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1. Introduction

Mathematical Medicine is a relatively new and expanding area of Applied Mathematics
research with a growing number of mathematicians, experimentalist, biomedical engineers,
and research physicians involved in collaborative efforts on a global scale. Mathematical
models are playing an increasing role in our understanding of such complex biological
processes as the onset, progression, and mitigation of various diseases. The cardiovascular
system is particularly intricate, and the formulation and analysis of mathematical models
presents a myriad of challenges to the investigator. (See (Quarteroni, 2001) for a survey on
the subject.) Mathematical studies of the cardiovascular system have included continuum
mechanical models of vascular soft tissue (Holzapfel et al., 2000; Humphery & Rajagopal,
2002; Taylor & Humphrey, 2009), fluid dynamical models of the interaction between
blood flow and vessel walls (Baek et al., 2007; Quarteroni, 2001; Veneziani, 1998), and
mathematical models, such as that of the present work, of biochemical characteristics of the
vasculature (Ibragimov et al., 2005; Neumann et al., 1990; Saidel et al., 1987). The disease
of atherosclerosis, and its initiation atherogenesis, involves a complex interplay between
mechanical, genetic, pathogenic, and biochemical processes. A comprehensive view of
atherosclerosis will ultimately require integration of these various modeling perspectives.
Herein, we focus on the inflammatory component of atherogenesis, in particular the role of
immune cells–primarily macrophages–in the presence of oxidatively modified low density
lipoproteins (LDL cholesterol) within the intimal layer of large muscular arteries. We present
a mathematical model of the key inflammatory spiral that characterizes the initiation of
atherosclerosis, and perform some analyses of this model.
It is well accepted that atherosclerosis is marked by chronic inflammation (Creager &
Braunwald , eds.; Fan & Watanabe, 2003; Ross, 1995; 1999; Wilson , ed.). Changes in the
permeability of the endothelial layer and subsequent deposition of lipids in the intima cause
an up-regulation of chemoattractants such as monocyte chemotactic protein 1, interleukin-8
and macrophage colony-stimulating factor that are secreted by the endothelial and other
cells. In addition, LDL molecules become trapped in the subendothelial intima where they
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are subject to oxidative modification by reactive oxygen species. Macrophages begin to
accumulate in the region where they assume a pro-inflammatory phenotype. The stimulation
of macrophages may be due to the presence of inflammatory extra-cellular matrix fragments.
In addition, oxidized LDL is recognized by a macrophage scavenger receptor with some
degree of interindividual variation (Boullier et al., 2001; Martín-Fuentes et al., 2007; Mosser
& Edwards, 2008; Podrez et al., 2002). Macrophages attempting to internalize these particles
may become engorged with cholesterol and transform into foam cells. In this state, these
immune cells are incapable of performing the customary immune function and become part
of a developing atherosclerotic lesion. The immune response is mediated by those chemical
signals emitted by endothelial cell, immune cells, and immune cell derived foam cells. The
corruption 1 of the immune process caused by ingestion of oxidized LDL can trigger an
inflammatory response which results in increased immune cell migration to the site, possible
further corruption, and ultimately accumulation of debris (necrotic, apoptotic, and lipid laden
cells) characterizing plaque onset. This inflammatory spiral facilitated by chemotaxis, the
process modeled herein, is a hallmark of atherogenesis.
It will become evident that our model incorporates many parameters characterizing such
things as the rate at which macrophages move within the intimal tissue (independent of and in
response to chemokines), rates of phenotype changes for macrophages, rates of phagocytosis
and uptake of lipids by immune cells, degratation rates of various chemicals, chemical
reaction rates and so forth. Some of these have value ranges that are known in vitro or in vivo,
but many are unknown. The analytical techniques employed at present are linear stability
studies. This allows us to obtain criteria based on the relative values of parameters and to
interpret these criteria in terms of the propensity for a lesion to initiate—or not. These criteria
will take the form of various inequalities in section 4.
In the next section, we lay out the disease paradigm and the assumptions upon which the
mathematical model is constructed. This is followed by a presentation of the general model
in the form of a system of nonlinear, primarily parabolic partial differential equations with
mixed third type boundary conditions. In section 4, we perform stability analyses of the model
under two different assumptions regarding the source of inflammatory components. Two
stability theorems are given along with a bio-medical interpretation of the criteria derived.
Also included is a discussion of the existence of unstable equilibria with a focus on the role
of an antioxidant presence and the competing processes of macrophage motility (unrelated to
chemotaxis) and chemotaxis. The chapter closes with a brief conclusion.

2. The disease paradigm and model basis

The large muscular arteries most vulnerable to atherosclerotic lesions can be considered
as thick walled tubes consisting of three distinct layers. The outermost layer, called the
adventitia, provides structural integrity through a strong collagen network. The middle
layer, the media, provides flexibility and adaptability through layers of smooth muscle cells
enmeshed in an elastin and collagen network. And the thin, innermost layer, called the intima,
is where the atherosclerotic lesions begin to develop. A monolayer of endothelial cells forms
an interface between the intima and the lumen through which blood flows. These endothelial
cells are highly active in the circulatory process providing a smooth surface for fluid flow,

1 The term "corruption" refers to the formation of foam cells due to the failure of the scavenger receptor
to down regulate in response to excess cellular cholesterol content (Steinberg, 2002), and to the ability
of C-reactive protein and oxLDL to increase the inflammatory properties of monocytes (Zhang & Wahl,
2006).
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secreting anticoagulant, procoagulant, and inflammatory factors and regulating the exchange
of cells and molecules between the blood and arterial wall. Insult to the endothelium and
so called endothelial dysfunction is a precursor to atherosclerosis. A number of pathological
conditions, genetic factors, and behavioral practices may result in endothelial dysfunction
(Davignon & Ganz, 2004). This process appears to be characterized by a change in the
permeability of the endothelial layer that allows lipids to migrate into the subendothelial layer
followed by an influx of the cells that comprise the immune response. Following endothelial
dysfunction and migration of lipoproteins and immune cells, we identify two significant
steps to atherogenesis. These are oxidative modification of LDL, and the initiation of an
inflammatory spiral.

