ = ṙi × pi + ri × ṗi (116)

Now, because ṙi and pi are parallel, the first cross product on the right hand side of (116) is
zero, thus

ri × Fi = L̇ (117)
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For a particle moving in a central field (i.e. any point we chose on the disc), F and r are
parallel and thus L is constant. This means that the direction of the spin axis of the rotating
disc is fixed in inertial space. In a two axis gyroscope any rotation ωt about t (the input axis)
in figure 10 would give rise to a rotation ωp about p (the output axis). This phenomenon
is known as precession. Measuring the torque about p leads us to the angular velocity
about t, which is the observable under consideration. As with accelerometers, the actual

s

t

p

F, r

ωs

s′

ωt

ωp

Fig. 10. gyroscopic precession

physical implementation of gyroscopes has taken on many forms, depending on purpose and
performance considerations. In the example given above, measurements of gimbal rotation
(in an open-loop system) are angular measurements. In a closed-loop system, motors are
used to keep the gimbals from moving and the required torque to do so is measured. These
measurements are therefore of the angular rates of the system. Sensing angular velocity
in modern strap-down navigation systems is actually accomplished through exploiting the
Sagnac effect rather than the mechanical properties of rotating masses. In this case, the
interference patterns generated by light traveling along opposing closed paths is used as a
measure of the angular rotation of the system. In any case, the measurements obtained from
a gyroscope triad can modeled by the observation equation

ℓω = ω + d + Sω + Nω + ǫω (118)

where

ℓω is the measurement

ω is the angular velocity

d is the gyroscope bias

S is a matrix representing the gyroscope scale factor

N is a matrix representing the non-orthogonality of the axes

ǫω is noise

The noise terms of both accelerometers and gyroscopes can be further decomposed as

ǫ = ǫw + ǫc + ǫr + ǫq + ǫd (119)

the five terms representing white, correlated, random walk, quantization and dither noise,
respectively. Some IMU errors associated with scale factor and non-orthogonality are
characterized in the factory, while others, including bias and noise are removed by the
estimation process.
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5. Estimation

5.1 Bayesian estimation

We now turn to the treatment of the stochastic aspects of INS design. In general, the dynamic
system derived in the previous sections which describes the navigation and error states
evolves in discrete time according to

xk =fk−1(xk−1, wk−1) (120)

where fk−1 is some (possibly nonlinear) function of the previous state and its process noise
wk−1, which accounts for errors in the model or disturbances to it. Also, generally speaking,
we have no direct knowledge of the states themselves, but can only access them through
measurements z which are related through

zk =hk(xk, vx) (121)

where hk is also a possibly nonlinear function of the state and the measurement noise vk. We
assume the process noise and the measurement noise are white and statistically independent.
The second criterion is very difficult to prove, in which case, for practical purposes we accept
that they are at least uncorrelated. Succinctly,

E{wiw
T
j } = E{viv

T
j } =

{
δ(0), ∀i = j
0, ∀i �= j

(122)

E{wiv
T
j } = 0, ∀i, j (123)

where E{·} is the expectation operator and δ(·) is the Dirac delta function. At any point,
x will be a random sample associated with a particular probability density function (pdf).
More specifically, given all the measurements of the system up to time k − 1, we will have
the conditional pdf p(xk|Zk−1) where Zk−1 = {z1, z2, . . . , zk−1}. The goal is to find p(xk|Zk)
once new measurements are available. Because the current state is dependent only on the state
immediately preceding it, it is first-order Markovian and we apply the Chapman-Kolmogorov
equation (Duda et al., 2001; Ristic et al., 2004):

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (124)

where p(xk|xk−1) is the transition density, which allows us to calculate the probability that
a state will evolve in a particular way from one instant to the next. The result of (124) is
essentially a prediction of the state vector given all previous information (the Bayesian prior
pdf) . Once new measurements become available, we seek to update the estimate of xk using
zk (or obtain the Bayesian posterior pdf). Using Bayes’ formula

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)

=
p(zk|xk)p(xk|Zk−1)∫

p(zk|xk)p(xk|Zk−1)dxk
(125)

We can recursively employ (124) and (125) to estimate the state pdf at any time, from which
estimates of the state vector itself can be obtained using any optimality criterion we chose.
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Initially, there will, of course, be no prior states or measurements, so we define the initial
prior as p(x0), which is simply our best estimate given what we know generally about such
systems.

5.2 Linear filters

Linear filtering attempts to find the optimal linear combination of the predicted state and the
the state implied by the measurements. In recursive form, a linear filter can be written as

x̂k|k = K′
k x̂k|k−1 + Kkzk (126)

where K′
k and Kk are weight or gain matrices to be computed at each instant k. Under

the assumption of Gaussian noise, the resulting pdf of the estimate will also be Gaussian.
The Kalman filter, which we shall describe next, is the optimal estimator under these
circumstances (Kalman, 1960).

