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1. Introduction 

Cardiovascular disease (CvDs) such as coronary artery disease, hypertension, congestive 

heart failure and stroke are the leading causes of death and disability in the Western 

World (Madamanchi et al., 2005;  Thom, 1989). The majority of CvDs results from 

complication of atherosclerosis. Prevention of cardiovascular events is therefore urgently 

needed and is one of the major recent challenges of  medicine. New molecular imaging 

approaches featuring the assessment of inflammatory processes in the vascular wall (on 

top of existing anatomic and functional vessel imaging procedures) could emerge as 

decisive tools for the understanding and prevention of cardiovascular events (Schafers et 

al., 2010). 

2. Atherosclerosis 

Atherosclerosis is a progressive disease, affecting medium and large-sized arteries, 

characterized by patchy intramural thickening of the subintimal that encroaches on the 

arterial lumen (Bonomini et al., 2008). The atherosclerosis plaque is characterized by an 

accumulation of lipid in the artery wall, together with infiltration of macrophages, T cells 

and mast cells, and the formation by vascular smooth muscle cells (VSMCs) of a fibrous 

cap composed mostly of collagen. Early lesions called “fatty streaks” consist of sub-

endothelial deposition of lipid, macrophage foam cells loaded with cholesterol and T cells. 

Over time, a more complex lesion develops, with apoptotic as well as necrotic cells, cell 

debris and cholesterol crystals forming a necrotic core in the lesion. This structure is 

covered by a fibrous cap of variable thickness, and its “shoulder” regions are infiltrated 

by activated T cells, macrophages and mast cells, which produce proinflammatory 

mediators and enzymes (Hansson et al., 2006). Plaque growth can cause stenosis 

(narrowing of the lumen) that can contribute to ischemia in the surrounding tissue 

(Hansson & Hermansson, 2011).  

Although the pathophysiological mechanisms underlying atherosclerosis are not 

completely  understood, it is widely recognized that both inflammation and oxidative 

stress play important roles in all of the phases of atherosclerosis evolution (Cipollone et 

al., 2007).  
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Fig. 1. Steps involved in atherosclerosis progression from endothelial dysfunction to 
cardiovascular complication. 

2.1 Atherosclerosis and oxidative stress  
Oxidative stress can be defined  as an “imbalance between oxidants and antioxidants in 

favor of the oxidants, potentially leading to damage” (Sies, 1991). Age, gender, obesity, 

cigarette smoking, hypertension, diabetes mellitus and dyslipidemia are known atherogenic 

risk factors that promote the impairment of endothelial function, smooth muscle function 

and vessel wall metabolism. These risk factors are associated with an increased production 

of reactive oxygen species (ROS) (Antoniades et al., 2003). ROS play a physiological role in 

the vessel wall and participate as second messengers in  endothelium-dependent function, 

in smooth muscle cells and endothelial cells (ECs) growth and survival, and in remodelling 

of the vessel wall. Each of these responses, when uncontrolled, contributes to  vascular 

diseases (Fortuño et al., 2005; Griendling & Harrison, 1999; Irani, 2000; Taniyama & 

Griendling, 2003).  

In the vasculature wall, ROS are produced by all the layers, including tunica intima, media 

and adventitia. ROS include superoxide anion radical (O2-), hydrogen peroxide (H2O2), 

hydroxyl radical (OH), nitric oxide (NO), and peroxynitrite (ONOO-) (Lakshmi et al., 2009). 

The major vascular ROS is O2−, which inactivates NO, the main  vascular relaxing factor, 

thus impairing relaxation (Cai & Harrison, 2000; Kojda & Harrison, 1999).  Dismutation of 

O2− by superoxide dismutase (SOD) produces H2O2, a more  stable ROS, which, in turn, is 

converted to water by catalase and glutathione peroxidase. H2O2 and other peroxides 

appear to be important in the regulation of growth-related signalling in VSMCs and 

inflammatory responses in vascular lesions (Irani, 2000; Li, P.F. et al., 1997). High levels of 

O2−, the consequent accumulation of H2O2 and diminished NO  bioavailability play a critical 

role in the modulation of vascular remodelling. Finally, ONOO-, resulting from the reaction 

between O2− and NO, constitutes a strong oxidant molecule, which is able  to oxidize 

proteins, lipids and nucleic acids and then causes cell damage (Beckman & Koppenol, 1996; 

Fortuño et al., 2005).  

There are several potential sources of ROS production. In cardiovascular disease the sources 
include xanthine oxidase, cyclooxygenase, lipooxygenase, mitochondrial respiration, 
cytochrome P450, uncoupled nitric oxide synthase (NOS) and NAD(P)H oxidase. They have 
been identified as sources of ROS generation in all type of vasculature. These sources may 
contribute to ROS formation, depending on cell type, cellular activation site and disease 
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context. Numerous studies have shown that various physiological stimuli that contribute to 
pathogenesis of vascular disease can induce the formation of ROS (Lakshmi et al., 2009). 
ROS have detrimental effects on vascular function through several mechanisms. First, ROS, 
especially hydroxyl radicals, directly injure cell membranes and nuclei. Second, by 
interacting with endogenous vasoactive mediators formed in ECs, ROS modulate 
vasomotion and the atherogenic process. Third, ROS peroxidize lipid components, leading 
to the formation of oxidized lipoproteins (LDL), one of the key mediators of atherosclerosis 
(Bonomini et al., 2008).  
 

 

Fig. 2. Potential sources of ROS production in atherosclerosis progression.  