2.1 Lipoprotein oxidation

Lipoproteins are micellar particles which contain regulatory proteins that direct the blood
trafficking of cholesterol and other lipids to various cells in the body.. There are four major
classes of lipoprotein–chylomicrons, very low-density lipoproteins (VLDL), low-density
lipoproteins, and high-density lipoproteins (HDL)—but the bulk of cholesterol is contained
in the latter two. Low density lipoproteins consist of a lipid core, a surface protein and a
number of antioxidant defenses. LDLs deposit cholesterol in the tissues for cell metabolism.
High density lipoproteins contain most of the remaining cholesterol in the body. These
particles take excess lipids from tissues and return them to the liver for processing—the
process referred to as reverse transport. Elevated plasma levels of LDL indicate a high risk
of disease primarily because of their susceptibility to becoming trapped within the intima and
subsequently attacked by radical oxygen species. The inflammation of atherosclerotic lesions
occurs in areas of intimal thickening enriched by deposits of oxidized LDL.
The modification of LDL is a complicated process that has been the subject of several studies,
and the reader is directed to the articles (Parthasarathy et al., 1992; Steinberg, 1997) and the
review (Young & McEneny, 2001) and the references therein for a more complete and detailed
description. Cobbold, Sherratt and Maxwell provided a mathematical model of the in vitro
cascade of oxidation of LDL cholesterol in 2002 formulated according to a linear chemical
reaction process (Cobbold et al., 2002). This model is adapted and included in the present
model of atherogenesis. In brief, the mechanics of the process can be described as follows: In
the tissue, where the concentration of reactive oxygen species (ROS) may be relatively high
and external antioxidant defenses low, each interaction of an ROS and an LDL molecule will
result in oxidizing one of the vitamin E molecules on the lipid surface. It is also possible that
an oxidized vitamin E molecule (α-tocopherol radical) may be reduced back to a vitamin E
molecule by an antioxidant present (Niki et al., 1984; Watanabe et al., 1999). If, through a
finite sequence of oxidation of vitamin E molecules, an LDL molecule losses all of its innate
defense against free radical attack, it is susceptible to peroxidation of its lipid core. Once fully
modified, the oxidized LDL is both attractive to macrophages and unable to leave the intima
(unlike oxidized HDL particles (Tall, 1998)).

2.2 The inflammatory response

Accompanying the permeability changes to the endothelium and the influx of lipids is
the immune response. Various white blood cells (monocytes, T-lymphocytes, neutrophils)
migrate into tissues in response to chemical signals. Once in the subendothelial intima,
monocytes differentiate into macrophages. Under normal healthy conditions, these immune
cells aid in the degradation of apoptotic cells as well as the removal of foreign agents such
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as bacteria or viruses through phagocytosis. As stated, macrophages have a high affinity
for oxidized LDL. However, attempts to take up the modified lipids by the process of
phagocytosis are unsuccessful, and the lipid laden macrophages transform into foam cells
(Goldstein et al., 1977; Podrez et al., 2002; Steinberg, 1997). Unable to perform their normal
immune function, these lipid-laden cells signal other immune cells to the site precipitating
accumulation of fatty tissue and the progression toward plaque growth. Additional chemical
signals secreted by the foam cells and endothelial cells summon more immune cells to the
site. Additional macrophages migrate to the localized site of inflammation. The chemical
mediators of inflammation can increase binding of oxidized LDL to cells in the arterial wall
(Hajjar & Haberland, 1997). Hence, the new macrophages become engorged with oxidized
LDL and the cycle of chemical signaling continues.
The role of macrophages in initiation of an atherosclerotic lesion is complicated and far
from singular. 2 In addition to foam cells, apoptotic macrophages are regularly found in
lesions. Apoptosis of cells (macrophage and others) within a plaque is found to have both
stabilizing as well as destabilizing affects (Cui et al., 2007; Tabas, 2004). Phagocytosis of
apoptotic cells (not necessarily macrophages) may induce resistance to foam cell formation
among macrophages. This occurs when during phagocytosis, the macrophage takes in high
levels of membrane-derived cholesterol as opposed to lipoprotein-derived cholesterol. In Cui
et al. , the authors report that ingestion of apoptotic cells induced a survival response in the
macrophages in their experiments (Cui et al., 2007). It is also known that macrophages appear
in different phenotypes that are non-static in the sense that they may change types—a process
that is reversible (Kadl et al., 2010; Mosser & Edwards, 2008; Stout et al., 2005), and that
the different types serve opposing functions (e.g. inflammatory versus anti-inflammatory).
Moreover, the sources of additional immune cells include transport across the endothelium
as well as migration via the vasa vasorum that provides blood to the artery wall. The
mathematical model is constructed to allow for the diverse functions of the immune cells.
(For a mathematical study similar to that presented here that focuses primarily on the
competing role of inflammatory and anti-inflammatory macrophages, we direct you to the
article (Ibragimov et al., 2008).)

3. The mathematical model

We begin by identifying the key chemical and cellular species involved in atherogenesis. For
each species, an evolution equation is derived through the classical approach of imposing
a mass balance in an arbitrary control volume and subsequent reduction to a pointwise
statement. We do not consider here the volume of a lesion but rather the concentration of
each species at any point.
Our model consists of five classes of generalized species–two cellular and three chemical–that
have critical roles in the initiation of an atherosclerotic lesion. These classes are labeled and
denoted as follows:

I Immune cells: These are primarily monocyte derived macrophages but may include other
white blood cells (T-cells and perhaps neutrophils).

D Debris: This is the bulk of a forming lesion consisting of apoptotic cells, macrophage
derived foam cells, and potentially necrotic tissue . Our use of the term debris is
unconventional in the sense that we do not intend to suggest that these are inert cells

2 The reader is directed to the article Mosser & Edwards (2008) for an excellent review of the array of
macrophage phenotypes and functions.
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or simply a byproduct of some process and merely occupy space. As will be seen in the
mathematics to follow, this species type plays a pivotal role in the inflammatory feedback.

C Chemoattractant: This chemical species represents any of a number of cytokines
and chemotactic molecules including macrophage colony stimulating factor, monocyte
chemotactic protein-1, and various interleukin proteins. Any chemical that is used in the
regulation of the immune response primarily through inducing chemotaxis is included in
this species type.

L & Lox Low density lipoproteins: The LDL species consists of two major sub-types, those
in a native (un-oxidized) state, and those molecules that have undergone full peroxidation
of the lipid core.

R Reactive oxygen species: These are free radical molecules that induce oxidative damage to
the lipoproteins present. This species is a byproduct of various metabolic processes within
the arterial wall.

Also included in the model are several input parameters. Of particular interest are the
parameters Aox, that is a level of antioxidants such as vitamins C, E, and beta-carotene, and
LB representing the serum concentration of LDL.
Each of the representative variables here is a vector with each component representing a
specific member of the class. For example,

I = (I1, I2, . . . , INI
)T

where each component Ii, i = 1, . . . , NI may be a different specific white blood cell, a different
phenotype, or may represent cells in different roles. We allow for I to have NI components,
D to have ND, C to have NC, L to have NL + 13, and each of Lox and R are scalar valued.
If we isolate any representative variable u from this list, we construct an equation of the form

∂u

∂t
= −∇ · Ju + Qu

that equates the evolution of the concentration of species u to a spatial flux field Ju and any
net source Qu due to cellular interactions, chemical secretion or uptake, chemical reactions,
and the like. The flux fields and source terms are outline below for each variable.