5.3 The Kalman filter

The problem as described in its general form in section 5.1 is rarely analytically tractable
in practice. For one thing, state vectors may be very large, having high- (or infinite-)
dimensional pdfs which cannot be integrated in the denominator of (125); the well-known
“curse of dimensionality”(Duda et al., 2001). Secondly, the nonlinear models themselves may
be unavailable or too complex to deal with analytically. For this reason, the error dynamics
in 3.6 have been approximated to a linear system. We have also made many linearizing
assumptions in the state equations such as the assumption of fast sampling rates relative to
vehicle dynamics. We have also made the assumption of Gaussian-distributed noise in the
sensors and shall further assume that disturbances to the error dynamics model take the same
(though uncorrelated) form.

Under these conditions, that is linearity and Gaussianity, a realizable solution to the Bayesian
estimation problem is the Kalman filter, first described by Rudolph Kalman in 1960. Let the
discrete-time system and its measurement equation be defined as

xk = Φk,k−1xk−1 + Gk−1wk−1 (127)

zk = Hkxk + vk (128)

where Φk,k−1 is the state transition matrix, wk−1 is the zero-mean process noise with shaping
matrix Gk−1, Hk is the design matrix mapping state parameters to measurements in zk and vk

is zero-mean measurement noise (uncorrelated with process noise). Φk,k−1 and H are linear
functions, so xk and zk are Gaussian random vectors whose pdfs are completely described by
their means and covariances. In addition to the requirements of (122) and (123), we have for
the initial state x0 the following constraints:

E{x0wT
k } = 0 (129)

E{x0vT
k } = 0 (130)

We seek an efficient estimator (if it exists), which is to say it is unbiased and its covariance
attains the Cramér-Rao Lower Bound (CRLB). Such an estimator, if it exists, is both the
minimum variance unbiased estimator (MVUE) and the maximum-likelihood estimator
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(MLE), thought the converse is generally not true. An efficient estimator therefore has the
properties that its estimates x̂k and those of any other estimator x̃k satisfy

E{(x̂k − xk)
T(x̂k − xk)} ≤ E{(x̃k − xk)

T(x̃k − xk)} (131)

where (in the case that both are unbiased),

E{x̂k} = E{x̃k} = E{xk} (132)

The Gaussian likelihood function has the form

ℓ(μ, Σ; x) = exp(−
1

2
(x −μ)T

Σ
−1(x−μ)) (133)

where the free parameters are the mean μ and the covariance Σ and the data x is given. A
maximum likelihood estimator is one that provides μ and Σ that maximize ℓ given a particular
sample x. In other words, it provides the parameters of the Gaussian pdf that would most
likely lead to having observed x (Papoulis, 1977). For two independent events, the joint
probability is P(a, b) = P(a)P(b). Likelihood functions obey a similar rule

ℓA,B(μA,B, ΣA,B; x) = ℓA(μA, ΣA; x)ℓB(μB, ΣB; x) (134)

which, for the log-likelihood reduces to the equality

log(ℓA,B(μA,B, ΣA,B|x, y)) = log(ℓA(μA, ΣA|x)) + log(ℓB(μB, ΣB|x))

or

−
1

2
(x −μA,B)

T
Σ
−1
A,B(x−μA,B) =

log(c)−
1

2
(x −μA)

T
Σ
−1
A (x−μA)−

1

2
(x −μB)

T
Σ
−1
B (x−μB) (135)

where c > 0 is an arbitrary constant. As shown in (Grewal et al., 2001), after taking the first
and second derivatives with respect to x, this further reduces to

Σ
−1
A,B = Σ

−1
A + Σ

−1
B (136)

Furthermore, the joint MLE is given by

Σ
−1
A,BμA,B = Σ

−1
A μA + Σ

−1
B μB (137)

⇒ μA,B = (Σ−1
A + Σ

−1
B )†(Σ−1

A μA + Σ
−1
B μB) (138)

where † is the generalized inverse of the matrix.

For any measurement vector z, its ML estimate μ̂z = z and its covariance Σz = E{vvT}. We
now transform the likelihood based on the measurements into likelihood of the state vector
by

μx = H†z (139)

Σ
−1
x = HT

Σ
−1
z H (140)
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Let μA = x̂k|k−1, that is the MLE prior to update, and Σ
−1
A = P−1

k|k−1
or the inverse of

covariance matrix of the MLE prior to update, whose propagation in time is given by

x̂k|k−1 = Φk,k−1x̂k−1|k−1 (141)

and

Pk|k−1 = Φk,k−1Pk−1|k−1Φ
T
k,k−1 + Qk−1 (142)

where Qk−1 is the covariance of the process noise wk−1. Next, let μB = μx as defined in (139)

and Σ
−1
B = Σ

−1
x as defined in (140). Now, the covariance after the update Pk|k is

Pk|k = ΣA,B

= (Σ−1
A + HT

Σ
−1
z H)−1

= ΣA − ΣAHT(HΣAHT + Σz)
−1HΣA

= Pk|k−1 − Pk|k−1HT(HPk|k−1HT + Σz)
−1HPk|k−1 (143)