Cholesterol  is transported in the blood by LDL. These particles contain esterified cholesterol 
and triglycerides surrounded by a shell of phospholipids, free cholesterol and 
apolipoprotein B100 (ApoB100).  Circulating LDL particles can accumulate in the intimal, 
the innermost layer of the artery. Here ApoB100 binds to proteoglycans of the extracellular 
matrix (ECM) through ionic interactions (Tabas et al., 2007). This is an important initiating 
factor in early atherogenesis (Skålen et al., 2002; Steinberg, 2009; Witztum & Steinberg, 
2001). As a consequence of this subendothelial retention,  LDL particles are trapped in the 
tunica intima, where they are prone to oxidative modifications caused by enzymatic attack 
of myeloperoxidase (Heinecke, 2007) and lipoxygenases, or by ROS such as hypoclorous 
acid (HOCl), phenoxyl radical intermediates or ONOO- generated in the intimal during 
inflammation  and atherosclerosis (Hansson & Hermansson, 2011).  
Oxidized LDL (Ox-LDL) has several biological effects (Madamanchi et al., 2005); it is pro-
inflammatory; it causes inhibition of endothelial NOS (eNOS); it promotes vasoconstriction 
and adhesion; it stimulates cytokines such as interleukins (ILs) and increases platelet 
aggregation. Ox-LDL-derived products are cytotoxic and induce apoptosis. Ox-LDL can 
adversely affect coagulation by stimulating tissue factor and plasminogen activator 
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inhibitor-1 (PAI-1) synthesis. Another atherogenic property of Ox-LDL is its 
immunogenicity and its ability to promote retention of macrophages in the arterial wall by 
inhibiting macrophage motility (Singh & Jialal, 2006). In addiction, Ox-LDL stimulates 
VSMCs proliferation (Stocker & Keaney, 2004). Thus, intimal thickening further reduces the 
lumen of blood vessels, leading to further potentation of hypertension and atherosclerosis 
(Singh & Jialal, 2006). With ongoing oxidation, the physicochemical properties gradually 
change, including  alterations in charge, particle size, lipid content and other features. The 
precise nature of each of  these alterations obviously depends on the oxidizing agent. For all 
these reasons, Ox-LDL is  not a defined molecular species but is instead a spectrum of LDL 
particles that have undergone a  variety of physicochemical changes (Hansson & 
Hermansson, 2011).  

2.2 Atherosclerosis and inflammation 
Inflammation participates in atherosclerosis from its inception onwards. Fatty  streaks do 

not cause symptoms, and may either progress to more complex lesions or involute. Fatty  

streaks have focal increases in the content of lipoproteins within regions of the intimal, 

where they  associate with components of the ECM such as proteoglycans, slowing their 

egress.  This retention sequesters lipoproteins within the intimal, isolating them from 

plasma antioxidants, thus favoring their oxidative modification (Kruth, 2002; Packard & 

Libby, 2008; Skålen et al., 2002). Oxidatively modified LDL particles comprise an  

incompletely defined mixture, because both the lipid and protein moieties can undergo 

oxidative modification. Constituents of such modified lipoprotein particles can induce a 

local inflammatory response (Miller et al., 2003; Packard & Libby, 2008).  

Vascular ECs function to prevent clotting of blood and adhesion of blood cells to the 

endothelial  cells, in addition to playing the role of a barrier, as a cell monolayer, to prevent 

blood constituents from invading the vascular wall. When ECs are injured or activated by 

various coronary risk factors, infections or physical stimuli, adhesion molecules become 

expressed in ECs, and peripheral monocytes adhere to the endothelial cell surface. Adhesion 

molecules are broadly divided into three  molecular families: integrin family, 

immunoglobulin family, and selectin family (L-selectin, Eselectin, P-selectin) (Yamada, 

2001).  

Chemoattractant factors, which include monocyte chemoattractant protein-1 (MCP-1) 
produced by vascular wall cells in response to modified lipoproteins,  direct the migration 
and diapedesis of adherent monocytes (Boring et al., 1998; Packard & Libby, 2008). 
Monocytic cells, directly interacting with human ECs, increase several fold monocyte matrix 
metalloproteinase (MMP) 9 production, allowing for the subsequent infiltration of 
leukocytes through the endothelial layer and its associated basement membrane (Amorino 
& Hoover, 1998; Packard & Libby, 2008) Within the intima, monocytes mature into 
macrophages under the influence of macrophage  colony stimulating factor (M-CSF), which 
is overexpressed in the inflamed intima. M-CSF stimulation also increases macrophage 
expression of scavenger receptors, members of the pattern-recognition receptor superfamily, 
which engulf modified lipoproteins through receptor-mediated endocytosis. Accumulation 
of cholesteryl  esters in the cytoplasm converts macrophages into foam cells, i.e., lipid-laden 
macrophages characteristic of early-stage  atherosclerosis. In parallel, macrophages 
proliferate and amplify the inflammatory response through the secretion of  numerous 
growth factors and cytokines, including tumor necrosis factor ǂ (TNFǂ) and IL-1ǃ. Recent 
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evidence supports selective recruitment of a proinflammatory subset of monocytes to 
nascent atheroma in mice (Packard & Libby, 2008).  
A number of proinflammatory cytokines have been shown to participate in  atherosclerotic 
plaque development, growth and rupture (Dabek, 2010; Libby et al., 2002). Nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-kB) seems to be a crucial transcription 
factor in the cross-talk among cytokines, adhesion molecules and growth factors. On one 
hand, NF-kB is a major transcription factor leading to cytokine synthesis, and on the other 
hand, the above mentioned factors keep NF-kB persistently activated in acute coronary 
syndromes (Dabek, 2010). In atherogenesis, NF-kB before regulates the expression of 
cyclooxygenases, lipooxygenases, cytokines, chemokines (i.e., MCP-1) and adhesion 
molecules (Dabek, 2010; Kutuk & Basaga, 2003). Later in the  progression of the 
atherosclerotic lesion, NF-kB regulates gene expression of M-CSF, a factor stimulating 
infiltrating monocyte differentiation and transformation into “foamy cells”, and other genes 
participating in the transformation (Brach et al., 1991; Dabek, 2010). As stated, 
atherosclerosis is an inflammatory reaction  of the arterial wall. The factors IL-1ǃ, TNF-ǂ, IL-
6, IL-12 and interferon Ǆ (IFNǄ) are involved in this reaction and their expression is 
coregulated by NF-kB.  
Intracellular matrix degradation is an important process in both plaque development and 
rupture. The vital factors involved include MMPs, particularly those that are able to break 
down the vascular base  membrane. It has been shown that NF-kB is an essential regulator 
of MMP gene expression, especially MMP-2 and MMP-9, which are critical in plaque 
rupture (Bond et al., 1998; Dabek, 2010). Thus, NF-kB regulates the expression of a wide 
spectrum of atherosclerosis mediating factors. On the other hand, most of these factors also 
up-regulate NF-kB activity. Increased NF-kB activity was found in unstable regions of 
atherosclerotic plaques (Brand et al., 1997; Dabek, 2010). The significance of NF-kB activity 
has been confirmed in  some clinical studies as well. Li and colleagues reported significantly 
increased NF-kB activity in white blood cells from unstable angina patients vs. stable angina 
patients and vs. control patients (the lowest activity in the latter) (Li, J.J. et al., 2004).  
 