3.1 Governing equations

The equations governing these species and based upon the disease paradigm outlined in
section 2 are

∂

∂t
Ii = µIi

∇2Ii −∇ ·
(

Nc

∑
k=1

χik(Ck , Ii)∇Ck

)

−

−
ND

∑
k=1

aikDkIi −
NI

∑
k=1,k �=i

bikIkIi − ciIiLox − d1iIi , (3.1)

3 The model of LDL oxidation presented by Cobbold, Sherratt and Maxwell includes LDL molecules in
a fully native state containing NL vitamin E molecules. Studies show the number of such antioxidant
defenses is on average 6 per LDL molecule but may vary from 3 to 15 (Esterbauer et al., 1992; Stocker,
1999). We then consider Li to contain i vitamin E molecules where L0 represents LDL molecules
completely depleted of native vitamin E that has yet to undergo full oxidation of its core.

53Illuminating Atherogenesis Through Mathematical Modeling

www.intechopen.com



6 Will-be-set-by-IN-TECH

∂

∂t
Di = µDi

∇2Di + τi

NI

∑
k=1

(ck + fk)IkLox −
NI

∑
k=1

âikIkDi − d2iDi , (3.2)

∂

∂t
Ci = µCi

∇2Ci +
ND

∑
k=1

pikDkCi −
NI

∑
k=1

eikIkCi − d3iCi , (3.3)

∂

∂t
LNL

= µLNL
∇2LNL

− kRRLNL
+ kA AoxLNL−1 − d4NL

LNL
, (3.4)

∂

∂t
Li = µLi

∇2Li + kRR(Li+1 −Li)− kA Aox(Li −Li−1)−
− d4iLi , 1 ≤ i ≤ NL − 1 (3.5)

∂

∂t
L0 = µL0

∇2L0 + kRRL1 − kA AoxL0 − kRoRL0 − d40L0, (3.6)

∂

∂t
Lox = µLox∇2Lox + kRoRL0 −

NI

∑
k=1

fkIkLox , (3.7)

∂

∂t
R = µR∇2R−

NL

∑
k=1

kRRLk − kRoRL0 − hAoxR+ pR. (3.8)

The various parameters appearing in (3.1)–(3.8) require explanation; a succint description
of each is given in table 1. Each species is subject to diffusion, or diffusive motility in the
case of immune cells, and this is reflected in the flux terms µu∇2u (u represents any of the
various state variables I–R) with the coefficient µ with a subscript a measure of the motility
or diffusive capability of the respective species.

χik chemotactic sensitivity of immune species i to chemical stimulant k
aik , âik binding of immune cells to the lesion for removal

bik measure of subspecies interaction for immune cells
ci , fi rates of foam cell formation
dni cell turn over or chemical degradation rate
pik rate of chemical attractant production due to the lesion presence
eik uptake of chemoattractant during chemotaxis

kR, kR0
, kA rate of oxidation, peroxidation, and reverse (anti-oxidation), respectively

dni cell turn over or chemical degradation rate
pik rate of chemical attractant production due to the lesion presence
eik uptake of chemoattractant during chemotaxis

τi , h efficiency factors
pR production of free-radicals due to normal metabolism

Table 1. Bio-physiological Interpretation of Parameters

The terms χik(Ck, Ii)∇Ck are the contribution to the flux field for macrophages due to
chemotaxis. The coefficient χik(Ck, Ii) is the chemo-tactic sensitivity of immune cell i to
chemoattractant k. This is the classic Keller-Segal model of chemotaxis (Keller & Segel, 1971).
The dependence of χik on the immune cells is generally taken to be linear, however there is
no present need to specify a particular form for these functions. Each of the immune cells,
debris, chemoattractants, and native LDL species may undergo natural turnover or chemical
degradation represented by the last terms in equations (3.1)–(3.6).
The immune cell equations contain three significant cross interaction terms. The terms aikDkIi

capture binding of macrophages with debris—in particular, these and the analogous terms
âikIkDi in (3.2), account for phagocytosis of debris by healthy macrophages and removal for
future processing in the liver. We also allow for inter-species interactions via the terms bikIkIi
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in (3.1). This accounts, for example, for potential change of phenotype of macrophages during
the inflammatory process. Recent studies have demonstrated that such changes may occur
(reversibly) in vitro and in animal models (Kadl et al., 2010; Stout et al., 2005). Finally, the
formation of foam cells through binding with oxidized LDL appears in equations (3.1) and
(3.7) in the removal terms ciIiLox and fkIkLox. This foam cell formation appears as a source

term in equation (3.2) as τi ∑
NI

k=1(ck + fk)IkLox, where 0 ≤ τi ≤ 1, ∑
ND

i=1 τi = 1. The parameter
τi allows us to catagorize different contributions to the lesion—different types of debris.
The equation for the chemoattractants includes (in addition to those terms already mentioned)
a source term reflecting production of these chemicals in response to the presence of
debris pikDkCi. The removal terms eikIkCi represent the reduction of the chemoattractant
concentration by binding with macrophages during chemotaxis.
As stated, the equations governing the lipid oxidation reactions (3.4)–(3.8) are a modification
of the model of lipoprotein oxidation presented by Cobbold, Sherratt and Maxwell in 2002
(Cobbold et al., 2002). The chemical kinetics are assumed to be a linear reaction model in
which an LDL molecule containing i vitamin E particles reacts with a reactive oxygen species,
with reaction rate kR to produce an LDL molecule with i − 1 vitamin E molecules. This
model also allows for the reverse oxidation reaction in that an LDL molecule with i < NL

vitamin E molecules may react with the antioxidant species Aox, with reaction rate kA, to
produce an LDL molecule with i + 1 vitamin E defenses. Any LDL molecule that has been
completely depleted of its native antioxidant defenses contributes to the concentration L0.
A subsequent reaction of an L0 molecule with an ROS (with reaction rate kR0

) results in
peroxidation of the lipid core and a fully modified LDL particle. The ROS is depleted through
these reactions and through direct reaction with the anti-oxidant species–the latter occurring
with the rate of reaction h appearing in equation (3.8). The primary source of ROS is as a
byproduct of metabolic processes within the intima. The term pR represents this source. The
reader is encouraged to see (Cobbold et al., 2002) for a detailed construction of the model.
The modifications of Cobbold-Sherratt-Maxwell model presented here are two fold. First,
we allow for spatial variation through a standard Fickian diffusion. More significant to the
study of atherogenesis, we include the uptake of modified LDL by macrophages leading to
foam cell formation and subsequent inflammation. The terms fkIkLox represent removal of
oxidized LDL through macrophage binding and the contribution to the forming lesion as seen
in (3.2), (3.7) and (3.8).

