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1. Introduction 

Atherosclerosis and restenosis, complex pathologies of blood vessels, are multifactorial 
diseases triggered by the inflammatory response to injury of endothelium. Remodeling of 
the injured vessel, proliferation and migration of vascular smooth muscle cells (VSMC) and 
elaboration and accumulation of extracellular matrix proteins are main traits of these 
diseases (Dzau et al., 2002; Libby, 2002; Pons et al., 2009; Ranganna et al., 2006; Ross, 1995;). 
Despite the substantial progress in understanding the etiology and the clinical management 
of atherosclerosis and restenosis, they are still life threatening diseases. Precise reasons are 
not still fully transparent. Different cell types; distinct cellular pathways and processes; and 
multiple genes within each participating cell types that are vulnerable to both genetic and 
environmental risk factors participate in the pathogenesis of atherosclerosis and restenosis. 
Recently, it is recognized that besides the genetic control epigenetic mechanisms regulate 
development and maintenance of organisms or their interaction with surrounding 
environment through the coordination of a set of reversible modifications that turn parts of 
the genome ‘off’ and ‘on’ at strategic times and at specific sites causing changes in gene 
expression with no changes in DNA sequences (Ekstrom, 2009; Pons et al., 2009; Ranganna 
et al., 2006; Turunen, 2009). The two well-known epigenetic mechanisms, DNA methylation 
and histone modifications change the chromatin structure and dynamics that alter gene 
functions by influencing gene expressions. Dysregulation of epigenetic processes has been 
linked to human diseases, which influences many aspects of cell biology including cell 
growth, cell cycle control, proliferation, differentiation, and cell death. Reversing the 
dysregulation of epigenetic mechanisms may offer effective treatment strategy for many 
diseases including cardiovascular disease due to atherosclerosis and restenosis. This review 
presents the current advancement in the epigenetics of VSMC proliferation and potential 
use of histone epigenetic modifiers in the intervention of atherosclerosis and restenosis.  

2. Overview of pathogenesis of atherosclerosis  

Atherosclerosis, a disease of medium to large arterial vessels, accounts for over 55% of all 
deaths in western countries. It is typically asymptomatic for decades but ultimately result in 
life-threatening pathological outcomes like myocardial infarction and stroke, both with 
tissue infarction because of intra-arterial thrombosis provoked by atherosclerosis. 
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Atherosclerosis is a complex progressive disease in which intimal thickening of the arterial 
wall promotes luminal stenosis by vascular remodeling, accumulation of cellular and 
extracellular substances and VSMC proliferation and migration. Integrity of arterial wall is 
crucial for the regulation of vascular tone, control inflammation, thrombosis, and 
angiogenesis, enhance regional blood flow, and inhibit cancer metastasis. Arterial wall is 
composed of three tunics that surround a central lumen through which blood flows. The 
innermost layer is the tunica intima composed of endothelial cells that form a smooth lining 
that minimizes interaction with circulating cellular and non-cellular components as blood 
moves through the vessel. The middle layer, tunic media, is composed of vascular smooth 
muscle cells (VSMC) and layers of flexible proteins, which enables the lumen to contract and 
dilate to regulate blood flow in the body. The outer layer, tunica adventitia is a protective 
layer of connective tissue that anchors the blood vessel to surrounding structures.  
Under normal conditions, a delicate balance between proliferation and apoptosis of local 

vascular cell types maintains the thickness of arterial vessel wall. A number of regulatory 

factors produced by the endothelial cells are responsible for the homeostatic balance by 

controlling vessel tone, coagulation state, leukocyte trafficking, and cellular proliferative 

response. Any damage to the vessel wall by mechanical, biochemical, or immunological 

insults triggers endothelial dysfunction or denudation of endothelial layer overwhelming 

the normal homeostatic balance, thus, upsets the normal vascular tone setting the stage for 

the activation of proinflammatory and immune response. Escalating evidence indicates that 

inflammatory or atherogenic stimuli promote ROS generation in endothelial milieu causing 

oxidative stress (Freeman & Crapo, 1982; Kehrer, 1993; Kunsch & Medford, 1999; 

Madamanchi et al., 2005). Inflammatory response fueled by the oxidative stress is also 

linked to oxidation of lipoproteins. LDL molecules that enter the subendothelial space are 

oxidized to form oxidized LDL (OxLDL) by different mechanisms including enzymatic and 

nonenzymatic pathways, which are taken up by macrophages via scavenger receptors to 

become foam cells. Besides stimulating proinflammatory and proatherogenic effects, OxLDL 

also appears to elicit highly immunogenic response resulting in the generation of 

autoantibodies that appears to be of pathogenic significance (Hansson, 2009; Klingenberg, 

R., & Hansson, G.K. 2009; Steinberg & Witztum, 2010; Witztum, 1997). Moreover, elevated 

levels of ROS appear to function as second-messenger molecules transmitting the 

extracellular signals to nucleus via redox-sensitive signaling pathways to turn on the 

expression of atherogenic gene products such as adhesion molecules and inflammatory 

cytokines. Expression of these gene products elicit changes in the vessel wall promoting 

inflammation, infiltration of monocytes and T cells, proliferation, migration and activation 

of VSMC and matrix alteration (Freeman & Crapo, 1982; Hansson, 2007; Kehrer, 1993; 

Klingenberg & Hansson, 2009; Kunsch & Medford, 1999; Madamanchi et al., 2005; Steinberg 

& Witztum, 2010; Witztum, 1997). These processes involve synthesis and release of a host of 

regulatory molecules, both by cellular components in the blood and vascular cells of the 

arterial wall triggering autocrine, paracrine, and endocrine type of interactions between cells 

and the molecules they produce. Outcome of these complex interactions leads to migration 

of VSMCs from their normal residence in the arterial media to the intima where they change 

their phenotype from a contractile to a proliferative type (Libby, 2002; March et al., 1999; 

Ross, 1995). This phenotypic change, in conjunction with excessive production and 

accumulation of extracellular matrix proteins, is the main contributor to vascular 

remodeling.  
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2.1 Vascular remodeling in atherosclerosis and restenosis 
Atherosclerosis and restenosis both are multifactorial vascular occlusive processes but 

exhibit certain similarities and differences in the origin and progression of their 

development (Dzau et al., 2002; Pons et al., 2009). Inflammatory response of activated 

endothelial cells to injury or insults elicits both these processes. Activation of endothelial 

cells leads to a cascade of events, which promotes vascular remodeling by changing the size, 

structure and composition of vessel wall. Moreover, both processes involve proliferation, 

migration and activation of VSMC and modulation of extracellular matrix by elaborating 

and accumulating extracellular matrix proteins. Although they share some of the risk factors 

such as hypertension and diabetes, there is a consensus that atherosclerosis develops in 

response to elevated low-density lipoproteins (LDL) and cigarette smoke. On the other 

hand, VSMC proliferation is the primary pathophysiological mechanism in restenosis, 

which is largely due to transcending wound healing response to clinical procedures such as 

balloon angioplasty, stent placement and vein graft surgery [Dzau et al., 2002; Pons et al., 

2009]. While restenosis appears to be insensitive to circulating lipids, accumulation of 

oxidized LDL is the characteristic feature of atherosclerosis. Additionally, while 

development and progression of atherosclerosis is a gradual process, the restenotic process 

is a relatively a rapid process caused by surgical revascularization procedures such as 

angioplasty and stent placement. Despite substantial progress in understanding the etiology 

and the clinical management of atherosclerosis and restenosis, they are still life-threatening 

diseases. Possible reasons are multiple factors, different cellular pathways and processes, 

and multiple genes are contributory to these complex vascular disease processes. 