 

Fig. 3. Role of oxidative stress and inflammation in the early atherosclerosis. 
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3. Endothelial cells dysfunction in atherosclerosis 
The endothelium is responsible for the regulation of vascular tone, the exchange of plasma and 
cell biomolecules, inflammation, lipid metabolism and modulation of fibrinolysis and 
coagulation (Andrews et al., 2010). Aging affects many pathways involved in cardiovascular 
functions and particularly of ECs (Barton, 2010; Virdis et al., 2010). In fact, endothelial-aging is 
associated with anatomical disruption, morphological abnormalities in ECs size and shape 
(Haudenschild et al., 1981), susceptibility to apoptosis and abnormal release of EC-derived 
factors (Barton, 2010). These factors, which are synthetized not only by ECs, but also by VSMCs, 
are now known to contribute to pathogenetic mechanisms of CVDs (Higashi et al., 2009).  
 

 

Fig. 4. Central role of ROS in inducing endothelial dysfunction in vascular diseases. 

ECs dysfunction, inflammation, oxidative stress and dyslipidaemia are known to play 
prominent and vital roles not only in the development of atherosclerotic lesions, but also in 
their progression. (Andrews et al., 2010; Bai et al., 2010; Higashi et al., 2009 ; Virdis et al., 
2010). Number of factors and modalities are available to interfere with age related changes 
in EC function (Barton, 2010; Jensen-Urstad et al., 1999). When endothelial damage 
compromises the normal vascular function, the intracellular dynamic balance probably leans 
on an athero-prone phenotype.  
Growing evidence indicates that chronic and acute overproduction of ROS activates ECs as 
pivotal early event in atherogenesis. Oxidative stress induces cell proliferation, hypertrophy, 
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apoptosis and inflammation through activation of various signaling cascades, redox-
sensitive transcriptional factors and expression of pro-inflammatory phenotype (Higashi et 
al., 2009). ECs dysfunction has been shown to be associated with an increase of ROS in 
atherosclerotic animal models and in human subjects with atherosclerosis (Dai, D.Z. & Dai, 
Y., 2010; Davies et al., 2010; Higashi et al., 2009). Moreover, in APOE-deficient mice, a 
widely used animal model of atherosclerosis (Xu, 2009; Zhang, S.H. et al., 1992), studies 
have demonstrated that aged-ECs are more sensitive to apoptosis than younger ones. ECs in 
the areas of the artery resistant to atherosclerosis have a life span of about 12 months, 
whereas cells at lesion-prone sites live for few weeks and even shorter in aged animals  (Xu, 
2009). 

3.1 Endothelial cell-factors 
The vascular endothelium is nowadays considered to be a paracrine organ responsible for 
the secretion of several substances exerting atherogenic effects. The reduced bioavailability 
of NO as an indirect result of the effects of those factors, leads to atherosclerosis and its 
clinical manifestations (Muller & Morawietz, 2009; Tousoulis et al., 2010). Under normal 
conditions, ECs constantly produce a number of vasoactive and trophic substances that 
control inflammation, VSMC growth, vasomotion, platelet function and plasmatic 
coagulation (Barton & Haudenschild, 2001; Traupe et al., 2003).  
Normal vascular activity is essential for maintaining normal function of organs, dependent 
on a balance of vasoconstrictive and vasodilative substances derived from the endothelium, 
which mainly include NO to dilate and endothelin-1 (ET-1) to constrict the cells of tunica 
media. Furthermore, ECs activated by ROS can regulate vascular function via the release of 
inflammatory mediators, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell 
adhesion molecule (VCAM-1), MCP-1, ILs, angiotensin-II (A-II), TNFǂ, NF-kB and E- and P-
selectin, or the release of haemostatic regulators, such as von Willebrand factor, tissue factor 
inhibitor and plasminogen activator, fibrinogen and NO (Sima et al., 2009; Vanhoutte, 2009).  
 

 

Fig. 5. Regulatory functions of the endothelium maintaining the equilibrium between 
antiatherogenic and atherogenic properties. 
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The purpose of the following paragraphs will be to provide a brief description and 
characterization of the main EC-factors that are synthesize and secrete after ROS stimulus 
during endothelial athero-susceptibility. 

3.1.1 Angiotensin-II 
A-II, a causal factor to the dysfunction of vascular endothelium, adversely stimulates the 
activity of the cardiovascular system (Dai, D.Z. & Dai, Y., 2010). A-II increases blood 
pressure by vasoconstriction and sodium and fluid retention and produces overt oxidative 
stress resultant from the activation of NADPH oxidase, a source of ROS in blood vessels, 
that promotes endothelial dysfunction, inducing cytokines, chemokines and adhesion 
molecules secretion and contributes to vascular remodeling (Dai, D.Z. & Dai, Y., 2010; 
Ferrario, 2009; Partigulova & Naumov, 2010). The A-II effects on gene expression are 
mediated, at least in part, through the cytoplasmic NF-kB transcription factor. Through 
these actions, A-II augments vascular inflammation, induces EC dysfunctions and, in so 
doing, enhances the atherogenic process (Sprague & Khalil, 2009). 

3.1.2 Endothelial nitric oxide synthase  
Endothelium-derived NO, formed by eNOS, (isoform 3 of NO shynthase) is known as a 
potent vasodilator (Barton, 2010). eNOS is also the master gene regulator used by ECs to 

orchestrate their own phenotype, function and survival. eNOS is modulated by shear stress 
(Rodella et al., 2010, a) and agonists acting on cell surface receptors; its activity is dependent 

on many mechanisms, including substrate availability, phosphorylation, Ca2+ flux and 
protein–protein interactions (Andrews et al., 2010).  

With age, a number of changes occur in the cardiovascular system that can be considered 
pro-atherogenic (Barton, 2010). It is widely accepted that the most important mechanism 

leading to endothelial dysfunction is the reduced bioavailability of NO; so the decreased 
bioavailability of NO is consequently regarded a critical precursor to the development of 

atherosclerotic plaque and has been considered as one of the factors contributing to the 
higher incidence of atherosclerosis, arterial hypertension and renal disease in aged 

individuals (Barton, 2005). Together with its role as a vasodilator, NO impedes processes 
that are vital for atherosclerotic progression, including vasoconstriction, VSMCs 

proliferation and monocyte adhesion (Napoli et al., 2006). Furthermore, with atherosclerotic 
conditions, eNOS can become dysfunctional as it uncouples from its dimeric state to a 

monomeric state, in which it is able to produce superoxide anions rather than NO (Andrews 
et al., 2010; Vàsquez-Vivar et al., 1998). 