3.2 Domain and boundary conditions

The system (3.1)–(3.8) can be considered in two or three spatial dimensions. In (Ibragimov
et al., 2005), the current authors performed numerical simulations of a simplified model
accounting only for immune cells, debris, chemoattractant, and later smooth muscle cells
(a species not considered here as we are interested only with the earliest onset of cellular
aggregation). Such simulations were performed in a two dimensional annular domain,
and demonstrated the ability of the model to produce such features as localization of
immune cells during inflammation and localized aggregation. The subsequent focus has
been on illuminating the interplay of the various parameters by considering the initiation
of inflammation as due to an instability in an equilibrium state. The general spatial regime
considered is a deformed annulus (in two dimensions) or a deformed annular tube (in three
spatial dimensions). In either case, the mathematical domain Ω is intended to represent
the tunica intima, the innermost subendothelial layer of an arterial wall. The annulus, or
annular tube, has an inner and outer boundary denoted by ΓI and ΓO, respectively. The inner
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boundary ΓI corresponds to the monolayer of endothelial cells that form the interface between
the arterial wall and the lumen, while the boundary ΓO represents the inner elastic lamina that
separates the intima from the media. In the following analyses, we will assume that there is
no transport of any species across the boundary ΓO. While there may well be some transport
across this elastic lamina—in particular of free radicals due to metabolic processes within the
media—we will assume here that any such contribution is negligible relative to production,
consumption, and inter-species reactions within the intima.
Influx through the inner boundary ΓI is for some species a significant source in the model. In
particular, the chemoattractant and native LDL are subject to a third type boundary condition
on ΓI modeling transport in response to a chemical potential across the endothelial cells. This
corresponds mathematically to the conditions

− µCi

∂Ci

∂n
= αC,i(Ci − C∗), and (3.9)

−µLNL

∂LNL

∂n
= αL(LNL

−LB). (3.10)

Here, n is the outward unit normal to ΓI , C∗ is a baseline level of chemoattractant present at
the endothelium, and LB is the serum level of LDL. The parameters αC,i are assumed to be
non-negative. However, the sign of αL is not specified so that (3.10) may correspond with
either forward transport of native LDL into the subendothelial intima or reverse transport
of native LDL into the blood. We assume here that LDL in the blood stream is fully native
(has undergone no free radical attack) so that only native LDL is capable of either forward or
reverse transport.
The immune cells are also subject to transport across the endothelium. The mechanism here
is a chemo-tactic sensitivity regulated by the level of chemoattractant at the endothelium. The
boundary condition is therefore a mixed third type condition with the flux of immune cells
dependent on the chemoattractant species.

− µIi

∂Ii

∂n
= −αI,i(C). (3.11)

Each function αI,i(C), i = 1, . . . , NI is a nonnegative monotone function of the vector C of

chemoattractants 4.
The remaining boundary conditions are

∂Υ

∂n
= 0, Υ = D,Li,Lox,R i = 0, . . . , NL − 1, on ΓI

∂Υ

∂n
= 0, Υ = I , C,D,L,Lox,R on ΓO. (3.12)

This is the mathematical representation of the previous statement that no transport of any
species across the inner elastic lamina separating the intima and the media is considered
significant relative to the interactions within the intima, and that only fully native LDL,

4 We can state the boundary condition for the immune cells in the more general form

JIi
· n = −ᾱI,i(C)

where JIi
= −

(

µIi
∇Ii − ∑

Nc
k=1 χik(Ck , Ii)∇Ck

)

is the flux field for the ith immune cell species, and ᾱI,i

is a corresponding reformulation of the right hand side of (3.11).
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Illuminating Atherogenesis Through Mathematical Modeling 9

immune cells and chemoattractant enter into the system via the endothelial layer. We may
further consider the completely homogeneous Neumann conditions under the conditions that
αC,i = αL = αI,i = 0. This closed system requires a modification of (3.1) to include a source
term. This may be interpreted as modeling the vasa vasorum as the sole source of immune
cells contributing to the inflammatory process. In reality, supply both via the vasa vasorum
and via transport across the endothelium occur simultaneously. Study of the two extreme
cases considered here is done to illuminate both the biological and mathematical differences
these two delivery mechanisms make in the modeling and analysis.

4. Mathematical analysis of the model

There are several approaches to analyzing a particular mathematical model including
numerical simulations, asymptotic and perturbation methods, and stability analyses. As
suggested, the last of these, stability analyses, is particularly applicable under the present
circumstances since we do not have experimental data from which to glean relevant
ranges for many of the parameters. A classical approach to mathematical models of
biological phenomena—especially those characterized by pattern formation, morphogenesis,
and aggregation (Keller & Segel, 1971; Murray, 2002; Turing, 1952), is to consider significant
state changes as resulting from a mathematical instability. This will result in the criteria based
on relative parameter ranges. The inequalities will depend not only on the relationships
between parameter ranges, but also on the source of inflammatory factors, and on the size
of the domain (intimal thickness).
We present stability analyses of the system (3.1)–(3.8) under some specified conditions. The
system considered throughout this section will be simplified to account for one of each of the
species types I ,D, C, one native LDL species (which may be considered an averaging over
each of Li), an oxidized LDL species, and free-radicals. The system of equations is

∂I
∂t

= µI∇2I −∇ · (χ(I , C)∇C)− d1I − cILox − aID + Mφ0 (4.1)

∂D
∂t

= µD∇2D + ĉILox − âID − d2D (4.2)

∂C
∂t

= µC∇2C + pD − eCI − d3C (4.3)

∂L
∂t

= µL∇2L− kRLR+ kA AoxrLox − d4L (4.4)

∂Lox

∂t
= µLox

∇2Lox + kR0
LR− AoxrLox − fILox (4.5)

∂R
∂t

= µR∇2R− kRLR− hAoxR+ pR. (4.6)

The modification to (3.1) appearing in (4.1) includes the source term of macrophages via the
vasa vasorum as previously indicated (which may be set to zero if appropriate.) Since we are
considering only one native LDL species, we also modify the equations to allow for reverse
oxidation of oxidized LDL and allow for an efficiency factor r for such reactions. Subscripts
have been eliminated where they are no longer needed. For ease of notation ĉ = c + f .
Our analysis of (4.1)–(4.6) consists of a linear stability analysis using an energy estimate—i.e.
Lyapunov functional—-approach. That is, we consider certain equilibrium solutions of this
system as characterizing a healthy state free from certain inflammatory markers. We then ask
whether such equilibria are linearly, asymptotically stable.
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4.1 Stability with zero transport across the endothelium

We consider a uniform, healthy equilibrium solution of (4.1)–(4.6) subject to the boundary
conditions (3.9), (3.10), (3.11), and (3.12) in the special case that αC = αL = αI = 0. We label
this equilibrium solution (Ie,De, Ce,Le,Loxe,Re), and introduce the perturbation variables
u, v, w, z, y, s which are defined by

I = Ie + u, D = De + v, C = Ce + w,

L = Le + z, Lox = Loxe + y, and R = Re + s.