2.2 VSMC proliferation 
VSMC are highly specialized cells, which play vital roles in the regulation of blood pressure, 
blood flow and in many pathological states. In mature individuals, the typical function of 
arterial VSMC is contraction and maintenance of vascular tone. As such, VSMC in adult 
artery exhibit contractile or differentiated phenotype displaying quiescent proliferation 
state, decreased synthetic activity and expression of proteins unique to contractile 
phenotype like contractile proteins, ion channels and signaling proteins. However, VSMC 
retain their remarkable plasticity to undergo reversible phenotypic change in response to 
alterations in the local environment like during development, physiological conditions like 
pregnancy or in response to vascular injury. This remarkable flexible persona of VSMC 
makes them vulnerable to phenotypic modification from contractile to proliferative, 
synthetic, or de-differentiated phenotype in conjunction with vessel remodeling by altering 
cell number and composition of vessel wall (Pons et al., 2009; Ross, 1993).  
VSMC proliferation is also the primary pathophysiological mechanism in different clinical 
pathologies such as postangioplasty restenosis, in-stent restenosis, vein bypass graft failure 
and transplant vasculopathy (Dzau et al., 2002; Holmes, 2003). The clinical procedures 
performed to clear the occluded vessel fortuitously become precursors for restenosis in 30-
40% of the patients, mainly due to proliferation and activation of VSMC. While entry into 
cell cycle followed by proliferation of VSMC contributes to the formation of neointima, 
activation of VSMC induces expression of proinflammatory cytokines, adhesion molecules, 
chemoattractants, proteolytic enzymes and other molecules not usually present in normal, 
quiescent, contractile VSMC of the medial layer (Kleemann et al., 2008; Li et al., 1993; 
O'Brien et al., 1996; Zeffer et al., 2004). Expression of these molecules amplifies the 
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inflammatory response, and in turn, increases further proliferation of VSMC and elaboration 
of vessel remodeling.  

2.3 Antiproliferative therapeutics to target VSMC proliferation  
The current therapies used for atherosclerosis aim to minimize the risk factors that promote 
atherosclerosis, such as reducing elevated levels of cholesterol or enhancing the blood flow 
by surgical intervention of an already occluded vessel. Ironically, the surgical procedures 
performed to clear the occluded vessel become a precursor for restenosis, mainly due to 
VSMC proliferation, in significant number of patients (Dzau et al., 2002; Ferns et al., 1991). 
Because proliferation of VSMC is the hallmark of atherosclerosis and clinical conditions such 
as arterial stenosis, transplant vasculopathy, and bypass graft failure, the suitable 
therapeutic approach is to develop strategies that inhibit or block VSMC proliferation. Based 
on the current understanding of the molecular basis of vascular proliferative diseases, there 
is an abundance of potential therapeutic possibilities. Accordingly, a number of agents are 
tested for antiproliferative activity including heparins, cytostatic agents, inhibitors of 
angiotensin converting enzyme, and antagonists to growth factors (Dzau et al., 2002; Ferns 
et al., 1991; Gershlick, 2002; Stephen et al., 2005; Toshiro et al., 2005). Although some of these 
agents have shown promise in animal models, they failed to elicit any protection in human 
clinical studies (Gershlick, 2002). Species differences, potential toxicity, and lack of potency 
are possible culprits. Furthermore, the probability of successfully treating a multifactorial 
disease by targeting a single factor is unlikely. Additionally, all vascular cell types secrete 
growth factors and cytokines that activate signaling pathways that are redundant and thus 
prevent the success of targeting one or two factors.  

2.4 Cell cycle as the therapeutic target  
Based on the current knowledge of cell cycle mechanisms, it appears that targeting specific 

parts of the cell cycle is a better strategy to inhibit or block the development of vascular 

proliferative diseases such as arterial restenosis; in-stent-stenosis and vein bypass graft 

failure. Moreover, cell cycle is the final common pathway where all the growth regulatory 

signals converge, and thus, makes a rational target of antiproliferative therapeutics to inhibit 

vascular proliferative diseases. Some of the experimental studies indeed reveal that 

inhibition of cell cycle progression emerges as an important therapeutic target for 

prevention of vascular proliferative diseases (Dzau et al., 2002; Ranganna et al., 2006; Von 

der Leyen & Dzau, 2001). Different approaches such as pharmacological agents, irradiation, 

and gene therapy have been used for arresting VSMC proliferation. These approaches 

inhibit proliferation by cytostatic or cytotoxic mechanism. However, cytostatic mechanism 

of cell cycle arrest is desired over cytotoxic mechanism to avoid unintended damage to the 

vessel wall due to cytotoxic treatment. Three different approaches have been tried for 

arresting VSMC proliferation by targeting cell cycle, which include: 1) brachytherapy, 2) 

gene therapy, and 3) pharmacotherapy.  

2.4.1. Brachytherapy 
Endovascular radiotherapy is a promising method for effective antiproliferative treatment of 
restenosis (Teirstein & King, 2003; Waksman, 2000). Radiotherapy directed at restenosis has 
two objectives, one to treat restenosis by killing the cells that re-occluded and to prevent 
further restenosis by inhibiting tissue growth. Brachytherapy with either beta or gamma 
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radiation sources are used to diminish restenosis in patients with post-angioplasty 
restenosis or with in-stent restenosis. The rationale for using radiation for treating restenosis 
is that uncontrolled proliferation of VSMC is similar to neoplastic cells that can be targeted 
for radiation therapy just as transformed cells in cancer tissue. Brachytherapy-induced DNA 
damage of VSMC can result in arrest of VSMC at the G1 checkpoint or induction of 
apoptosis through p53 induced p21Cip1 upregulation. A key feature of brachytherapy is 
that the irradiation only affects a precise localized area around the radiation sources. 
Exposure to radiation of healthy tissues further away from the sources is therefore, reduced. 
In addition, brachytherapy is associated with a low risk of serious adverse side effects. More 
than a dozen randomized trials established its safety and efficacy. However, it exhibits two 
radiotherapy-related problems, arterial narrowing adjacent to the edge of the target site and 
unexpected late coronary thrombo-occlusive events (Raizner, 2000). 

2.4.2 Gene therapy 
Gene therapy techniques provide a unique opportunity to genetically engineer vessels and 

grafts to become impervious to atherosclerosis and neointimal formation that contributes to 

arterial restenosis, in-stent restenosis and vein graft failure (Dzau et al., 2002; Khanna, 2008; 

Kishore & Losordo, 2007; Gaffney et al., 2007; Melo et al., 2005; Von der Leyen & Dzau, 

2001). Gene therapy approach has potential not only against monogenic diseases, but also 

against complex diseases where multiple genes are involved in the disease pathogenesis like 

in cardiovascular diseases and cancer. One of the key challenges of the gene therapy is 

appropriate vector for the delivery of functional gene or a concoction of genes in multigenic 

diseases as in cardiovascular diseases. Besides the choice of vector, other parameters such 

as, appropriate gene targets and efficient methods of vector delivery for a specific target 

have to be optimized. Vectors can be either viral or non-viral. The ideal vector is the one, 

which is nonpathogenic, less immunogenic, more efficient, and enhanced tissue specificity.  