3.1.3 Endothelin-1 
Endothelins are EC-derived vasoactive peptides. Since its discovery, ET-1 has been 
demonstrated as one of the most potent known vasoconstrictors (Barton, 2010). ET-1 is 
synthesized in bulk by ECs and VSMCs (Rodella et al., 2010,a) as well as by macrophages, 
cardiomiocytes, neurons, renal medulla and Kupffer cells (Piechota et al., 2010). Factors that 
stimulate the release of ET-1 include endotoxins, TNFǂ, IL-1, adrenaline, insulin, thrombin 
and A-II. ROS are involved in the modulation and activation of ET-1 that induced various 
signaling pathways; in fact, during the inflammation process, atherosclerosis and 
hypertension there are elevated levels of ET-1 (Piechota et al., 2010; Skalska et al., 2009; 
Teplyakov, 2004). 
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3.1.4 Tumor necrosis factor α 
TNFǂ is crucially involved in the pathogenesis and progression of atherosclerosis, 
myocardial ischemia/reperfusion injury and heart failure. The TNFǂ-mediated vascular 
dysfunction involves alterations in EC metabolism and function, platelet aggregation, EC-
blood cell interaction, VSMC function and proliferation (McKellar et al., 2009). It increases 
the expression of many pro-inflammatory, pro-coagulant, proliferative and pro-apoptotic 
genes involved in initiation and progression of atherosclerosis (Bergh et al., 2009). TNFǂ 
induces the rapid expression of cellular adhesion molecules (CAMs), such as VCAM-1 and 
ICAM-1, and E-selectin at the endothelial surface (Chandrasekharan et al., 2007; 
Kleinbongard et al., 2010). Endothelial dysfunction associated with TNFα during 
atherogenesis is linked to an excess in production of ROS and a decrease in NO 
bioavailability. The production of ROS can stimulate a cytokine cascade through NF-κB-
induced transcriptional events, which then induce the expression of TNFǂ (Zhang, H. et al., 
2009). 

3.1.5 Cellular adhesion molecules (ICAM-1 and VCAM-1) 
When ECs undergo inflammatory activation, an increase in the expression of CAMs 

promotes the adherence of inflammatory cells (monocytes, neutrophils, lymphocytes and 

macrophages) and the recruitment of additional cytokines, growth factors and MMPs 

into the vascular wall (Sprague & Khalil, 2009). ICAM-1 and VCAM1 are 

immunoglobulin-like CAMs expressed by several cell types including ECs and 

leukocytes. They are present in atherosclerotic lesions during their progression, because 

they are involved in the transendothelial migration of leukocytes, lymphocytes and 

antigen presenting cells to sites of inflammation (Blankenberg et al., 2001; Ho et al., 2008; 

Lawson & Wolf, 2009; Rodella et al., 2010,b). Nevertheless their pathological role remain 

still uncertain. An important stimulus for CAMs expression is the fluid shear stress, 

which exerts both pro-inflammatory and protective effects, depending on the type of 

shear.  

3.2 Shear stress 
As the regulator of vascular tone, ECs are highly sensitive to different types of shear stress 

caused by the complex structure of artery geometry. It is clearly observed that 

atherogenesis generally occurs at curved or branching points with disturbed flow. 

Endothelium in the regions of flow disturbances near arterial branches, bifurcations and 

curvatures shows an athero-prone phenotype, while laminar flow regions exhibit an 

athero-protective phenotype (Bai et al., 2010; Traub & Berk, 1998). When endothelial 

monolayer is stimulated by laminar flow, rapidly cellular responses occur, included 

opening of ion channels, release of vasoactive NO and activation of transcription factors 

and cell cycle regulators (Foteinos et al., 2008). In particular, laminar flow induces NO 

production through both the transcriptional up-regulation of eNOS gene expression and 

the posttranslational modification of eNOS protein (Jin et al., 2003; Xu, 2009). Compared 

with ECs under laminar flow, cells at disturbed flow show an atherogenic phenotype as 

alterated alignment, deformation of luminal ECs surface, accelerated proliferation and 

apoptosis (Bai et al., 2010; Zeng et al., 2009), higher permeability, immunoinflammation 

responses and more athero-prone gene expression which are proportional to risk factor 

severity (Foteinos et al., 2008; Xu, 2000). Oscillatory shear stress leads to continuous O2- 
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production in an NADPH-oxidase-dependent manner, resulting in NF-kB-mediated 

monocyte adhesion.  

NF-kB is an inducible transcription factor present at increased levels in the thickened 
intima-media of atherosclerotic lesions, whereas little or no activated NF-kB has been 
detected in healthy vessels (Andrews et al., 2010; Rodella et al., 2010,b). The NF-kB 
pathway have been implicated in athero-susceptibility for more than a decade. NF-kB is 
normally held inactive in the cytosol as a complex with IkB, a family of inhibitors of NF-
kB. Oxidative stress by ROS production induces IkB degradation, releases of NFkB for 
translocation to the nucleus where it regulates pro-inflammatory genes (Davies et al., 
2010). Several pro-inflammatory cytokines and growth factors found in atherosclerotic 
lesions, such as TNFǂ, ILs, MCP-1 and tissue factors, activate NF-kB signaling pathway in 
cultured ECs (Pennathur & Heinecke, 2007). NF-κB plays a central role in the 
development of inflammation through further regulation of genes encoding pro-
inflammatory cytokines, CAMs, chemokines, growth factors and inducible enzymes 
(Andrews et al., 2010; Sprague & Khalil, 2009). 

3.3 EC-foam cells 
The formation of foam cells as a result of the lipid loading in ECs is a late event in 

atherosclerosis. Since the atherogenesis process is gradual, it is known that plasma 

hypercholesterolemia is associated with increased transcytosis of lipoproteins (Lps), leading 

to their accumulation within the ECs. At this location, Lps interact with proteoglycans and 

other matrix proteins and carry on their conversion to oxidatively modified and 

reassembled Lps (MLps). MLps have been identified in early intimal thickenings of human 

aorta and in the late atheroma (Sima et al., 2009; Tirziu et al., 1995). 

It is known that, in the initial stage of atherogenesis, upon the accumulation and retention of 

MLp within intima, the EC lining the plaque take up MLp, which are either degraded within 

the cell or exocytosed into the lumen; in time, the non-regulated uptake of MLp by the EC-

scavenger receptor is overwhelmed, leading to the accumulation of numerous large lipid 

droplets within the ECs. Concurrently, the EC shifts to a secretory phenotype, characterized 

by an increased number of biosynthetic organelles that correlates with the appearance of a 

multilayer, hyperplastic basal lamina in meshes of which MLp in accumulate large numbers. 

