
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322404364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6

Adaptive Production Scheduling and
Control in One-Of-A-Kind Production

Wei Li and Yiliu Tu
The University of Calgary,

Canada

1. Introduction

Mass customization is one of competitive strategies in modern manufacturing (Blecker &
Friedrich, 2006), the objective of which is to maximize customer satisfaction by producing
highly customized products with high production efficiency. There are two starting points
moving towards mass customization, mass production and one-of-a-kind production (OKP).
The production volume of mass production is normally large, whereas that of OKP is
usually small or extremely even just one. Mass production can achieve high production
efficiency but relatively low customization, because products are designed in terms of
standard product families, and produced repetitively in large volume. Comparatively, OKP
can achieve high customization but relatively low production efficiency, because product
design in OKP is highly customer involved, and each customer has different requirements.
Therefore, the variation of customer requirements causes differences on each product. To
improve production efficiency, OKP companies use mixed-product production on a flow
line (Dean et al., 2008, 2009). Moreover, the production scheduling and control on OKP shop
floors is severely challenged by the variation of customer requirements, whereas that in
mass production is comparatively simple. Therefore, we focus on the adaptive production
scheduling and control for OKP.

1.1 Characteristics of one-of-a-kind production

OKP is product-oriented, not capacity-oriented (Tu, 1996a). Customers can only choose a
product within one of product families provided by an OKP company. Although customer
choice is confined by product families, OKP is so customer involved that every product is
highly customized based on specific customer requirements, and products differ on matters
of colors, shapes, dimensions, functionalities, materials, processing times, and so on.
Consequently, production of a product is rarely repeated in OKP (Wortmann et al., 1997).
Moreover, OKP companies usually adopt a market strategy of make-to-order or
engineering-to-order. Therefore, it is very important to meet the promised due dates in
OKP. This market strategy challenges production scheduling and control differently from
that of make-to-stock.

Typically, there are five types of problems challenging production scheduling and control

in an OKP company. (1) Job insertion or cancellation frequently happens in OKP due to

www.intechopen.com

Production Scheduling

114

high customer involvement. (2) Operator absence or machine breakdown needs to be

carefully controlled to fulfill the critical due dates. (3) Variation in processing times

usually happens to an operation, because a highly customized product is rarely repeated.

(4) The overflow of work-in-process (WIP) inventories occurs. (5) Production delay on the

previous day will affect the production on the current day; so will production earliness.

When these problems dynamically happen to an OKP company, the daily production has

to be adjusted online, i.e. adaptive production control. Therefore, OKP companies are

continuously seeking new methods for adaptive production scheduling and control on

shop floors.

1.2 Former research of flow shop production scheduling and control

Flow shop production scheduling has been researched for more than five decades since 1954

(Gupta & Stafford, 2006). Early research of flow shop production scheduling was highly

theoretical, using optimization techniques to seek optimal solutions for n-job m-machine

flow shop scheduling problems. However, the emergence of NP-completeness theory in

1976 (Garey et al., 1976) profoundly influenced the direction of research in flow shop

production scheduling. NP-completeness implies that it is highly unlikely to get an optimal

solution in a polynomially bounded duration of time, for a given complex problem in

general. That is why heuristics are required to solve large problems.

Adaptive production control acutely challenges the research of flow shop production

scheduling, because the relationship has not been completely revealed, among the number

of jobs, the number of machines, job processing times and scheduling objectives. Moreover,

the research of flow shop production scheduling is often based on strong assumptions, such

as no machine breakdown or operator absence, processing times and some constraints are

deterministic and known in advance (MacCarthy & Liu, 1993). During real production,

disturbances are manifested in such occurrences as machine breakdown, operator absence,

longer than expected processing times, new emergent orders, and so on (McKay et al., 2002),

all of which may fail the original offline schedule and then require online re-scheduling for

adaptive production control. Consequently, heuristics based on strong assumptions are not

robust, making production scheduling systems inflexible (Kouvelis et al., 2005), and a large

gap exists between theoretical research and industrial applications (Gupta & Stafford, 2006;

MacCarthy & Liu, 1993).