Substituting the assumed form for I–R into (4.1)–(4.6) and keeping only terms that are linear
in the perturbation variables results in the system of equations

∂u

∂t
= µI∇2u −∇ · (χ∇w)− Au − Bu − Cu − Dv − Ey (4.7)

∂v

∂t
= µD∇2v + Fu − Gu − Hv − Iv + Jy (4.8)

∂w

∂t
= µC∇2w − Ku + Lv − Mw − Nw (4.9)

∂z

∂t
= µL∇2z − P1z + P2y − P3s (4.10)

∂y

∂t
= µLox

∇2y − Q1u + Q2z − Q3y − Q4y + Q5s (4.11)

∂s

∂t
= µR∇2s − R1z − R2s − R3s (4.12)

with the boundary conditions

∂u

∂n
=

∂v

∂n
=

∂w

∂n
=

∂z

∂n
=

∂y

∂n
=

∂s

∂n
= 0 on ΓI ∪ ΓO. (4.13)

The various parameters appearing here are the rates at equilibrium given by

A = d1, B = cLoxe, C = aDe, D = aIe, E = cIe,

F = c15Loxe, G = âDe, H = âIe, I = d2, J = ĉIe,

K = eCe, L = p, M = eIe, N = d3, P1 = kRRe + d4, P2 = kA Aoxr,

P3 = kRLe, Q1 = fLoxe, Q2 = kR0
Re, Q3 = Aoxr, Q4 = fIe,

Q5 = kR0
Le, R1 = kRRe, R2 = kRLe, R3 = hAox,

and χ = χ(Ie, Ce). Each of these constants is assumed to be nonnegative, and due to balance
of mass F = B + Q1, J = E + Q4, Q2 = (P1 − d4) + R1, and Q5 = P3 + R2.
Let U = (u, v, w, z, y, s). Before proceeding, we define stability in the following way:

Definition 4.1. The equilibrium state is called asymptotically stable if every solution of the linearized
initial boundary value problem (4.7)–(4.13) for the perturbation variables vanishes at infinity in the
sense that there exists a positive functional

F (U) = Φ(t) such that lim
t→∞

Φ(t) = 0.
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Our study of (4.7)–(4.13) requires the construction of an appropriate functional F , and
this construction gives rise to the inequalities involving the parameters including intimal
thickness. In the interest of brevity, much of the computational details are omitted here. The
main results are stated with a discussion.
We begin by assuming that the product terms uv and uw are nonnegative within Ω. Physically,
this can be interpreted as saying that an increase in debris (v > 0) and an increase in
chemoattractant (w > 0) results in an increase in immune cells (u > 0). Likewise a decrease
in debris and chemoattractant (v < 0, w < 0) is met with a decrease in immune cells (u < 0).
This is a rather minor and biologically reasonable condition. However it can be dropped, and
a weaker stability theorem obtained (Ibragimov et al., 2010a).
The transition matrix characterizing the species interactions associated with the
system (4.7)–(4.12) is

Λ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−(A + B + C) −D 0 0 −E 0
F − G −(H + I) 0 0 J 0
−K L −(M + N) 0 0 0

0 0 0 −P1 P2 −P3

Q1 0 0 Q2 −(Q3 + Q4) Q5

0 0 0 −R1 0 −(R2 + R3)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

We will assume that the eigenvalues of Λ have negative real part. (The implication of this and
other imposed conditions will be discussed later.) In the following construction, this ensures
that integrals of the form

∫

Ω
Ui → 0 as t → ∞ for Ui = u, v, w, z, y, or s. This follows from

Green’s theorem and the homogeneous Neumann boundary conditions. This constraint does
not guarantee stability of the system or even point-wise boundedness of each Ui. We will also
assume here that µD = 0 which is consistent with the immobile nature of the lesion core.
A sequence of inequalities is obtained by multiplying (4.7) by u (4.8) by v, and so forth and
integrating over the domain Ω to secure bounds on the rate of change of the total energy of
the perturbations. In so doing, we introduce consideration of the geometry and size of the
domain through use of the Poincaré inequality

(Poincaré)
∫

Ω
u2 ≤ 1

|Ω|

(

∫

Ω
u

)2

+ Cp

∫

Ω
|∇u|2.

Here, |Ω| is the volume of the domain, and the parameter Cp is dependent on the geometry

of the domain 5.
For ease of notation, we set

A1 = A + B + C, G1 = G − F, H1 = H + I, and M1 = M + N.

And in addition to the condition imposed upon the matrix Λ, suppose that

[Condition 4.1.1] E < 1, [Condition 4.1.2]
χL

2µC
<

1

4
, [Condition 4.1.3]

χK

2M1µC
<

1

8
,

[Condition 4.1.4] L < 1, [Condition 4.1.5] G1 > 0, and [Condition 4.1.6] J < 1.

5 When an L2 norm is considered, Cp is related to the inverse of the first positive eigenfrequency of a free
membrane (Acosta & Durán, 2003).
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Following a systematic construction of integral inequalities from the equations (4.7)–(4.12) we
arrive at the principal inequality essential to the present analysis.

d

dt

∫

Ω

[

(

1

2
+

χK

2µCD
+

A1

2C

)

u2 +

(

1

2
+

H1

2G1

)

v2 +

(

1

2
+

χM2
1

2KµCD

)

w2

+
1

2
z2 +

1

2
y2 +

1

2
s2 + (uv) +

χM1

µCD
(uw) +

µI

2D
|∇u|2 + χM1

2KD
|∇w|2

]

≤

−
∫

Ω

[

Cuu2 + Cvv2 + Cww2 + Czz2 + Cyy2 + Css2+

Cuv(uv) + Cuw(uw) + C∇u|∇u|2 + C∇w|∇w|2
]

. (4.14)

The coefficients on the right hand side of the inequality (4.14) are

Cu = A1 +
Cp

2

(

µI − χ
2

)

− D+E+Q1
2 , Cs = R2 + R3 + µRCp − P3+Q5+R1

2 ,

Cv = H1 − D+J+L
2 − χL

2µC D − χM1 L
2KµC D , Cuv = G1,

Cw = M1 +
Cp

2

(

µC − χ
2

)

− L
2 , Cuw = K,

Cz = P1 + µLCp − P2+P3+Q2+R1
2 , C∇u = 1

2

(

µI − χ
2

)

,

Cy = Q3 + Q4 + µLox Cp − P2+Q1+Q2+Q5+E+J
2 − E

2D − J
2G1

, C∇w = 1
2

(

µC − χ
2

)

.

(4.15)

We are now able to state our first major result.

Theorem 4.1. The equilibrium solution (Ie,De, Ce,Le,Loxe,Re) of (4.1)–(4.6) subject to the
homogeneous Neumann boundary conditions is asymptotically stable provided

(i)
∫

Ω
uv > 0 and

∫

Ω
uw > 0

(ii) all eigenvalues of Λ have negative real part,

(iii)Conditions 4.1.1–4.1.6 hold, and

(iv)M = min{Cu, Cv, Cw, Cz, Cy, Cs, Cuv, Cuw, C∇u, C∇w} > 0

The proof requires a definition of the functional as the obvious modification of the left hand
side of (4.14). Of interest are the physical interpretations of the sufficiency conditions stated
here. The meaning of the conditions on the products uv and uw has already been given. It
can also be noted that each of the coefficients appearing in the array (4.15) is written as a
positive term minus a non-negative term to highlight the relationships necessary between the
parameters to guarantee stability.
The condition on the matrix Λ—that its eigenvalues have negative real part—has distinct
bio-medical interpretation. Parameters E, J, and Q1 are the rates of foam cell production by
binding of macrophages to oxidized LDL. If these are large, then they are a source to the lesion.
If each of these is small (conditions 4.1.1 and 4.1.6), then to leading order Λ is block diagonal.
The parameters Q2 and R1 are the oxidation rates of LDL. If Q2 << 1 and R1 << 1–so
that Cz, Cs > 0, then the eigenvalues of the lower 3 × 3 block has negative eigenvalues −P1,
−(Q3 + Q4), and −(R2 + R3). A healthy system would be dominated by the antioxidant
reactions which correspond to large values of P1, Q3, Q4, R2, and R3. If in addition L << 1
(condition 4.1.4), then the production of chemoattractant due to the presence of the lesion is
small, and the eigenvalues of the upper 3 × 3 block are to leading order