These insults lead to a dysfunctional endothelium and inflammatory process in which the 

EC-derived foam cells express more of new CAM and synthesize EC-factors that attract and 

induce migration of plasma inflammatory cells, such as monocytes and T lymphocytes to 

the subendothelium (Simionescu & Antohe, 2006); however, ECs maintain some of their 

specific attributes, such as Weibel-Palade bodies, intercellular junctions and caveolae (Sima 

et al., 2009). Infiltration of atherogenic Lps, monocytes and T lymphocytes within the 

subendothelium start the atherogenetic process both in animal models and in humans 

(Lawson & Wolf, 2009; Simionescu & Antohe, 2006; Williams & Tabas, 2005). In late stages of 

atherosclerosis, all cellular components of the plaque, ECs, VSMCs and macrophages, 

accumulate considerable number of lipid droplets and exhibit the foam cell characteristics 

(Sima et al., 2009).  In the subendothelium, the monocytes become macrophage-derived 

foam cells, which release cytokines and factors that, within the oxidative stress process, 

change the cross-talk between ECs and the neighbouring VSMCs and induce migration of 

VSMCs from media to the developing neointima (Lawson & Wolf, 2009; Simionescu & 

Antohe, 2006). 
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4. The role of vascular smooth muscle cells in atherosclerosis 

VSMCs are important actors in the pathogenesis of atherosclerosis. The classical “response to 
injury” hypothesis of atherosclerosis suggests that one of the major events in the 
development of this pathology is the intimal thickening caused by hyperplasia and 
migration of VSMC in the tunica intima (Ross & Glomset, 1973): the combined action of 
growth factors, proteolytic agents, and ECM proteins, produced by a dysfunctional 
endothelium and/or inflammatory cells, induces proliferation and migration of VSMCs 
from the tunica media into the intima (Clowes et al., 1983; Hao et al., 2003). Finally, 
progression of atherosclerotic lesions in the intima is characterized by the accumulation of 
alternating layers of dedifferentiated VSMCs and lipid-laden macrophages (Sobue et al., 
1999). This model focuses on the central role of activated and proliferating VSMCs that are 
histologically observed in the early and late stages of atherosclerosis, thus being a key event 
in atherosclerosis (Dzau et al., 2002; Owens, 1995). Because of their involvement in 
atherosclerosis, intimal VSMCs, their origin and the mechanisms that regulate their 
phenotype have been the subject of numerous studies and much debate over recent years.  

4.1 Origin of intimal VSMCs in atherosclerosis 
4.1.1 Phenotypic modulation of VSMCs  
The long-standing dogma in the field has been that the majority of intimal VSMCs are 
derived from preexisting mature medial VSMCs that undergo phenotypic modulation on 
moving from the media to the intima (Owens et al., 2004). This hypothesis, proposed for the 
first time by Chamley-Campbell and colleagues (Chamley-Campbell et al., 1979) arose from 
a limited number of studies showing that in primary human cell cultures derived from 
different sources (e.g. medial cells or cells derived from atherosclerotic plaques) stable 
differences in phenotype could be identified. This dogma implies the potential for marked 
plasticity of the VSMC phenotype, with the ultimate phenotype being determined by a 
variety of extracellular stimuli (Bochaton-Piallat et al., 1996): numerous studies of cells 
cultured from different species have demonstrated that cytokines, matrix components, and 
mechanical stimuli can influence VSMC phenotype and behavior  (Shanahan et al., 1993; 
Topouzis & Majesky, 1996).   
VSMCs are the predominant cellular elements of the medial layer of the vascular wall, 
essential for good performance of the vasculature. VSMCs perform many different functions 
in maintaining vessel’s health (Rensen et al., 2007).  The VSMC is the only cell populating 
the normal vascular media, wherein it is uniquely responsible for maintaining vascular tone 
and hemodynamic stability: it is a highly specialized cell whose principal function is 
vasoconstriction and dilation in response to normal or pharmacologic stimuli to regulate 
blood vessel tone, blood pressure, and blood flow (Rzucidlo et al., 2007). Moreover, except 
in unusual circumstances when the adventitia may be involved, the VSMC is also the only 
vascular cell capable of repairing the injured vessel wall by migrating, proliferating, and 
elaborating an appropriate ECM. It is therefore equally essential that, when it is necessary, 
the VSMC can also adopt a phenotype capable of these synthetic functions (Shanahan & 
Weissberg, 1998). So, it is important that VSMCs retain remarkable plasticity and can 
undergo rather intense and reversible changes in phenotype in response to changes in local 
environmental cues, particularly under the influence of growth factors (Li, S. et al., 1999; 
Owens, 1995). In the pathogenesis of atherosclerotic lesions it is now accepted that VSMC 
can display at least two different phenotypes, the first characteristic of the media and the 
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second typical of the cells invading the intima (Shanahan & Weissberg, 1999). These 
phenotypes are also seen in vitro: an elongated spindle-shaped phenotype, with the classic 
‘‘hill-and-valley’’ growth pattern typical of cultured contractile normal medial VSMCs and 
an epithelioid or rhomboid phenotype, with cells growing in a monolayer with a 
cobblestone morphology at confluence typical of the cells from neointima (Hao et al., 2003). 
In the medial layer of a mature blood vessel, VSMCs exhibit a low rate of proliferation, low 
synthetic activity and ECM proteins secretion, and express a unique repertoire of contractile 
proteins (e.g. intracellular myofilaments bundles are abundant), ion channels, and signalling 
molecules required for the cell’s contractile function that is clearly unique compared with 
any other cell type (Rzucidlo et al., 2007). The dense body, the dense membrane and 
myofibrils (composed of thin filaments and myosin thick filaments) are well developed in 
differentiated VSMCs, whereas organelles (e.g. rough endoplasmic reticulum (RER), Golgi 
and free ribosomes) are few in number (Owens, 1995). This “contractile” state (referred also 
as “differentiated phenotype”), is required for the VSMC to perform its primary function. 
The gene expression pattern in end-differentiated VSMCs is well characterized and 
comprised a number of proteins involved in contraction, membrane-skeletal markers 
specific to smooth muscle and cell adhesion molecules and their receptors (integrins), which 
are important either as a structural component of the contractile apparatus or as a regulator 
of contraction (Owens, 1995; Rensen et al., 2007). Their expressions are regulated at the gene 
levels, such as at transcription and splicing: caldesmon, smooth muscle myosin heavy chain 
(SMM-HC), ǂ-smooth muscle actin (ǂ-SMA), h-caldesmon, calponin, SM22, ǂ- and ǃ-
tropomyosins and ǂ1 integrin genes are transcriptionally regulated; transcription of these 
genes (except for the ǂ-smooth muscle actin gene) is upregulated in differentiated VSMCs, 
but is downregulated in dedifferentiated VSMCs (Stintzing et al., 2009). It’s important to 
note that, although ǂ-SMA is permanently expressed in VSMCs, it is more abundant in 
contractile VSMCs than in synthetic VSMCs (Lemire et al., 1994). Isoform changes of 
caldesmon, ǂ-tropomyosin, vinculin/metavinculin, and SMM-HC are instead regulated by 
alternative splicing in a VSMC phenotype-dependent manner (Sobue et al., 1999). At 
present, the two marker proteins that provide the best definition of a mature contractile 
VSMC phenotype are SM-MHC and smoothelin. SM-MHC expression has never been 
detected in non-VSMCs in vivo, and is the only marker protein that is also VSMCs-specific 
during embryogenesis (Miano et al., 1994). Smoothelin complements SM-MHC as a 
contractile VSMC marker in that it appears to be more sensitive.  
On the contrary, intimal VSMCs associated with vascular disease (as well as VSMCs 