1.3 Status of production scheduling and control in OKP

Currently, OKP companies primarily use priority dispatching rules (PDRs) to deal with

disturbances. It is fast and simple to use PDRs to control production online, but PDRs

depend heavily on the configuration of shop floors, characteristics of jobs, and scheduling

objectives (Goyal et al., 1995), and no single specific PDR clearly dominates the others (Park

et al., 1997). Moreover, the performance of PDRs is poor on some scheduling objectives

(Ruiz & Maroto, 2005), and inconsistent when a processing constraint changes (King &

Spachis, 1980). Consequently, there is a considerable difference between the scheduled and

actual production progress (Ovacik & Uzsoy, 1997), and production may run into an “ad

hoc fire fighting” manner (Tu, 1996a, 1996b).

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

115

Here is a real situation in Gienow Windows and Doors, Canada. Without a computer-

aided system for adaptive production scheduling and control, an experienced human

scheduler in Gienow carries out scheduling three days before the real production. It is an

offline scheduling. Processing times of operations are quoted by Gienow’s standards,

which are the average processing times of similar operations in the past. On the

production day, the production is initially carried out according to the offline schedule.

However, real processing times of highly customized products might not be exactly the

same as the quoted ones. Therefore, customer orders may be finished earlier or later than

they are scheduled offline. This will cause problems such as the overflow of WIP

inventories, the delay of customer orders, and so on. The production delay of customer

orders is not allowed in Gienow, because the delivery schedule has a high priority. In

addition, unexpected supply delays, machine breakdown and operator absence could

even cause more problems. To cope with these dynamic disturbances, the shop floor

managers and production scheduler in Gienow carry out the following activities based on

their experience:

1. Re-allocate operators among work stages in a production line or lines.
2. Change the job sequence.
3. Postpone the production of other orders purely for a rush order
4. Cancel or insert orders into the current production.
5. Alter the production routine to divert orders from one production line to another.
6. Add more work shifts or overtime working.

Carrying out these activities by experience may avoid the overflow of WIP inventories in
one stage or line, but cause it in other stages or lines, smoothing the production progress in
one stage but slowing down the whole progress in Gienow. Due to the lack of an efficient
computer system, Gienow does the adaptive production scheduling and control manually
and inefficiently. Obviously, OKP shop floors have to be adaptively scheduled and
controlled by a computer aided system (Wortmann et al., 1997; Tu, 1996b).

The rest of this chapter is organized as follows. Section 2 gives a brief literature review on
flow shop production scheduling. Section 3 introduces a computer-aided production
scheduling system for adaptive production scheduling and control in OKP, consisted of a
feedback control scheme and a state space (SS) heuristic. Section 4 gives the results of
various case studies. Finally, section 5 draws conclusions and proposes future work.

2. Literature review

In this section, we briefly review research of flow shop production scheduling from two

perspectives first, seeking optimal solutions and seeking near-optimal solutions, and then

discuss the requirements of heuristics for adaptive production scheduling and control.

2.1 Flow shop scheduling

2.1.1 Definition of flow shop scheduling

Scheduling is a decision making process of allocating resources to jobs over time to

optimize one or more objectives. According to Pinedo (2002), one type of flow shop

www.intechopen.com

Production Scheduling

116

consists of m machines in series, and each job has the same flow pattern on m machines.

This is typically called a traditional flow shop (TFS). Another type of flow shop is called a

flexible flow shop or hybrid flow shop (HFS), where there are a number of

machines/operators in parallel in each of S stages. In addition to the difference of flow

shop configurations, processing constraints are also different for TFS and HFS. For TFS, if

the first in first out (FIFO) rule is applied to jobs in WIP inventories, it becomes a no pre-

emption flow shop problem. It is also called a permutation (prmu) flow shop problem,

because the processing sequence of jobs on each machine is the same. For HFS, because

there are multiple machines/operators in a stage, the first job coming into a stage might

not be the first job coming out of the stage. Therefore, the first come first serve (FCFS) rule

is applied (Pinedo, 2002). Consequently, it is still a problem of no pre-emption flow shop.

Another processing constraint could be no waiting (nwt), that is, there is no intermediate

storage or WIP inventories between two machines or stages. The most common objective

of flow shop scheduling is to minimize the maximum completion time or makespan, i.e.

min(Cmax). By the three parameter notation, ǂ/ǃ/Ǆ (Graham et al., 1979), the above

problems can be notated as Fm/prmu/Cmax for m machine TFS problems with no pre-

emption to minimize makespan, Fm/nwt/Cmax for m machine TFS problems with no

waiting, FFs/FCFS/Cmax, for S-stage HFS problems with FCFS, and FFs/nwt/Cmax for S-

stage HFS problems with no waiting.