−M1, −1

2
(H1 + A1)±

√

(H1 + A1)2 − 4(A1H1 − DG1).
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Large M1 indicates a fast degradation of chemoattractant and sufficient uptake of chemokines
by macrophages to minimize immune cell migration (reduce inflammation.) The parameters
D and G1 are large (condition 4.1.5) when the uncorrupted, healthy immune function
dominates through normal phagocytosis of lesion debris. Similarly, large values for A1 (due
to dependence on A and C) and large H1 correspond to degradation of the lesion and clearing
by macrophages. The sufficient condition for stability is the inequality

√

(H1 − A1)2 + 4DG1 < H1 + A1.

Several of the requirements for stability rest on the interplay between chemotactic effects and
diffusion/motility. This is typical of systems characterized by chemotaxis. Conditions 4.1.2
and 4.1.3 as well as the positivity of each parameter in the array (4.15) provide a minimal
requirement of the diffusivity of the intimal layer and the motility of macrophages—motility
unrelated to chemotaxis—to guarantee that a perturbation off of the healthy equilibrium state
decays.

4.2 Stability with transport of macrophages and LDL across the endothelium

We again consider the simplified system (4.1)–(4.6) and perturb off of a healthy equilibrium
solutions (Ie, . . . ,Re). However, we consider the boundary conditions (3.9), (3.10), (3.11), and
(3.12) with αC > 0, αL �= 0, and the form of αI appearing in (3.11) as

αI(C) = α0
I (C − C∗) (4.16)

where C∗ is a base line serum level of chemoattractant and α0
I is a positive constant. If the level

of chemotaxis inducing agents at the endothelial interface is greater than an average level in
the blood stream, then macrophages (or monocytes which differentiate) will enter into the
subendothelial intima.
The perturbation variables, u, . . . , s are defined in the same manner as in 4.1, and the linearized
system (4.7)–(4.12) is again studied. However, the boundary conditions on ΓI for the variables
u, w, and z (corresponding to immune cells, chemoattractant, and native LDL, respectively) in
the present analysis are nonhomogeneous and must be derived from (3.9), (3.10), and (3.11).
It should be noted that the existence of a spatially uniform equilibrium requires

Ce = C∗ and Le = LB

with C∗ and LB the serum levels of chemoattractant and native LDL introduced in section 3.2.
From (3.11)

µI
∂(Ie + u)

∂n
= α0

I (Ce + w − C∗) so that µI
∂u

∂n
= α0

I w. (4.17)

Similarly

µC
∂w

∂n
= −αCw, and µL

dz

dn
= −αLz on ΓI . (4.18)

The additional boundary conditions on both ΓI and on ΓO remain as in section 4.1.
The approach applied previously must be modified here to account for the effect of the
boundary terms on the total energy of each perturbation variable. In addition to the Poincaré
inequality, we require the well known Sobolev trace and generalized Friedrich’s inequalities

(Sobolev Trace)
∫

∂Ω
u2 ds ≤ C1

(

∫

Ω
u2 + |∇u|2

)

dx, and
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(Generalized Friedrich) C2

∫

Ω
u2 dx ≤

∫

Ω
|∇u|2 dx + C3

∫

∂Ω
u2 ds.

We note that these inequalities also depend on the geometry of the domain through the
constants C1, C2, and C3. The consideration of best estimates for these constants has received
much attention (Acosta & Durán, 2003; Mazya, 1985). For the tubular domain considered
herein, the present authors provide estimates of the constants appearing in each of these
inequalities (including the Poincaré inequality) in (Ibragimov et al., 2010b).
The procedure is similar to that used in 4.1, and we obtain a set of inequalities relating the
parameters of the system that provide sufficient conditions under which the perturbations
will decay. Again, much of the computational details are omitted (the interested reader is
referred to (Ibragimov et al., 2010a) and to (Ibragimov et al., 2008; 2010b) for similar results).
Instead, we highlight a number of inequalities in light of the bio-medical significance and state
the primary result.
To facilitate the analysis, we assume that the decrease of oxidized LDL due to attempted
phagocytosis by macrophages is negligible compared the increase and decreases resulting
from the chemical reactions with free-radical and antioxidant species. (This is to say that
uptake by macrophages is a minor effect on the oxidized LDL concentration, not that foam cell
formation is negligible especially as it relates to debris growth or decay.) This is equivalent to
the previous case where Q1 is small and corresponds to f = 0 so that c = ĉ, Q1 = Q4 = 0.
Here, we no longer consider the transition matrix because we cannot impose any physically

reasonable constraints to guarantee that the integrals
(∫

Ω
y
)2

and
(∫

Ω
s
)2

can be ignored

throughout the construction. (The terms 1
|Ω|

∫

Ω
y and 1

|Ω|
∫

Ω
s are the average values of the

total perturbations of oxidized LDL and free radicals, respectively, over the entire domain.)
Instead, these are treated in the same manner as each of the perturbation variables.
The competing effects of diffusion (cellular motility) and chemotaxis are prominent in the
result in section 4.1, and the same is true when considering boundary transport. In the present
case, however, the sufficient conditions require the diffusion to overcome both chemotaxis
within the intima as well as that across the endothelial layer. In particular, stability will rest
on the conditions

[Condition 4.2.1] µI − C1

(

α0
I +

χαC

µC

)

− χ

2
≡ µ̄I ≥ 0

and
[Condition 4.2.2] µC − χ

2
≡ µ̄C > 0.

The latter condition arose in the previous result, however the former relates the impact
of chemotaxis at the boundary through the parameters α0

I and αC on the net motility of
macrophages within the intima. A direct comparison with C∇u appearing in (4.15) reveals
the additional requirement on this motility to overcome chemotactic effects when boundary
transport is accounted for.
The diffusion and degradation of chemoattractant are also required to be significantly
increased in this case. Set C(ᾱ, µ̄C) =min( ᾱ

C3
, µ̄C) where

ᾱ = αC

[

1 − 1

2

(

α0
I

αC
+

χ

µC

)]

.

(C3 is the constant from the Friedrich inequality.) The function C(ᾱ, µ̄C) is nondecreasing in
ᾱ and µ̄C independently, and will increase if both of these increase. The condition Cw > 0 in
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theorem 1 will be replaced by

M1 + C(ᾱ, µ̄C)C2 −
L

2
> 0.