involved in blood vessel formation) are phenotypically distinct from their medial 

counterparts (Campbell, G.R. & Campbell, J.H., 1985; Mosse et al., 1985): they resemble 

immature and show a typical “synthetic” state (referred also as “dedifferentiated 

phenotype”), characterized by an increased rate of proliferation, migration and ECM protein 

synthesis. Several studies by Aikawa and coworkers (Aikawa et al., 1997, 1998) 

demonstrated that intimal VSMCs show a synthetic phenotype including: 1) increased DNA 

synthesis and expression of proliferation markers and cyclins (Gordon et al., 1990); 2) 

decreased expression of smooth muscle-specific contractile markers (Layne et al., 2002); 3) 

alterations in calcium handling and contractility (Hill et al., 2001); 4) alterations in cell 

ultrastructure, including a general loss of myofilaments, which is replaced largely by 

synthetic organelles such as RER and large Golgi complex (Sobue et al., 1999),  supporting 

its function in production and secretion of ECM components that, leading to intimal 
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thickening and fibrosis of the vascular wall, may contribute to lesion development and/or 

stability (Schwartz et al., 1986, 1995). The preceding studies have been extended by Geary 

and colleagues (Geary et al., 2002), who completed microarray-based profiling of gene 

expression patterns of SMCs in the neointima. A total of 147 genes were differentially 

expressed in neointimal VSMCs versus normal aorta VSMCs, most genes underscoring the 

importance of matrix production during neointimal formation. Therefore, these VSMCs 

assume the proliferative activity in response to mitogens, while lose contractile ability. 

Markers that are upregulated in the synthetic phenotype are rare. SMemb/non-muscle 

myosin heavy chain isoform B (MHC-B) represents a suitable synthetic VSMCs marker, 

since this protein is quickly and markedly upregulated in proliferating VSMCs (Neuville et 

al., 1997). At last, an interesting correlation has been demonstrated, albeit occasionally, 

between dedifferentiated VSMC phenotype and increased LDL uptake (Thyberg, 2002) or 

decreased HDL binding sites (Dusserre et al., 1994). Nevertheless, the role of LDL and HDL 

processes in atheromatous plaque formation with respect to VSMC heterogeneity should be 

further investigated.  

 

 

Fig. 6. Factors involved in VSMCs development, differentiation and phenotypic modulation 

However, it is now recognized that a simple two-state model, based on “contractile” and 
“synthetic” states only, is inadequate to explain the diverse range of phenotypes that can 
be exhibited by the VSMCs under different physiological and pathological circumstances 
(Owens et al., 2004). In particular, the environmental cues that exist within atherosclerotic 
lesions are without doubts very different from those that exist within a normal healthy 
blood vessel and these change at different stages of lesion development and progression 
and thereby are likely to contribute to continued phenotypic switching of VSMC within 
the lesion. So, an heterogeneity of VSMC phenotype, ranging from contractile to synthetic, 
which represent the two ends of a spectrum of VSMCs with intermediate phenotypes, is 
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nowadays considered. Not surprisingly, as the repertoire of VSMC markers has 
expanded, the picture that has emerged is that there is likely a wide spectrum of possible 
VSMC phenotypes that might exist such that it may be very artificial to assign cells to 
distinct subcategories. So the distinction between  “contractile” and “synthetic” state of 
the VSMC become very difficult. The complexity of different phenotypes that may be 
manifested by VSMC is clearly evident not only between VSMCs of different vessels or 
among VSMCs within the same vessel, but there is very clear evidence that the properties 
of the VSMCs vary also at different stages of atherosclerosis, within different lesion types, 
and between VSMCs located in different regions within a given lesion (Owens et al., 
2004).  

4.1.2 Monoclonality of atheromatous lesion and heterogeneity of proliferating VSMCs 
Alternative to the predominant hypothesis that all VSMCs of the media can undergo 

phenotypic modulation, is the concept that a predisposed VSMCs subpopulation is 

responsible for the production of intimal thickening. This possibility has been raised on the 

basis of original work by Benditt and Benditt (Benditt, E.P. & Benditt, J.M., 1973) who 

reported that VSMC accumulation in the atheromatous plaques is monoclonal or, at least, 

oligoclonal (Chung et al., 1998), implying that only a small number of “immature” cells in 

the vessels media and/or adventitia undergo proliferation (Holifield et al., 1996). More 

recent studies have questioned the origin of VSMCs comprising atherosclerosis and 

neointima formation. Intimal VSMCs have been proposed to originate from diverse sources, 

including fibroblasts of the adventitia (Zalewski et al., 2002), ECs (Gittenberger-de Groot et 

al., 1999) and/or circulating bone marrow–derived cells (Hillebrands et al., 2003). Whereas 

the gene expression pattern of differentiated VSMC is pretty well characterized (Shanahan & 