2.1.2 Research of flow shop scheduling for optimal solutions

2.1.2.1 Johnson’s algorithm

Johnson proposed his seminal algorithm to get optimal solutions for n-job 2-machine flow

shop problems in 1954 (Johnson, 1954), the objective of which is to min(Cmax). The

mathematical proof of his algorithm by using combinatorial analysis is as follows.

Fig. 2.1 n-job 2-machine flow shop problems, to min(Cmax)

The makespan or Cmax consists of the sum of processing times and the sum of idle times
caused by n jobs on the last machine (Fig. 2.1). For n-job 2-machine flow shop problems, Cmax

= ,21

n
ii

p
=∑ + ,21

n
ii

IDLE
=∑ . The sum of processing times of n jobs on the last machine is a

constant. Thus, the objective to min(Cmax) is converted to minimize the sum of idle times on
the last machine. Johnson models the sum of idle times caused on machine 2 as

,21

n
ii

IDLE
=∑ =

1
max

u n≤ ≤
{Ku}, where Ku=

1
,1 ,21 1

u u
i ii i

p p
−

= =
−∑ ∑ , in which pi,1 and pi,2 are the

processing times of job i on machine 1 and machine 2 respectively.

To illustrate how to sequence n jobs, Johnson uses a combinatorial analysis approach, which
is to compare two sequences, {ǒ, i, i+1, Ǒ} and {ǒ, i+1, i, Ǒ}. The main difference of the two

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

117

sequences is that two jobs exchange the positions, and ǒ is a subset for selected jobs, Ǒ for
unselected jobs, ǒ∩ i ∩ i+1 ∩ Ǒ = Ø, and ǒ∪ i ∪ i+1 ∪ Ǒ = {n}. An optimal ordering of jobs is
given by the following scheme. Job i proceeds job i+1, if max {K1u, K1u+1} ≤ max {K2u, K2u+1}.

By subtracting
1

,11

u
ii

p
+

=∑ –
1

,21

u
ii

p
−

=∑ from every term of equation in the above scheme, we

can get min {pi,1, pi+1,2} ≤ min {pi+1,1, pi,2}, and Johnson’s algorithm (JA) is developed
accordingly.

2.1.2.2 Extension of combinatorial approach

Dudek and Teuton extend Johnson’s combinatorial approach to n-job m-machine flow
shop problems to min(Cmax) (Dudek & Teuton, 1964), comparing the same two sequences
as in Johnson’s proof, and then develop their dominance conditions. Dudek and Teuton
began the analytical framework for the development of dominance conditions for flow
shop scheduling, although their initial method is shown to be incorrect later (Karush,
1965).

Smith and Dudek correct Dudek and Teuton’s combinatorial approach, by introducing
partial enumeration into dominance conditions (Smith & Dudek 1967). They propos two
checks of dominance conditions. One is job dominance check and the other is sequence
dominance check. The job dominance checks two different sequences, {ǒ, i, i+1, Ǒ’, Ǒ”} and {ǒ,
i+1, Ǒ’, i, Ǒ”}, in which Ǒ’ and Ǒ” are all possible combinations of exclusive subsets of Ǒ. The
sequence dominance checks another two sequences, {ǒ, Ǒ} and {ǒ’, Ǒ}, in which ǒ and ǒ’ are
different permutations of the same selected jobs. The two dominance checks theoretically
guarantee the optimal solution, but practically are still time consuming.

Based on D-T’s framework, Szwarc proposes an elimination rule different from S-D’s
dominance checks (Szwarc, 1971a, 1971b). Let t (ǒa, k) be the completion time of all jobs of
sequence ǒa on machine Mk. Then t (ǒa, k) = max {t (ǒa, k-1), t (ǒ, k)} + pa,k with t (Ø, k) = t (ǒ, 0)
= 0, where k = 1,…,m. Define the difference of completion times of two sequences as Δk = t
(ǒab, k) – t (ǒb, k), for k = 2,…,m. The elimination rule is to eliminate all sequences of the form
ǒb if Δk-1 ≤ Δk ≤ pa,k. However, Szwarc clearly stated that “if there is no job c such that for all k: c1
≤ ck or cm ≤ ck, then no single sequence could be eliminated. In this case, the elimination method offers
no advantage since we could have to consider all n! sequences”.