Delivery of therapeutic genes to the cardiovascular tissues is challenging. To facilitate local 
gene delivery to lesions in the vasculature catheter-based vector delivery has been tried 
using a variety of balloon catheters in animal models and human trials (Khanna, 2008; 
Kishore & Losordo, 2007; Gaffney et al., 2007; Melo et al., 2005). Stents are ideal gear for 
localized gene delivery to the vascular wall because of their widespread use, safety and 
permanent scaffold structure. Stents can be coated with genetically engineered cells or 
plasmid or adenoviral vectors carrying therapeutic genes (Khanna, 2008; Kishore & Losordo, 
2007; Gaffney et al., 2007; Melo et al., 2005). Experimental studies have demonstrated 
usefulness of gene therapy in treating atherosclerosis and restenosis in various animal 
models and in some clinical trials. It can be used to transfer exogenous genes to express 
functional gene products to overcome defective or downregulated endogenous gene 
expressions through vector-based delivery system. It also can be used to knockdown or 
suppress the expression of gene products that contribute to pathogenesis of disease by one 
of the several methods of gene silencing. These include antisense oligonucleotides (ODNs), 
short segments of RNA with enzymatic activity (ribozymes) and small interfering RNAs 
[siRNA] (Dzau et al., 2002; J.M. Li et al., 2010; Banno, et al., 2006).  
A number of studies have shown that gene therapies can be targeted for reducing 
cholesterol levels, inflammation and thrombosis (Feldman & Isner, 1995); for upregulating 
apo-A1 and downregulating chemoattractant protein-1 (MCP1)receptor expression 
(Tangirala, 1999); transferring pleiotropic atheroprotective nitric oxide synthase [NOS] 
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(Qian, 1999); targeting vascular redox biology through heme oxygenase-1, superoxide 
dismutase, catalase and glutathione peroxidase antioxidant gene therapy to attenuate 
oxidative stress (Van Assche, 2011); and lipid-lowering gene therapy to reduce plasma LDL 
levels (Grossman et al., 1995). Furthermore, neointimal hyperplasia that contributes to 
pathogenesis of arterial stenosis, in-stent stenosis and vein graft failure is also a good target 
for gene therapy. A number of potential therapeutic genes, which are key to the 
development of neointimal hyperplasia, have been identified. The ones that are promising 
for gene therapy include tissue inhibitors of matrix metalloproteinases (Akowuah et al., 
2005; Gaffney et al., 2007; Khanna, 2008); NOS (Cooney, 2006; Dzau et al., 2002; Khanna, 
2008; Kishore & Losordo, 2007; Gaffney et al., 2007; Melo et al., 2005; Von der Leyen & Dzau, 
2001) and p53 (Gaffney et al., 2007). Importantly, delivery of antiproliferative genes such as 
those coding for p21Cip1, p27Kip1, and iNOS are used to inhibit stenosis and neointimal 
hyperplasia (Dzau et al., 2002; Von der Leyen & Dzau, 2001]. Conversely, silencing the genes 
that contribute to proliferation via antisense ODNs (Dzau et al., 2002; Khanna, 2008; Kishore 
& Losordo, 2007; Gaffney et al., 2007; Melo et al., 2005) or siRNA approach is also effective 
in preventing in-stent and graft neointimal hyperplasia (Banno, et al., 2006; F. Li et al., 2005; 
J.M. Li et al., 2010; Matsumae et al., 2008). Antisense ODNs–based inhibition of cell 
proliferation-related genes such as PCNA, c-myc, c-myb or different cyclin-dependent 
kinases (cdks) have been successfully carried out in experimental models of vascular lesion 
formation (Braun-Dullaeus et al., 1998; Dzau et al., 2002; Morishita et al., 1993; Simons et al., 
1994).  
RNA interference (RNAi) technology is becoming popular approach to alter gene 

expressions to interrogate their role in pathogenesis of disease, which has utility in the 

inhibition of VSMC proliferation and neointimal hyperplasia (Banno, et al., 2006; F. Li et al., 

2005; J.M. Li et al., 2010; Matsumae et al., 2008). To determine whether Angiotensin II (ANG 

II)-induced neointimal thickening is mediated via cytoplasmic phospholipase A2 (cPLA2) - 

and phospholipase D2 (PLD2)-activated Akt, injured carotid arteries were exposed to a 

retrovirus containing cPLA2 siRNA or PLD2 siRNA to test whether their knockdown will 

result in the reduction of ANG II-induced neointimal thickening (F. Li et al., 2005). SiRNA-

mediated downregulation of cPLA2 and PLD2 resulted in the reduction of ANG II-induced 

neointimal thickening. The involvement of CCN1, an extracellular matrix-associated 

protein, in the development of neointimal hyperplasia is confirmed by siRNA-mediated 

knockdown approach (Matsumae et al., 2008). The atheroprotective role of midkine (MK), a 

heparin-binding growth factor, is corroborated by the use of MK-siRNA (Banno, et al., 2006). 

NADPH oxidase has a critical role in the development of neointimal hyperplasia and 

restenosis due to its contribution to oxidative stress, which is blocked by siRNA specific to 

NOX2 gene Cybb, an important component of NADPH oxidase (J.M. Li, et al., 2010). 

Several experimental gene transfer and gene silencing strategies are evaluated as potential 
treatments for cardiovascular disease, which resulted in Phase I, and Phase I to Phase III 
clinical studies for inducible iNOS (Tzeng, 1996; Von der Leyen & Dzau, 2001) and 
transcription factor E2F, respectively (Dzau et al., 2002; McCarthy, 2001; Mann et al., 1999). 
E2F, a transcription factor that leads to upregulation of up to 12 cell-cycle genes is an ideal 
target for cell-cycle blockade. A double-stranded E2F decoy ODN that bears the consensus 
E2F-binding site (cis-elements) was designed as an agent for prevention of vein graft 
disease. In rabbits, treatment of vein grafts with E2F decoy ODN resulted in inhibition of 
neointimal hyperplasia and graft atherosclerosis for up to 6 months. This led to phase I 
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PREVENT trial for human vascular bypass grafts, which resulted in about 75% reduction in 
VSMC proliferation and fewer graft occlusions. Similar gene manipulation approach was 
used for coronary bypass grafts in PREVENT II trial. Although the phase 1 trial (PREVENT 
Trial) showed promising results, later studies were less positive including the phase III, 
multicentre, randomized double-blinded, placebo-controlled trial of 3014 patients 
undergoing primary coronary artery bypass graft surgery with at least two planned 
saphenous grafts (Alexander et al., 2005; Conte et al., 2005, 2006). Although appears to be 
promising, the use of gene therapy in the treatment of vascular proliferative diseases is still 
in infancy. Various feasibility and efficacy issues as well as design and delivery of the genes 
have to be addressed taking into account the complexity of the pathological processes 
leading to atherosclerosis and restenosis. 