Weissberg, 1999), many in vivo and in vitro studies dealing with proliferating VSMC showed 

heterogeneous cell marker expressions of multilineage differentiation (Tintut et al., 2003). A 

possible explanation of the heterogeneity of VSMCs in adult vessels can be found in 

embryologic vascular development (Gittenberger-de Groot et al., 1999): interestingly, similar 

to atherosclerosis, processes of multilineage differentiation with transition states could be 

observed during vascular development (Slomp et al., 1997). During vasculogenesis, VSMCs 

originate from different sources via transdifferentiation (Liu et al., 2004) (a highly conserved 

phenomenon of transdifferentiation is proved by a stable cytokeratins expression in 

atherosclerotic lesions as well as it happens during development (Neureiter et al., 2005)) 

depending on the vessel type, including mesoderm, neurectoderm, epicardium (for 

coronary arteries) and, more rarely, endothelium (Orlandi & Bennett, 2010). It is thus 

possible that the various VSMC phenotypes can arise from distinct lineages. Another 

possibility is that local VSMC of the contractile phenotype re-obtain the embryonic potential 

of proliferation and migration (Bar et al., 2002) via transdifferentiation and dedifferentiation 

processes as a response to injury. Looking at atherosclerosis and VSMC, there is a lot of 

evidence that VSMC progenitor cells are essentially involved in the progression of 

atherosclerosis (Roberts et al., 2005).  

The origin of such VSMC progenitor cells is under debate. VSMC progenitor cells have been 

identified in the bone marrow (multipotent vascular stem cell progenitors and mesenchymal 

stem cells), in the circulation (circulating VSMC progenitor cells), in the vessel wall (resident 

VSMC progenitor cells and mesangioblasts) and various extravascular sites (extravascular, 

non-bone marrow progenitor cells) (Orlandi & Bennett, 2010).  
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Fig. 7. Different origins of VSMCs progenitor cells. 

4.1.2.1 Bone marrow-derived VSMCs 

Several studies have suggested that circulating bone marrow-derived cells contribute to 
neointima formation: one possibility is that circulating smooth muscle precursor cells of 
myeloid or hematopoietic lineage relocate from the blood into the neointima following 
vascular injury (Metharom et al., 2008) and start to proliferate giving rise to cells that 
express at least some properties of VSMCs (Simper et al., 2002).  
Other studies, on the other hand, report no evidence for a contribution of bone marrow 
derived VSMCs in the neointimal layer (Hu et al., 2002; Li, J. et al., 2001). Alternatively, these 
circulating cells may fuse with resident VSMCs and thus show co-localization of VSMC 
markers and bone marrow lineage markers, although to date, no direct evidence for cell 
fusion in the vasculature has been shown (Owens et al., 2004).  

4.1.2.2 Resident VSMC progenitor cells and mesangioblasts 

Inside normal vessel walls the existence of resident progenitor cells (expressing stem cell 

antigens) capable of contributing to neointima formation has been recently shown (Orlandi 
et al., 2008; Torsney et al., 2007): the number of these resident VSMCs progenitors has been 

shown to increase in atherosclerotic lesions (Torsney et al., 2007). These progenitor cells are 
different from marrow-derived smooth muscle progenitor cells, since they lack the ability to 

differentiate into erythroid, lymphoid, or myeloid tissue (Jackson et al., 1999). Subsequent 
studies examining telomere loss indicate that fibrous cap VSMCs have undergone  more 

population doublings than cells in the normal media (Matthews et al., 2006), suggesting the 
existence of a resident arterial subpopulation predisposed to clonally contribute to arterial 

healing in response to injury (Hirschi & Majesky, 2004), so that plaques arise by selective 
expansion of a preexisting ‘patch’ of progenitor cells.  
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Unfortunately, against this theory, there is very limited evidence for the presence of vessel 
wall stem cells in human vessels. A population of CD34+/CD31- cells has been identified in 
the space between the media and adventitia of large and medium-sized human arteries and 
veins (Pasquinelli et al., 2007), but the capacity of these cells to give rise to VSMCs was low 
(Zengin et al., 2006). Few other studies showed that the adventitial layer potentially 
harbours a population of stem cells that can also contribute to vascular remodelling. In 
particular, Hu and colleagues demonstrated that abundant progenitor cells in the adventitia 
can differentiate in VSMCs (Hu et al., 2004).  
Moreover, satellite-like cells named ‘mesoangioblasts’ express both myogenic and EC 
markers (Drake et al., 1997), which can give rise to both hematopoietic and endothelial 
progenies (Cossu & Bianco, 2003). Gene expression profiles reveal that mesoangioblasts 
express genes belonging to developmental signaling pathways (such as ǃ-catenin/Wnt 
signaling pathway) and are able to differentiate very efficiently into VSMCs (Tagliafico et 
al., 2004).  
In summary, there is evidence for several distinct resident progenitor cells in different layers 
of the normal adult arterial wall capable of proliferating and differentiating into VSMCs. 
What has not yet been established is how many of these cells contribute to formation of 
vascular lesions and whether clonality reflects selective proliferation of one or more of these 
populations. 

4.2 VSMCs: Friend or foe in atherosclerosis? 
It is important to note that the exact role of VSMCs, in the progression of atherosclerosis is 

not clear. The functional role of VSMCs likewise is likely to vary depending on the stage of 

the disease. For example, at the early onset of atherosclerosis, these cells presumably plays a 

maladaptive role, because of their involvement in neointima formation (Rodella et al., 2011): 

mobilisation of these cells would therefore be predicted to promote, as a “foe”, vascular 

disease (van Oostrom et al., 2009). On the other hand, over recent years, there has been an 

increasing recognition of the role played by intimal VSMCs in the formation and 

maintaining of a protective fibrous cap over the atherosclerotic plaque, desirable for plaque 

stability in the advanced atherosclerotic process (Weissberg et al., 1996). In particular, IFN-Ǆ 

released by activated macrophages induces collagen synthesis by VSMCs, which is 

important for the stabilization of the fibrous cap (Shah et al., 1995). Moreover, injection of 

smooth muscle progenitor cells in a mouse model of advanced atherosclerosis reduced the 

progression of early atherosclerotic plaques (Zoll et al., 2008), confirming the potential 

benefit of VSMCs at advanced stages of atherosclerosis. Therefore, VSMCs could be 

beneficial in atherogenesis as a factor promoting plaque stability and can thus be considered 

a “friend” in vascular disease (van Oostrom et al., 2009).   