Recall that M1 is the rate at which the chemoattractant is reduced within the intima due to
natural degradation and through uptake by macrophages during chemotaxis. The added
source of chemoattractant from the endothelial boundary is reflected in the new requirement
on the size of this parameter.
Of particular interest are the two cases of LDL transport—forward and reverse—that can be
admitted by allowing αL to be either positive or negative. When αL < 0, LDL enters into the
intima through the endothelial layer. Stability in this case will require

[Condition 4.2.3(-)] µL > |αL| and P1 −|αL|C1 −
P2 + P3 + R1 + Q2

2
− (R1 + Q2)|Ω|

2
> 0.

The second in condition 4.2.3(-) gives a specific requirement on the removal rate of LDL
(P1), especially due to chemical degradation, relative to influx across the endothelial layer

(αL), the oxidation kinetics within the intima ( P2+P3+R1+Q2
2 ), and the size of the intima (|Ω|).

This particular inequality indicates that intimal thickening is destabilizing mathematically.
The role of diffuse intimal thickening (DIT) as a precursor to, and in the early stages of,
atherosclerosis has been the subject of a number of studies (Nakashima et al., 2008). Those
arteries that are prone to atherosclerotic lesions such as the abdominal aorta, carotid, and
coronary arteries are observed to express DIT whereas arteries known to be resistant to
atherosclerosis do not (Nakashima et al., 2002). Accumulation of oxidized LDL relative to
native LDL in the deep region of DIT in human coronary arteries has been observed (Fukuchi
et al., 2002).
The stability requirement on the degradation of LDL in the case of reverse transport is
significantly weaker provided the rate of diffusion of LDL and the rate at which LDL leaves
the intima through the endothelial boundary are sufficiently high. Let

φ0 =
P2 + P3 + R1 + Q2 + (R1 + Q2)|Ω|

2
.

Then φ0 is a measure of the total oxidation rate of LDL and depends on the thickness of the
intima. If LDL is transported from the intima back to the blood stream, then stability will
require

[Condition 4.2.3(+)] µL > φ0/C2, αL > φ0C3/C2, and P1 > 0, if αL > 0.

If conditions 4.2.1, 4.2.2, and the appropriate version of 4.2.3 (- or +) hold, and we follow the
techniques used in section 4.1, we obtain our primary inequality

1

2

d

dt

∫

Ω

[

u2 + v2 + w2 + z2 + y2 + s2
]

+
1

2

d

dt

[

(

∫

Ω
y

)2

+

(

∫

Ω
s

)2
]

≤

−
[

Cu

∫

Ω
u2 + Cv

∫

Ω
v2 + Cw

∫

Ω
w2 + Cz

∫

Ω
z2 + Cy

∫

Ω
y2 + Cs

∫

Ω
s2

+ (D + G1)
∫

Ω
uv + E

∫

Ω
uy + K

∫

Ω
uw + C∫

y

(

∫

Ω
y

)2

+ C∫

s

(

∫

Ω
s

)2
]

. (4.19)
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The coefficients appearing on the right hand side are defined by

Cu = A1 − C1
2

(

α0
I +

χαC

µC

)

, Cs =
µR

Cp
+ R2 + R3 − P3+R1+Q5

2 ,

Cv = H1 − J+L
2 , C∫

y = Q3 − Q2+Q5
2 ,

Cw = M1 + C(ᾱ, µ̄C)C − L
2 , C∫

s = R2 + R3 − R1+Q5
2 ,

Cy =
µLox
Cp

+ Q3 − J+P2+Q2+Q5
2 ,

(4.20)

and

Cz =

⎧

⎨

⎩

P1, αL > 0

P1 − |αL|C1 − P2+P3+R1+Q2
2 − (R1+Q2)|Ω|

2 , αL < 0.

Provided
[Condition 4.2.4] min{Cu, Cv, Cw, Cz, Cy, Cs, C∫

y, C∫

s} > 0,

we define the parameters

βu =

√

1

3
Cu, βv =

√

Cv, βw =
√

Cw, and βy =
√

Cy.

The primary result of the current anaylsis is

Theorem 4.2. The equilibrium solution (Ie,De, Ce,Le,Loxe,Re) of (4.1)–(4.6) subject to the
nonhomogeneous Neumann boundary conditions (3.9), (3.10), (3.11) and (4.16) is asymptotically
stable provided conditions 4.2.1–4.2.4 hold and

βuβv ≥ D + G1, βuβw ≥ K, and βuβy ≥ E.

The proof involves the pair of functionals

F1(V) =

(

6

∑
i=1

∫

Ω
V2

i

)

+ V2
7 + V2

8 ,

and

F2(V) =
∫

Ω

1

2
(βuu + βvv)2 +

1

2
(βuu + βww)2 +

1

2
(βuu + βyy)2+

+M

[

∫

Ω
(z2 + s2) +

(

∫

Ω
y

)2

+

(

∫

Ω
s

)2
]

where V = (u, v, w, z, y, s,
∫

Ω
y,
∫

Ω
s) and M = min{Cz, Cs, C∫

y, C∫

s}. The hypotheses of

theorem 4.2 ensure
d

dt
F1(V) ≤ −F2(V)

establishing asymptotic stability for this case.
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4.3 Instability of the equilibrium solution

The theorems obtained in sections 4.1 and 4.2 establish sufficient conditions under which
the uniform healthy state is guaranteed to be stable to small perturbations. It is not readily
clear whether the inequalities derived are tight—in the sense that they are nearly necessary
conditions. One can ask the degree to which these conditions must be violated to result in the
existence of a perturbation that will blow up.
The existence of perturbations that blow up, in particular spatially nonhomogeneous
perturbations, is typically addressed through construction of an explicit example. The
classical approach is adopt the ansatz for the perturbation variables

u(x, t) = eσtū(x), v(x, t) = eσt v̄(x), . . . , s(x, t) = eσt s̄(x). (4.21)

Expressing the perturbation as U as in definition 4.1, this gives U(x, t) = eσtŪ(x), and the
system (4.7)–(4.12) can be written in the vector/matrix formulation as

σŪ = ∇ · (Me∇Ū) + ΛŪ. (4.22)

The diffusion-chemotaxis coefficient matrix Me has the diffusion coefficients on the main
diagonal, χ(Ie, Ce) in the first row and third column, and zeroes everywhere else. When
considering the case without boundary transport, using the fact that Me and Λ are constant
matrices, the ansatz can be further refined to seek solutions of the form

Ū = φλ(x)�ξ.