2.4.3 Pharmacotherapy 
A number of pharmacological agents have been used to target injury-induced VSMC 

proliferation that contributes to neointimal growth in balloon-injured arteries. Among these 

rapamycin or sirolimus, a cytostatic agent, arrests VSMC proliferation and migration in vitro 

and reduces neointimal growth in animal models of balloon-injury (Dzau et al., 2002; Guerin 

et al., 2005). Its action appears to be mediated through the inhibition of mammalian target of 

rapamycin (mTOR). One of the downstream events induced by the inhibition of mTOR is 

induction of p27Kip1, an inhibitor of cyclin-dependent kinases (cdk), causes cells to arrest in 

G1 phase of the cell cycle. In doing so, it inhibits cell proliferation. Paclitaxel, a derivative of 

Taxol, is another promising agent for proliferation arrest, which by collapsing the mitotic 

spindle formation causes mitotic arrest (Jordan et al., 1993). It prevents neointima formation 

in animal models, and its clinical effect in the blockade of restenosis is investigated in 

several human trials (the ELUTES, TAXUS and ASPECT trials) via local delivery through 

stents coated with paclitaxel (Finn et al., 2007; Wilson et al., 2007). 

2.4.4 Immunotherapy 
Over the past several years, accumulating data have identified involvement of several 
antigens in the initiation of immune response during atherosclerosis. These include 
exogenous infectious microbial pathogens like, cytomegalovirus and chlamydia pneumonia 
and endogenous proteins such as oxLDL, heat shock proteins (HSPs) and ┚2-glycoprotein-1b 
(Habets et al., 2010). Among these, the epitopes recognized on oxLDL are important because 
of the role of oxLDL in the pathogenesis of atherosclerosis ((Hansson, 1997; 2007; Steinberg 
& Witztum, 2010; Witztum, 1997). In addition to its proinflammatory and proatherogenic 
effects, and participation in the formation of foam cells, oxLDL is also immunogenic due to 
the presence of several neoepitopes. A number of neoepitopes generated during the 
oxidation of LDL are highly immunogenic and cause the generation of autoantibodies, 
which are detected in atherosclerotic lesions. Since the different epitopes of oxLDL induce 
atherogenic immune response, it may be possible to inhibit proatherogenic effects of oxLDL 
by modulating the immune response towards oxLDL through the immunization against 
oxLDL. Several antigens have been identified and investigated for immunization against 
atherosclerosis in animal models. Immunization against oxLDL show reduction in 
atherosclerosis in several animal models (Habets et al., 2010). This discovery of 
atheroprotective immunity has resulted in the emergence of immunotherapy approach 
against atherosclerosis. Indeed, several animal studies indicate that immunization against 
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oxLDL offers protection against atherosclerosis, which appears to operate both through 
cellular and humoral immunity (Zhou, 2001). The increased titers of T cell-dependent IgG 
antibodies to oxLDL (Habets et al., 2010; Zhou, 2001) and natural IgM antibodies to 
phosphocholine (Binder et al., 2004) are also in agreement with the atheroprotection. 
Furthermore, two recent studies report promising immunotherapeutic approach for the 
prevention of atherosclerosis. In one study, LDL-receptor deficient mice were vaccinated 
with oxLDL-pulsed mature dendritic cells to determine the effect on atherosclerosis (Habets 
et al., 2010). In the second immunotherapy study, tolerogenic apo-B100-loaded dendritic 
cells in combination with immunosuppressive cytokine interleukin-10 were injected 
intravenously to hypercholesterolemic mice. This immunotherapy significantly prevented 
atherosclerosis by reducing autoimmune response against LDL ( Hermansson et al., 2011) 
Although, these studies are encouraging and promising from a clinical perspective to 
translate these promising outcomes to the clinics, antigens that can be easily manufactured 
under good manufacturing practice conditions and that have a reproducible quality are 
necessary. However, several clinical studies are currently underway to evaluate the 
therapeutic implications of immunotherapy.  

3. Epigenetics and vascular proliferative diseases 

Advancement in technological innovations during the past 25 years has resulted in far-
reaching in-depth comprehension of the biology and the etiology of vascular diseases, and 
thus influencing the perception of the pathophysiology of vascular proliferative diseases 
like atherosclerosis and restenosis. In spite of the substantial understanding of the 
etiology and the clinical management of these vascular proliferative diseases, they are still 
life threatening diseases and reasons are not fully evident. Based on the recent finding of 
the role of epigenetics in human diseases, it is proper to expect that epigenetic 
mechanisms enforces an additional layer of gene regulation that alters chromatin 
structure, and dynamics in the pathogenesis of vascular proliferative diseases (Ekstrom, 
2009; Pons et al., 2009; Ranganna et al., 2006; Turunen, 2009). Epigenetic mechanisms are 
essential for the functioning of genomes to regulate normal development and 
maintenance of organisms, and to facilitate their interaction with surrounding 
environment. Compilation of the past 10 to 20 years of studies has resulted in the 
identification of three highly interrelated epigenetic mechanisms that alter the chromatin 
structure and accessibility. These include, DNA methylation, histone posttranslational 
modifications and non-coding RNA (ncRNA) expression based mechanisms, each of these 
mechanisms is essential for regulation of gene expression. Therefore, it is anticipated that 
the genetic and environmental factors that are relevant to the development of vascular 
proliferative diseases by their effect on inflammation, VSMC proliferation and vessel 
remodeling, is regulated by epigenetic mechanisms through the modification of 
chromatin structure, dynamics and accessibility (Ekstrom, 2009; Pons et al., 2009; 
Ranganna et al., 2006; Turunen, 2009). Although there is an outbreak of interest and 
enthusiasm in linking altered epigenetic mechanisms to human pathologies particularly 
cancers, it is relatively unexplored area regarding cardiovascular diseases. Moreover, 
deregulation of epigenetic processes are linked to changes in many aspects of cell biology 
including cell growth, cell cycle control, and cell death by altering the expression and in 
turn functions of target genes without changing their primary gene structure. Because 
VSMC proliferation is the hallmark of vascular proliferative diseases, understanding the 
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epigenetics of VSMC proliferation and in particular their susceptibility to perturbation by 
the epigenetic modifiers may offer novel insights into disease pathogenesis and epigenetic 
therapeutic approaches. Therefore, it is appropriate to review the current knowledge of 
epigenetics in the regulation of VSMC proliferation.  

3.1 VSMC epigenetics 
Curiosity in epigenetics has surged during past decade even though the principle 
question it aims to address has been there for decades. That is, how a multicellular 
organism maintain drastically different gene expression profile in different cell types of 
the organism, while all the different cell types of the organism have exactly the same 
DNA. This is where epigenetics come into picture. Epigenetics refers to the inheritance of 
gene function/activity/expression that may be stable over long periods, last through 
several cell divisions or inherit through several generations, all without any change in 
their primary DNA (Ng & Gurdon, 2008; Probst, 2009). The three interrelated epigenetic 
mechanisms, which involve: methylation of DNA at CpG dinucleotides at specific 
position in the DNA molecule suppress expression of nearby genes (Esteller, 2008); 
posttranslational modifications of histones alters chromatin structure and changes 
promoter accessibility (Kouzarides, 2007); and small RNA molecules generated from non-
coding RNAs (ncRNAs) inhibit gene expression (Mattick et al., 2009). All these 
mechanisms involved in epigenetic regulation contribute to epigenome. This review 
focuses on the role of posttranslational modifications of histones in the regulation of 
VSMC proliferation, and on the epigenetic regulators of histone modifications as potential 
candidates for drug targeting in the treatment and management of vascular proliferative 
disease.  