Since the VSMC is the only cell capable of synthesizing the fibrous cap, failure of this 
vascular repair response leads to weakening of the cap and plaque rupture, with potentially 
fatal consequences (Weissberg et al., 1996). In diseased tissue many factors are present that 
substantially alter the normal balance of proliferation and apoptosis, and the apoptosis may 
predominate (Bennett, 2002). In particular, in plaque VSMCs an elevated level of 
spontaneous apoptosis and enhanced susceptibility to apoptosis induced by ROS (Li, W.G. 
et al., 2000) has been recently described both in vivo and in vitro (Ross, 1999). Apoptosis of 
VSMCs, bringing a plaque with reduced number of VSMCs, could participate in the rupture 
of the stability of the plaque (Rudijanto, 2007). Rupture of atherosclerotic plaques is 
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associated with a thinning of VSMC-rich fibrous cap overlying the core (atrophic fibrous cap 
lesion), due to rapid replicative senescence and apoptosis of VSMCs (Schwartz et al., 2000). 
Rupture occurs particularly at the plaque shoulders, which exhibits lack of VSMCs and the 
presence of inflammatory cells (Newby et al., 1999). So, VSMCs may later contribute to 
plaque destabilization through apoptosis and/or activation of various protease cascades 
(Galis & Khatri, 2002).  
 

 

Fig. 8. Involvement of VSMCs apoptosis in fibrous plaque rupture. 

However, detailed studies demonstrating whether VSMC progenitors either protect or 
promote vessel disease are needed before cell-based or pharmacological approaches aimed 
at regulating progenitor cell trafficking can be recommended. 

4.3 VSMCs can auto-regulate their replication/migration 
The contemporary paradigm explaining smooth muscle replication in the vessel wall is that 
dysfunctional endothelium and/or inflammatory cells produce growth factors and ECM 
proteins that can induce replication and migration of VSMCs from the media to the intima 
(van Oostrom et al., 2009). In his “response-to injury” hypothesis, Ross proposed that VSMCs 
in the wall normally exist in a quiescent state, but, when the endothelium is injured, 
platelets release factors that stimulate VSMCs movement into and replication within the 
arterial intima (Ross, 1981-1982).  
Growth factors have been known to influence the differentiated state of VSMCs (Willis et al., 
2004). An interesting possibility is that smooth muscle replication may be controlled by 
factors intrinsic to the vessel wall. One possibility comes from evidence that normal 
endothelium contains inhibitors of smooth muscle proliferation (Haudenschild & Schwartz, 
1979). The principal factor involved in VSMCs replication is the platelet derived growth 
factor (PDGF), which is a potent VSMC mitogen linked to vascular homeostasis and 
atherogenesis (Majesky et al., 1992). This peptide not only is mitogenic for VSMCs, but is 
chemotactic as well (Schwartz et al., 1986): the data on PDGF and its receptor subunits 
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suggest, infact, a role in migration/localization of primordial VSMCs to the endothelium. 
This growth factor consists of two chain types, A and B, giving rise to three different PDGF 
subtypes (AA, AB, BB): PDGF-BB and -AB are known VMSCs chemoattractans, whereas 
PDGF-AA is associated with inhibition of chemotaxis (Zachary et al., 1999).  PDGF binds to 
specific dimeric receptors (ǂ and ǃ) found on smooth muscle cells (Bowen-Pope & Ross, 
1982) where initiates a series of events leading to DNA synthesis: receptor ǂ can bind all 
PDGF subtypes, while receptor ǃ binds only subtypes -AB and -BB. VSMCs have been 
determined to upregulate expression of receptor ǃ in response to vascular injury, inducing 
their chemotaxis; at the same time, these cells are able to increase the PDGF-AA, acting as a 
paracrine or autocrine regulator of their chemotaxis. This represents the first described 
autoregulation pathway of VSMCs on their own proliferation/migration (Willis et al., 2004).   
The second known requirement for cell cycle progression is availability of insulin-like 
growth factor (IGF-1), a co-factor that VSMCs require for completion of the cell cycle 
following stimulation with PDGF (Clemmons, 1984). Perhaps more surprising is that, as 
reported above, VSMCs may be able to stimulate their own growth by synthesis of both 
PDGF and IGF-1 (PDGF is able to stimulate smooth muscle cells to produce IGF-1). 
Moreover, those VSMCs that, once migrated into the intima, retained the ability to produce 
mitogen, due to their dedifferentiated state (Schwartz et al., 1986), are able to sustain 
proliferation also after the initial stimulation of platelet and PDGF release during vascular 
injury. Selection of such a proliferogenic subpopulation could account for both the 
monoclonal phenotype of chronic human atherosclerotic lesions (Gown & Benditt, E.P., 
1982) and the suggestion that monoclonality arises gradually as the human lesion evolves 
(Lee et al., 1985). In summary, the emerging picture of growth control in arterial smooth 
muscle is a complex balance of forces. In addition to exogenous stimuli to cell growth, the 
vessel wall is capable of synthesis of endogenous growth inhibitors (including heparin 
sulfates, nitric oxide (NO), and transforming growth factor (TGF)-ǃ) and growth stimulants 
(such as PDGF, IGF-1, ET-1, thrombin, FGF, IFNǄ, and IL-1) (Berk, 2001). 

5. Conclusions 

Atherosclerosis and its associated complications remain the primary cause of death of the 21st 
century in humans. Recently it has been suggested that atherosclerosis is a multifactorial, 
multistep disease. Clinical and histopathological studies of atherosclerotic patient groups have 
identified inflammatory and oxidative stress-linked mechanisms as being pathogenetically 
important in atherosclerosis at every step from initiation to progression. Endothelial damage is 
also crucial for the progress of atherosclerosis and risk factors for atherosclerosis represent 
crucial factors associated with endothelial dysfunction. Studies have shown that patients with 
cardiovascular disease are characterized by impaired endothelial function, being vascular 
endothelium responsible for the secretion of several substances exerting proved anti-
atherogenic effects. Finally, VSMCs are an important component of atherosclerotic plaques, 
responsible for promoting plaque stability in advanced lesions. In contrast, VSMC apoptosis 
has been implicated in a number of deleterious consequences of atherosclerosis, including 
plaque rupture, vessel remodelling, coagulation, inflammation and calcification. A better 
understanding of the pathogenesis of atherosclerosis will aid in for reducing mortality. An in-
depth knowledge of the various pathogenic mechanisms involved in atherosclerosis can help 
in formulating preventive and therapeutic strategies and devising pharmaceutical and lifestyle 
modifications for reducing mortality. 
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