Here �ξ is a constant vector and φλ an eigenfunction of the Laplacian on Ω,

−∇2φλ = λφλ,

subject to the completely homogeneous Neumann boundary conditions (4.13). The

system (4.7)–(4.12) reduces to the algebraic equation in σ, λ, and �ξ

σ�ξ = (Λ − λMe)�ξ. (4.23)

Solutions to (4.23) for which the real part of σ is positive will grow; this is the classic Turing
instability problem (Turing, 1952). For the Turing stability problem, one considers the case for
which Λ has only negative eigenvalues and Ms

e, the symmetric part of Me, has only positive
eigenvalues. (This latter condition will hold if and only if χ(Ie, Ce) < 2

√
µIµC, and this

inequality follows from the conditions C∇u > 0 and C∇w > 0 appearing in theorem 4.1.)
For any domain Ω, the first eigenpair is λ0 = 0 and φ0 = constant, and it is well known that
there is an enumerable set of positive eigenvalues 0 < λ1 < λ2 < · · · and corresponding
eigenfunctions {φλn

} that form an orthonormal basis for L2(Ω). In the case that Λ has
only negative eigenvalues, an instability must come from one of the larger eigenvalues.
Unfortunately, finding these eigenvalues explicitly for a general domain is not possible. For
an annulus (R2), or an annular cylinder (R3), they can be found by separation of variables.
The corresponding eigenmodes in these cases are nonaxisymmetric suggesting that lesion
initiation should also be nonaxisymmetric—this is consistent with clinical observations.
For the present case with no transport of any species across the endothelial layer, we can study
the effect of the antioxidant level on the stability of the healthy state. If Mφ0 in equation (4.1)
is replaced with Mφ0C (to make the source explicitly dependent on the chemoattractant), or
if Mφ0 = 0, then the equilibrium solution is (Ie,De, Ce,Le,Loxe,Re) = (0, 0, 0,Le,Loxe,Re).
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We can, after some lengthy calculations, show that in the limiting cases as Aox → 0+ and
Aox → ∞ (Ibragimov et al., 2010b)

Loxe ∝ A−1
ox , and Re ∝ pR, as Aox → 0+

and
Loxe ∝ A−2

ox , and Re ∝ A−1
ox , as Aox → ∞.

The latter result demonstrates that the antioxidants strongly control free radical production
and LDL oxidation. When studying the spectrum of Λ − λMe, this asymptotic result shows
that for Aox sufficiently large, the lower 3 × 3 block corresponding to the lipid chemistry
produces no eigenvalues with positive real part. The question of most interest is what
conditions are required for stability (or produce an instability) for the full system in the
case that the lipid chemistry alone is stable. If (Le,Loxe,Re) is a stable equilibrium for
the lipid equations in isolation, what effect does the antioxidant level have on the stability
of the equilibrium (0, 0, 0,Le,Loxe,Re)? In the limit as the antioxidant level vanishes, the
equilibrium will be unstable whenever

(λµD + d2)(λµC + d3) < (λχ(0, 0)− Mφ0)

(

ĉp

c

)

. (4.24)

The critical and competing roles of diffusion and chemotaxis are prominent in this criterion
providing an unstable equilibrium. For any positive eigenvalue λ and diffusive capacity of
the chemoattractant µC, if the chemotactic sensitivity χ(0, 0) is large enough, the perturbation
will grow away from the healthy equilibrium to some other state.
An analysis like the above can be employed with any variation of the system (3.1)–(3.8)
provided the boundary conditions considered are completely homogeneous of Neumann
type. For example, in (Ibragimov et al., 2008) the present authors consider a system
characterized by two distinct macrophage phenotypes each subject to diffusion, chemotaxis,
the potential to change phenotypes, but for which only one subspecies was subject to foam cell
formation. We showed that the stability result provided therein—that analogous to theorem
4.1 here—was strongly dependent on the dominance of diffusion over chemotaxis. As is seen
here, for any set of other parameter values, the chemotactic sensitivity coefficient can always
be taken sufficiently large to produce an unstable equilibrium.
The question of unstable equilibria for the case with boundary transport can likewise be
considered. Not surprisingly this presents a far more complicated situation mathematically.
Even if we only consider constant equilibria, the special approach based on the ansatz (4.21)
and the spectral analysis above does not yield any instability examples. Moreover, the coupled
boundary conditions provide a Laplacian that is not self-adjoint and does not allow us the
option to expand all of the perturbation variables using any single family of eigenfunctions.
Nevertheless, a careful construction within the appropriate mathematical framework will
provide conditions for which an unstable equilibrium exists. The effect of antioxidant
concentration on stability can be analyzed. The reader is encouraged to see (Ibragimov et
al., 2010b) for a construction in this case.

5. Conclusion

The purpose of this work is twofold. We have formulated a mathematical model
of the inflammatory process that characterizes atherogenesis. This model given in
equations (3.1)–(3.8) is presented in general terms to provide a framework for the ongoing

66 Atherogenesis

www.intechopen.com



Illuminating Atherogenesis Through Mathematical Modeling 19

modeling process. With this in mind, adaptations are easily included as our understanding
of this complex medical process increases. We believe that mathematical modeling provides a
useful tool to meet the goals of medical research on atherogenesis—identifying vulnerability
to disease, development of treatments, and promotion of preventative interventions.
Computer simulation (in silico analysis) requires a model consistent with and able to capture
the characteristics of disease as observed in vivo.
Here, we have also studied the model by performing stability analyses under two different
assumptions regarding the supply of inflammatory components—macrophages, chemotactic
chemokines, and LDL. Taking the vasa vasorum as the sole source of these species, we arrive
at a distinct set of inequality conditions on the system parameters that will guarantee that
perturbations off of the healthy equilibrium state will decay. Bio-medically, the perturbations
are interpreted as the start of inflammation, and the starting equilibrium as a disease-free
state. A stable equilibrium is then seen as representing a cellular configuration that is
robust—where a lesion is unlikely to develop in the short term. An unstable one suggests that
(bio-chemically) the location is vulnerable to atherogenesis and the potential for development
of a fibrofatty lesion or latter fibrous plaque. In addition to the positive stability criteria
obtained using the energy estimate, we offer a negative result in the form of construction
of an instability example. This latter condition highlights the inflammation mitigating effects
of antioxidant presence and the significant interplay between chemotaxis and diffusion when
the antioxidant level becomes negligible.
We also raise this same stability question under the assumption that the supply of
inflammatory components is from influx from the blood flow via the endothelial interface.
We again produce several inequalities that when satisfied by the system parameters ensure
that the equilibrium solution is linearly asymptotically stable to small perturbations. Of
particular interest in this latter case is the stabilizing effect of reverse transport of native LDL
from the intima back to the blood stream. That reverse transport of LDL is stabilizing is not
surprising given the corruptive nature of oxidized LDL on macrophage function. Our finding
further supports the development of treatment modalities aimed at not only reducing serum
LDL levels but at facilitating reverse transport of cholesterol (Superko, 2006). Although the
conditions are numerous, clinical values of the various parameters can be easily compared in
light of the various inequalities derived and presented in theorems 4.1 and 4.2.
The availability of clinical values for several parameters is lacking. Moreover, the parameters
appearing in table 1 need not be constant, and determination of appropriate functional forms
is an important and difficult task. This will require a process of "fine tuning" through
collaboration with clinicians and experimental scientists.
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