3.2 Chromatin structure 
Chromatin is a nucleoprotein complex consisting of repeating units of nucleosomal core 

particles. It offers a dynamic platform for all DNA-mediated processes within the nucleus. 

The nucleosomal core particles are the basic units of chromatin consisting of 147 base pair 

(bp) of DNA that wraps almost twice around two copies of each of the four core histone 

proteins, H3, H4, H2A and H2B. Each nucleosome is separated by 10-16 bp long linkers 

DNA, which gives an appearance of a bead on a string structure that constitutes the 

chromatin fiber of ~10 nm in diameter. The linker DNA assists further compaction of 

chromatin structure into higher-order chromatin structure, which is essential for 

packaging of remarkable lengths of DNA into the cell nucleus. Furthermore, this compact 

chromatin structure limits accessibility of DNA to DNA-mediated processes like 

transcription, DNA replication, and DNA repair (Kouzarides, 2007). Evidence 

accumulated during the past 15 years reveals that three interrelated epigenetic 

mechanisms alter the highly compacted chromatin structure and facilitate accessibility of 

DNA for gene transcription. The interrelated epigenetic mechanisms that include DNA 

methylation, histone modification and ncRNA expression contribute to the epigenome 

making the epigenome dynamic rather than static like genome and thus, being 

predisposed to and influenced by environmental factors and extracellular stimuli. 

Deregulation of epigenetic mechanisms is observed in many different cancers and other 

human diseases. Thus, understanding of how epigenetic mechanisms contribute to gene 

regulation will provide insight into the disease process. 
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3.3 Histone modifications 
Histones are highly conserved basic proteins that undergo an amazing number and types of 

posttranslational modifications, which contributes to the active or inactive chromatin 

(Ekstrom, 2009; Kouzarides, 2007; Pons et al., 2009; Ranganna et al., 2006; Turunen, 2009). 

Each of the four core histones are composed of a conserved globular domain that forms the 

nucleosome core, and a highly dynamic amino-terminal tail of 20-35 residues rich in basic 

amino acids. Additionally, H2A histone has an extended tail of about 35 residues at the 

carboxy-terminal end. Both amino- and carboxy-terminal tails protrude from nucleosome 

into the nucleoplasm. Histones tails are the targets of an array of site-specific 

posttranslational modifications including lysine acetylation/deacetylation, lysine and 

arginine methylation, serine and threonine phosphorylation, lysine ubiquitylation and 

sumoylation, and glutamic acid ADPribosylation (Fischle et al., 2003; Ito, 2007; Jenuwein & 

Allis, 2001; Turner, 2003).  

Histone modifications are dynamic and reversible, and their ‘off’ and ‘on” modification 

states are influenced by different physiological and environmental factors like 

developmental state, stress condition and environmental cues. Many of histone 

modifications are associated with transcriptionally active euchromatin regions, while 

other histone modifications are localized to transcriptionally inactive heterochromatin 

regions. Even though issues such as how the process of modification is regulated, and 

how many modifications are required for their biological effect are still elusive, 

recognition of specific histone modifications by various effector proteins is suggested to 

mediate specific biological processes like gene activation or gene suppression by altering 

the chromatin structure and gene accessibility. Generally, conformationally relaxed and 

decondensed chromatin structure that is associated with histone acetylation and DNA 

hypomethylation is the feature of transcriptionally active chromatin. On the other hand, 

compact and condensed chromatin structure that is associated with deacetylation of 

histones and hypermethylation of DNA is transcriptionally silent. Condensed chromatin 

structure is essential during cell cycle, mitosis and meiosis, whereas decondensed 

chromatin structure is required for gene expression, replication, repair and 

recombination. The combinatorial pattern of the histone modifications indicates the state 

of the chromatin structure, and thus, regulates the accessibility of the DNA to the 

transcription-regulatory complexes, through it controls gene expression. The collection 

of various covalent histone modifications serve as epigenetic marks for the recruitment 

of different proteins or protein complexes to regulate disparate chromatin functions such 

as gene expression, gene suppression, mitosis, repair, replication and chromosome 

segregation (Taverna et al., 2007). Furthermore, there is also crosstalk between different 

histone modifications like acetylation, methylation and phosphorylation at independent 

sites forming a “histone code” that is translated to a specific biological event through the 

mediation of various effector proteins. For example, phosphorylation of serine 10 of 

histone H3 facilitates acetylation of lysine 14 and methylation of lysine 4, which create an 

open or relaxed chromatin conformation associated with an active gene. Serine 10-

phosphorylation also facilitates the acetylation of lysine 9, thus preventing the  

repressive lysine 9-methylation associated with an inactive gene (Jenuwein & Allis., 

2001; Lund & van Lohuizen, 2004; Mathew et al., 2010; Schreiber & Bernstein, 2002; 

Turner, 2003).  
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3.4 Chromatin modifying enzymes 
Consistent with the variety of posttranslational modifications of histones, a disparate family 
of enzymes, which are referred as histone modification writers, catalyzes addition of specific 
functional groups to histones. These modifications of histones alter the chromatin structure 
and function by two distinct manner: First, by directly altering the charges of histone 
proteins, certain posttranslational modifications cause localized relaxation of chromatin 
structure and second, by serving as recognition and binding sites for various classes of 
effector proteins that participate in chromatin remodeling, certain histone modifications 
indirectly alter the chromatin structure. However, most histone modification are reversible 
and diverse families of proteins, which include histone acetyltransferases (HATs) /histone 
deacetylases (HDACs), histone methyltransferases (HMTs)/demethylases, histone 
kinases/phosphatases, and ubiquitin ligases, catalyze addition and removal of the 
modifications from histones. One of the highlights of epigenetics is that it offers new 
therapeutic targets for diseases including cardiovascular diseases. The epigenetic regulators, 
HATs/HDACs and HMTs/demethylases, which exhibit counterbalancing activities are 
essential for the regulation of gene expression, which are required for the basic cellular 
processes such as cell proliferation and differentiation. This essential role of epigenetic 
regulators in basic cellular processes identifies potential therapeutic targets for diseases 
including cardiovascular diseases. Moreover, identification of those HATs and HDACs that 
plays a role in the transcriptional regulation of genes, products of which contributes to the 
processes of neointima formation like inflammation, VSMC proliferation, and matrix 
formation is also important in designing potential epigenetic therapy to target vascular 
proliferative diseases. Thus, pharmacological inhibition of enzyme activities involved in 
epigenetic DNA and histone modifications designed to induce or silence the transcription of 
disease-relevant genes offers an amenable therapeutic intervention for atherosclerosis and 
restenosis. In addition to modifying the effects of diseased genes, it is possible to change the 
effects of environmental risk factors by targeting epigenetic mechanisms. Here we will focus 
on HATs/HDACs, the principal epigenetic regulators that control histone acetylation, a 
major epigenetic modification for transcriptional control of gene expression. Because 
HATs/HDACs are essential for the regulation of gene expression, in all probability, they 
play crucial role in the development of multigene and multifactorial diseases such as 
atherosclerosis and restenosis.  