The estimate after the update is x̂k|k = μA,B, which by (138), is

x̂k|k = (Σ−1
A + Σ

−1
B )†(Σ−1

A μA + Σ
−1
B μB)

= Pk|k(Pk|k−1x̂k|k−1 + HT
Σ
−1
z HH†z)

which, after some simplification, becomes

x̂k|k = x̂k|k−1 + Pk|k−1HT(HPk|k−1HT + Σz)
−1(z − Hx̂k|k−1)

= x̂k|k−1 + K(z − Hx̂k|k−1) (144)

Where K is the Kalman gain matrix, which provides the optimal weights for combining the
predicted estimate of the state with the new measurements. After the update, the current
estimate and its covariance is propagated in time using (141) and (142)

It can be shown that the updated state covariance matrix achieves the Cramér-Rao Lower
Bound, and that x̂k|k is unbiased, meaning that the estimator is efficient and automatically
both the MLE and the MVUE. Finally, in terms of pdfs,

p(xk−1|Zk−1) = N (xk−1; x̂k−1|k−1, Pk−1|k−1) (145)

p(xk|Zk−1) = N (xk; x̂k|k−1, Pk|k−1) (146)

p(xk|Zk) = N (xk; x̂k|k, Pk|k) (147)

which provides a Bayesian interpretation of the Kalman filter.
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5.4 GNSS aiding

Because of unbounded position errors associated with misalignment and gyro drift,
along with the undesirability of having even bounded oscillations in the position due to
accelerometer and velocity errors, it is necessary for most applications using medium-grade
and commodity-grade IMUs to employ an aiding method. That is, using an external (and
independent) estimate of navigation states to limit the accumulation of errors in the INS.
For the last two decades, the preferred method has been to use measurements obtained from
global navigation satellite systems such as GPS to update the INS error estimates and improve
the navigation solution. The simplest way to achieve this, of course, is to simply use the
calculated positions and velocities from the GNSS directly in place of the results from the
mechanization as they become available. This is the so-called reset “filter”, although from the
standpoint of optimal filtering, it has many undesirable effects such as introducing sudden
jumps in the navigation states. Moreover, the complementary filter places all the weight on
the GNSS-derived values, which themselves are subject to error.

Alternatively, Kalman filtering is used to optimally estimate the error states of the INS, with
updates coming from GNSS in one of several architectures:

• Loosely-coupled integration. Here, the GNSS system acts to provide a full position and
velocity estimate independently of the INS mechanization. The measurements of the
error states arises from subtracting the GNSS states from the position and velocity arising
from the mechanization. These are then transferred through the design matrix H of
the measurement equations and used to update the error estimates, which in turn are
subtracted from the navigation states.

• Tightly-coupled integration. In this scheme, the GNSS measurements and error states are
directly incorporated into the Kalman filter, the primary benefit being that the navigation
state can be improved over the mechanization alone with fewer than four GNSS satellites
being tracked at any given time. A detailed treatment can be found in (Grewal et al., 2001).

• Deeply-coupled integration. This is a hardware-level implementation which further
incorporates the states associated with the GNSS receiver signal tracking loop. This allows
for better tracking stability under high dynamics and rapid reacquisition of GNSS signals
under intermittent visibility (Kim et al., 2006; Kreye et al., 2000).

In the loosely-coupled scheme, at each update we let

z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

φINS − φGNSS

λINS − λGNSS

hINS − hGNSS

veINS − veGNSS

vnINS − vnGNSS

vuINS − vuGNSS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

δφ
δλ
δh
δve

δvn

δvu

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(148)

The measurement equation is then

Hx̂k|k−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

x̂k|k−1 (149)
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Under the assumption of a fast sampling rate, the state transition matrix Φk,k−1 is given by

Φk,k−1 = eδtF (150)

Where F is the error dynamics matrix defined in 3.6. Using (141),(142), (143) and (144), it
becomes evident that although alignment errors and sensor biases are not directly observable,
the Kalman gain matrix K contains information about their contribution to the navigation
states. Since the error dynamics are linearized about the current state estimates, the filter
presented here is an example of extended Kalman filtering.

We finish with the remark that, in general, the assumptions of linearity, Gaussianity and
uncorrelated noise sources are not strictly justified in INS applications. Beyond employing
an extended Kalman filter (EKF) as described above, the further development and application
of nonlinear filters such as the unscented Kalman filter (UKF) and the particle filter have been
undertaken in attempts at solving the more general Bayesian formulation of the problem.

6. Conclusion

Aided inertial navigation remains an active area of research, especially with the introduction
of smaller and cheaper (but noisier) inertial sensors. Among the challenges presented by these
devices is heading initialization (Titterton & Weston, 2004), which necessitates the use of other
aiding systems, and proper stochastic modeling of their error charactertics. In addition, the
nonlinearity of the state equations has prompted much research in applied optimal estimation.
Despite this, the underlying concepts remain the same and the development presented here
should give the reader enough background to understand the issues involved, enabling him
or her to pursue more detailed aspects of INS and aided INS design as necessary.
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