4. Histone acetyltransferases (HATs) and histone deacetylases (HDACs)  

One of the best- and most-studied posttranslational histone modifications is lysine 
acetylation catalyzed by HATs, the modification that is generally associated with gene 
activation (Ekstrom, 2009; Kouzarides, 2007; Pons et al., 2009; Ranganna et al., 2006; 
Turunen, 2009). Hyperacetylation of histones causes decondensation of chromatin allowing 
a more relaxed or open and active chromatin structure, which allows accessibility of DNA to 
basal transcription initiation machinery (Kouzarides, 2007; Roth, 2001). In contrast, gene 
repression is mediated by HDACs, and other co-repressors, which cause deacetylation of 
hyperacetylated histones and offset the activity of HATs resulting in a closed conformation 
of chromatin structure. Thus, the acetylation status of the chromatin associated with 
particular genes is dictated by the balance between the activities of HATs and HDACs. 
These enzymes are shown to regulate expression of genes associated with various cellular 
processes like inflammation, proliferation and matrix modulation (Cao et al., 2005; Pons et 
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al., 2009; Sahar et al., 2007; Vinh et al., 2008; Waltregny et al., 2005; Xu et al., 2007; Yan et al., 
2009). HATs and HDACs are also recruited to gene promoters by multiprotein 
transcriptional complexes, where they regulate transcription through chromatin 
modification without directly binding the DNA. 
A number of different HATs are identified and organized as families based on the presence 

of highly conserved structural motifs, which include PCAF/Gcn5, p300/CBP, MYST, SRC, 

and TAFII250 families. While they all differ in their HAT domains and substrate specificity, 

they all require the assembly of multiprotein complexes for acetylation of nucleosomes 

(Marmorstein, 2001). Likewise a number of HDACs are identified and are classified into 

three different classes based on cellular localization, substrates and binding site features 

(Lindemann et al., 2004; Santini et al., 2007). Class I and class II include zinc-dependent 

HDACs, and class III includes NAD-dependent HDACs, which are also called as sirtuins. 

Class I HDACs are widely expressed and include HDACs 1-3 and 8 that are exclusively 

localized to nucleus. They are known to modulate cell proliferation and survival. Class II 

HDACs are HDACs 4-7, 9, and 10, which shuttle between the nucleus and cytoplasm in 

response to certain cellular signals. They may be involved in cell differentiation (Pons et al., 

2009; Santini et al., 2007). Class II HDACs are further divided into Class IIa and Class IIb , 

which include HDACs 4, 5 ,7, and 9, and, HDACs 6 and 10, respectively. While Class IIa 

members have an extended N-terminal regulatory domain, Class IIb exhibit an extra 

catalytic domain (Lindemann et al., 2004; Pons et al., 2009; Santini et al., 2007). Class III 

HDACs are sirtuins (SIRT), which include NAD+-dependent enzymes (SIRT 1-7) potentially 

involved in apoptosis (Pons et al., 2009).  

HATs and HDACs are also recruited to gene promoters by multiprotein transcriptional 

complexes. There they regulate transcription through chromatin modification without 
directly binding the DNA (Johnstone & Licht, 2003; Pons et al., 2009). Moreover, HATs and 

HDACs are also involved in the acetylation status of lysine residues of transcription factors 
such as p53, E2F1, GATA1, RelA, YY1 and hormone receptors. Acetylation status of these 

transcription factors affects their DNA binding and transcriptional activity (Glozak et al., 
2005; Johnstone & Licht., 2003; Marks, 2001; Pons et al., 2009). Besides histones and 

transcription factors, several other non-histone proteins like ┙-tubulin, nuclear import 
protein importin-┙7, and signal transduction protein ┚-catenin are also modified by HATs 

and HDACs, but their effects on gene expression is not dependent on chromatin remodeling 
(Johnstone & Licht., 2003; Marks, 2001). 

4.1 Epigenetic therapy targeting VSMC proliferation 
Because HATs/HDACs are involved in dynamic reversible epigenetic processes that 
contribute to modulation of gene expression profiles specific to cellular processes like cell 
proliferation, they probably play important role in cardiovascular pathologies such as 
atherosclerosis and restenosis. Moreover, epigenetic deregulation affects several aspects of 
cell biology, including cell growth, cell cycle control, differentiation, DNA repair, and cell 
death. This elevates the strong possibility that reversing deregulated epigenetic mechanisms 
may be an effective treatment strategy for proliferative diseases. Incidentally, the property 
of HDACs, suppression of gene expression by epigenetic mechanism, has been exploited in 
the field of cancer to reactivate transcriptionally silent tumor suppressor gene to arrest 
proliferation of cancer cells and growth (Pons et al., 2009; Ranganna, et al., 2005, 2007; 
Sharma et al., 2010). Moreover, HDAC inhibitors (HDACi) are emerging as a new class of 
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anticancer agents that are under clinical trials for different cancer treatment. Some of the 
early clinical studies have demonstrated that certain HDACi exhibit promising activity 
against several neoplasms (Bhalla, 2005). Naturally, it has stimulated great interest to 
determine how HATs/HDACs regulate transcriptome of different processes that are linked 
to the development of atherosclerosis and restenosis like inflammation, VSMC proliferation 
and matrix modification and to assess therapeutic potential of HDACi in these vascular 
proliferative diseases (Ekstrom, 2009; Pons et al., 2009; Ranganna et al., 2006; Turunen, 
2009). The following sections will focus on the role of HATs and HDACs in the 
transcriptional regulation of genes in the context of their contribution to VSMC proliferation 
and its disorders as well as on the potential applicability of HDACi in vascular disease 
management.  

4.1.1 Histone deacetylase inhibitors (HDACi) 
In the past few years, great effort has been focused on seeking and designing most effective 

HDACi because of their potential roles in reversing the silenced genes in tumor cells by 

modulating transcriptional processes. The balance between the acetylated/deacetylated 

states of histones, which is mediated by the counterbalancing activities of HATs and 

HDACs, contributes to the transcriptional states of chromatin structure. The structural 

modification of histones by acetylation/deacetylation of their N-terminal tails is crucial in 

modulating gene expression, because it affects the accessibility of DNA for the transcription-

regulatory protein complexes. HATs preferentially acetylate specific lysine residues of 

histones, which relaxes the DNA conformation, thus allowing its access to transcription 

machinery to turn on gene expression. On the contrary, HDACs restore the positive charge 

on lysine residues by removing acetyl groups, which promotes condensed chromatin 

structure. This promotes silencing of gene expression by blocking the access of transcription 

machinery to DNA. Inappropriate silencing of critical genes such as tumor suppressor genes 

can result in cancer based on the recent understanding of the cancer cell cycle (Kristeleit et 

al., 2004). This provides a rationale for using inhibition of HDAC activity to release 

transcriptional repression. As result, a flurry of HDACi has been recognized for their ability 

to inhibit HDACs activity. 

 

 

Fig. 1. Structural class of histone deacetylase inhibitors 

Structurally diverse classes of naturally occurring and synthetic compounds have been 
recognized for their ability to bind to the catalytic pocket of HDACs and chelate the zinc ion 
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at its base, thereby inhibiting HDAC activity (Marks et al., 2000). A wide range of structures 
inhibits activity of class I/II HDAC enzymes with a few exceptions [Figure 1]. The HDACi 
are classified into structural classes including 1) short-chain fatty acids (carboxylates), 2) 
hydroxamic acids, 3) benzamides, and 4) cyclic and non-cyclic peptides. The various HDACi 
studied so far have been shown to inhibit class I (HDACs 1, 2, 3, and 8) and II (HDACs 4, 5, 
6, 9, and 10) HDACs. Their activities have been tested in cell lines and preclinical murine 
models, and appropriate drugs that are selected for clinical trials, demonstrated good 
tolerance and clinical activity against different human neoplasms (Santini et al., 2007). 
However, Class III HDACs (SIRT 1, 2, 3, 4, 5, 6, and 7), also known as sirtuins, require NAD 
rather than zinc as a co-factor for their activity, and are not inhibited by the HDACi. Instead, 
they are inhibited by Nicotinamide (Luo et al., 2001).  

4.1.2 HDACi effects on cellular processes  
HDACi exhibit multiple cellular effects, which are linked to chromatin-mediated altered 

transcriptional activity. In general, most HDACi exhibit inhibition of cell proliferation, 

stimulation of cell differentiation and/or induction of cell death by selectively modulating 

gene expression (Bhalla, 2005; Mathew et al., 2010; Ranganna, 2005). HDACi arrest cells at 

the G1 or G2/M, and promote cell differentiation mainly by stimulating cyclin-dependent 

kinase inhibitor (cdkI) p21Cip1 expression (Bhalla, 2005; Mathew et al., 2010; Ranganna et 

al., 2005). HDACi also cause cell cycle blockade through the modulation of mechanisms that 

involve repression of cyclin D and cyclin A and upregulation of other cdkI like p27Kip1, 

p16INK4A and p15INK4B, which blocks pRb/E2F pathway, thus preventing the cell cycle 

progression (Mathew et al., 2010; Bhalla, 2005) [Figure 2]. Now with the array technologies, 

it is recognized that HDACi selectively modulate about 2% to 10% of all genes, with as 

many genes upregulated as are downregulated genes in different cell types (Bhalla, 2005; 

Ranganna et al., 2003). One of the genes that are universally upregulated is the cdkI 

p21Cip1, in a p53-independent manner, which is necessary for HDACi-induced G1 arrest. 

Induction of GADD45┙ and ┚ and upregulation of transforming growth factor beta, which 

inhibits c-myc expression may also contribute to the cell cycle arrest in G1 or G2 (Bhalla, 

2005.). HDACi treatment is also shown to transcriptionally downregulate the expression of 

CTP synthetase and thymidylate synthetase, which are required for DNA synthesis, thus, 

causing inhibition of S phase progression [Figure 3]. 

HDACi also stimulate differentiation of several cancer cells by inhibiting cell proliferation 

(Bhalla, 2005). Again, upregulation of p21Cip1 appears to be essential for differentiation 

because cells lacking p21Cip1 fail to respond to HDACi treatment (Bhalla, 2005). 

Furthermore, acute promyelocytic leukemic cells and primary leukemia blasts, expressed 

differentiated phenotype in response to a combination of ATRA, a retinoid-based 

chemotherapeutic drug and HDACi (Bhalla, 2005). HDACi stimulated gelsolin, an actin-

binding protein required for morphological and cytostructural changes associated with 

differentiation (Bhalla, 2005). 

It is interesting that HDACi induce growth arrest and cell differentiation in some cell, and in 
others, they cause apoptosis (Bhalla, 2005; Johnstone & Licht, 2003). HDACi-induced 
apoptosis triggers both the intrinsic and extrinsic pathways of apoptosis. Several types of 
HDACi, particularly hydroxamic acid analogs are shown to induce mitochondrial 
permeability transition, which releases prodeath molecules such as cytochrome c, Smac and 
Omi into cytosol (Bhalla, 2005). This triggers activation of Apaf-1, which leads to the 

www.intechopen.com



 
Emerging Epigenetic Therapy for Vascular Proliferative Diseases 

 

93 

processing and activation of caspases-9 and-3 (Bhalla, 2005). HDACi appear to promote 
apoptotic cell death not only by upregulating several proteins that participate in apoptotic 
cell death including Bak, Bax, Bim, DR4, DR5, and TRAIL, but also by attenuating the levels 
of a number of antiapoptotic proteins such as Bcl-xL, Bcl-2, XIAP, and survivin (Bhalla, 
2005).  
 

 

Fig. 2. Display of cell cycle targets of HDAC inhibition. 

 

 

Fig. 3. Cell cycle regulatory proteins that are altered by the HDACi-induced acetylation of 
histones and transcription factors. 
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Besides affecting cell proliferation, differentiation and apoptosis, HDACi also alter the 
function of some of the non-histone transcription factors like p53, RelA, GATA1 and 
FoxO3A because HDACi enhance their acetylation, which may affect their DNA binding 
and transcriptional activity (Marks et al, 2001; Lindemann et al., 2004). Similarly, stimulating 
acetylation status of other non-histone protein such as nuclear import protein importin-┙7, 
signaling protein ┚-catenin, DNA repair enzyme Ku70, and the cytoskeletal protein ┚-
tubulin, HDACi alter their activity (Bhalla, 2005). Taken together, by inducing acetylation of 
histones and non-histones, HDACi alter the levels of proteins that control cell cycle 
progression, differentiation and apoptosis appropriately by transcriptional and post-
transcriptional mechanisms, which implicate their potential use in disease treatment.  

4.2 VSMC proliferation and histone acetylation  
Although the common mechanism of pathogenesis shared by the atherosclerosis and cancer 

are linked to abnormal cell proliferation, very limited information is available with reference 

to anti-atherogenic potential of HDACi. Because HDACi not only alter gene expressions, but 

also cause inhibition of cell proliferation and induction of differentiation and/or apoptosis, 

a number of studies are initiated in the past few years to test the effects of HDACi as 

potential antiatherogenic agents. Even though both in vitro and in vivo studies have been 

done with the intention of targeting VSMC proliferation for the intervention and 

management of vascular proliferative diseases, most of the information that is available 

currently is from in vitro cell culture studies. There is limited in vivo data supporting the 

protective role of HDACi but needs further evaluation in models of VSMC injury.  

4.2.1 VSMC proliferation 
In general, HDACi exhibit almost same effects in VSMC as they do in cancer cells. They 

arrest cell proliferation, induce differentiation and/or apoptosis, and modulate expression 

of cell cycle regulators. Several studies have shown that trichostatin A (TSA), a well-known 

HDACi, arrests VSMC proliferation via upregulation of p21Cip1 and subsequent reduction 

of the phosphorylation of Rb protein at the G1-S phase (Okamoto et al., 2006; Pons et al., 

2009), the effects consistently observed in cancer cell (Bhalla, 2005). In contrast, in one of the 

studies TSA unexpectedly exhibited paradoxical pro-atherogenic effect on VSMCs via the 

reduction of thioredoxin 1 instead of antiatherogenic properties (Song et al., 2010).  

Besides TSA, butyrate, a well-known dietary HDACi, which has been used in different 
human cancer and other disease treatments, appears to exhibit potential antiatherogenic 
effect by arresting VSMC proliferation and appropriately altering both negative and positive 
cell cycle regulators (Davie, 2003; Mathew et al., 2010; Ranganna et al, 2005). Butyrate 
belongs to the class of short-chain fatty acids and is a derived from the intestinal microbial 
fermentation of dietary fiber. A number of epidemiological, animal and interventional 
studies suggest an inverse relationship between dietary fiber and chronic diseases such as 
bowel disorders and colorectal cancer, cancer of other tissues, cardiovascular disease, 
diabetes, obesity and hypertension (Anderson, 2003; Dashwood et al., 2006; Kim, 2000; 
Ranganna et al., 2005, 2006). Some of the studies suggest that the protective effect of dietary 
fibers in chronic diseases is linked to bioactivity of butyrate (Anderson, 2003; Dashwood et 
al., 2006; Kim, 2000; Ranganna et al., 2005, 2006). Butyrate elicits many cytoprotective, 
chemopreventive and chemotherapeutic activities mainly through inhibition of cell 
proliferation, stimulation of cell differentiation and/or induction of cell death by selectively 
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modulating certain gene expressions, but the mechanistic basis for these actions are far from 
clear. Butyrate has been known to alter chromatin structure and organization via 
hyperacetylation of histone amino-terminal tails, modulate gene expression and play a 
protective role in the prevention of cancer and inflammatory diseases of colon for a long 
time (Ranganna et al., 2005, 2006). However, its importance in the prevention of cancer of 
other tissues and different diseases has been recognized during the past ten years 
(Anderson, 2003; Dashwood et al., 2006; Kim, 2000; Ranganna et al., 2005, 2006). On the 
other hand, no similar studies are performed to indicate the protective role of butyrate in 
cardiovascular diseases due to atherosclerosis and restenosis.  
During last few years, significant interest is focused on potential utility of butyrate and its 

stable derivatives in the intervention of vascular proliferative diseases, besides their 

therapeutic applications in other diseases including cancers. Butyrate and its more stable in 

vivo analogue tributyrin, arrested proliferation and inhibited DNA synthesis of smooth 

muscle cells in a cAMP-independent manner. Butyrate also abolished serum-induced c-fos, 

c-myc, and Ki-Ras expression that are important for early G1 events initiated by serum 

growth factors, but stimulated the expression of PS4 and thromospondin (Feng et al., 1996). 

Moreover, studies performed in our own lab further supports the efficacy of butyrate and its 

stable derivatives in vascular proliferative diseases. Treatment of VSMC with butyrate 

inhibited serum and PDGF-induced proliferation and abolished expression of proliferation 

markers such as c-myc and proliferating cell nuclear antigen [PCNA] (Ranganna et al., 1995, 

2000). Furthermore, our analysis of profiles of VSMC transcriptome by array technology 

disclosed that butyrate-arrested VSMC proliferation is a multigene and multipathway-

mediated process. Our array data identified differential expression of several genes in 

butyrate arrested VSMC proliferation, which are mainly belonging to four different 

functional classes: cell proliferation and differentiation; stress response; vascular function; 

and genes normally present in neuronal cells (Ranganna, et al., 2003). Extension of this study 

reveals that an upper level regulatory mechanism mediated through epigenetic modification 

of chromatin structure controls the expression of both positive and negative cell cycle 

regulatory genes linked to VSMC proliferation arrest by butyrate (Mathew et al., 2010). To 

establish the mechanistic link between chromatin remodeling and antiproliferation action of 

butyrate, influence of butyrate on posttranslational modifications of histone H3 and its 

consequence on G1-specific cell cycle regulators were investigated [Figure 2]. Outcomes of 

the study indicate interplay between different site-specific posttranslational modifications of 

histone H3 in butyrate treated VSMCs that seem to alter chromatin structure and 

organization that supports downregulation of cdk2, cdk4/6, and PCNA, and upregulation 

of cdkI, p21Cip1 and p15INK4B. This causes inhibition of Rb phosphorylation resulting in 

arrest of VSMC proliferation [Figure 2 and Figure 3]. The effects of HDACi on cell cycle-

related gene expressions appear to be highly selective, leading to transcriptional activation 

of certain genes such as the cdkIs but repression of others like cdks to efficiently block cell 

proliferation. 

4.2.2 Histone acetylation 
Hypernuclear acetylation (HNA) also plays a role in proliferation (Kawahara et al., 2003). 
Presence of increased histone acetylation is observed in VSMC of atherosclerotic lesions 
unlike in normal arteries. Thrombin, a humoral factor that is known to activate and 
stimulate VSMC proliferation, strongly induced HNA in cultures of VSMC. MAP kinase 
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pathway and CBP are implicated in thrombin-induced HNA suggesting that coactivators 
cooperating with signaling-dependent transcription activators play a role in atherosclerosis 
through HNA (Kawahara et al., 1999). 

5. Conclusions and perspectives 

Over the past few years, it has become abundantly evident that several interdependent 
epigenetic changes collaborate with genetic changes in the development of human diseases 
including cardiovascular diseases such as atherosclerosis and restenosis. Since the genetic 
foundations of diseases are generally immutable, but their epigenetic and chromatin changes 
are reversible, they are suitable for epigenetic therapy with epigenetic and chromatin 
modifiers. Therefore, thorough understanding on the roles of epigenetic processes in the 
etiology of atherosclerosis and restenosis is essential to launch an epigenetic therapy designed 
to target the epigenetic processes. Although a number of different therapeutic approaches 
have been investigated in the treatment of atherosclerosis and restenosis such as 
brachytherapy, pharmacotherapy, gene therapy, and immunotherapy, the therapeutic efficacy 
of these treatment modalities for atherosclerosis and restenosis is not adequate for a number of 
patients. Possible reasons are multiple factors, genes, pathways are involved in the disease 
pathogenesis, and targeting one or two genes or pathways are not sufficient to treat complex 
vascular pathologies. In these scenarios, epigenetic therapy, which is reversible, appears to be 
appropriate because HDACi exhibit multiple cellular effects that play major roles in vascular 
pathogenesis. HDACi exhibit antiproliferative, antioxidant and antiinflammatory effects and 
cause inhibition of cell proliferation and stimulation of differentiation or apoptosis by 
modulating expression of multiple genes (Natarajan, 2011; Ranganna, et al.,2005; 2006; 2007). 
For example, HDACi inhibit cell proliferation by appropriately altering both positive and 
negative regulators of cell cycle. While cell cycle inhibitors such as p21Cip1, p27kip1, 
p16INK4a and p15INK4b are upregulated, expressions of cyclin D, cyclin A, cdk2, cdk4/6, 
PCNA and pRb that promote cell cycle progression are downregulated (Figure 2 and Figure 3). 
With one single HDACi, multiple genes are altered that control cell cycle progression unlike 
gene therapy, where a cocktail of genes is required to bring about inhibition of cell 
proliferation. Furthermore, stents are ideal platform for the localized delivery of HDACi to the 
vascular wall because of their widespread use and safety in the treatment of restenosis. It is 
recognized that many of the processes that play critical role in atherosclerosis and restenosis 
such as VSMC proliferation, migration, inflammation, cellular redox state and matrix protein 
synthesis (Natarajan, 2011) are regulated by epigenetic mechanisms. As such, they present an 
exciting opportunity for therapeutic intervention, particularly to refractory or recurrent 
vascular pathologies such as restenosis and in-stent restenosis and vein graft failure. A number 
of natural and synthetic HDACi are already in the pipeline for the treatment of cancer either 
stand alone, or in combination with other anticancer drugs and several clinical trials are in 
progress. Exploring these particulars will speed the necessary epigenetic treatment strategies 
for the management of atherosclerosis and restenosis.  
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