2.1.2.3 Branch and bound methods

Besides the combinatorial approach, a branch and bound (BB) method is also a general
framework for NP-hard problems. It can be used to get optimal solutions to flow shop
scheduling problems (Ignall & Schrage, 1965; Lageweg et al., 1978).

Usually, there are mainly three components in a BB method, a search tree, a search
strategy, and a lower bound. A search tree represents the solution space of a problem (Fig.
2.2), the nodes on the tree represent subsets of solutions, and the descendants or child-
nodes are given by a branching scheme. For an n-job m-machine flow shop problem, the
search tree begins with a virtual node 0. For the first position in a sequence, there are n
candidates or nodes, i.e. each of n jobs can be a candidate for position 1. If one job is
selected for position 1, it will have n-1 descendants or child-nodes. Consequently, there
are n×(n-1) nodes for position 2, n×(n-1)×(n-2) nodes for position 3, and finally, n! nodes
for the last position n.

www.intechopen.com

Production Scheduling

118

Fig. 2.2 A solution space of a BB method

At each node, a lower bound is calculated in terms of makespan for all permutations that
descend it. For each position, all nodes are examined and a node with the least lower bound
is chosen for branching. When a node represents an allocation of all jobs and has a
makespan less than or equal to the lower bound, it is an optimal solution.

2.1.3 Heuristics for near-optimal solutions

Framinan et al. propose a general framework for the development of heuristics (Framinan et
al., 2004). It has three phases: index development, solution construction and solution
improvement. Phase 1, index development, means a heuristic arranges jobs according to a
certain property of processing times. For example, Campbell et al. propose a CDS heuristic for
an n-job m-machine TFS problem to min(Cmax) (Campbell et al., 19770). CDS arranges jobs as
follows. If there is a counter (Ctr) pointing to a machine j, then for each job i (i = 1,…,n) the sum
of processing times on the first Ctr machines is regarded as its processing time on virtual
machine 1, and that on the rest m–Ctr machines as on virtual machine 2. Then apply JA to this
virtual 2-machine flow shop problem to get a sequence. As Ctr changes from machine 1 to
machine m–1, m–1 sequences are generated by CDS, and the one with the minimum makespan
is the final solution. In phase 2, solution construction, a heuristic constructs a job sequence by a
recursive procedure, trying to insert an unscheduled job into a partial sequence until all jobs
are inserted. NEH heuristic (Nawaz et al., 1983) is a typical heuristic in phase 2, for an n-job m-
machine TFS problem to min(Cmax). NEH constructs a job sequence as follows. Step 1, NEH
heuristic calculates the sums of processing times on all of m machines for each of n jobs, and
then arranges these sums in a non-ascending order. Step 2, NEH heuristic schedules the first
two jobs in the order to get a partial sequence. Step 3, NEH heuristic inserts the third job into
three possible positions to get another partial sequence, and so on. Finally, NEH heuristic
inserts the last job into n possible positions, and then determines the final sequence. In phase 3,

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

119

solution improvement, heuristics have two main characteristics, an initial sequence generated
by other heuristics and artificial intelligence to improve the initial sequence. One typical
heuristic in phase 3 is an iterated greedy (IG) heuristic (Ruiz & Stützle, 2007), denoted as
IG_RS heuristic. IG method consists of two central procedures, destruction and construction.
The initial sequence of IG_RS heuristic is generated by NEH heuristic. For destruction, IG_RS
heuristic randomly removes a number of d jobs from the initial sequence resulting a partial
sequence ǑD; and for construction, IG_RS heuristic follows step 3 of NEH heuristic to insert
each of d jobs back in to ǑD. Heuristic development in phase 1 is beneficial for future heuristic
development in the other two phases (Framinan et al., 2004).

Ruiz and Maroto (2005) compare 19 heuristics for Fm/prmu/Cmax problems, and concluded
that NEH heuristic is the best, CDS heuristic the eighth, and two PDRs (LPT and SPT rules)
the worst. However, CDS heuristic has the second simplest computational complexity
among the first 8 heuristics, O(m2n+mnlogn). Moreover, King and Spachis (1980) compare 5
PDRs and CDS heuristic for two different TFS problems, Fm/prmu/Cmax and Fm/nwt/Cmax.
They conclude that CDS heuristic and LWBJD (least weighted between jobs delay) rule are
the best for Fm/prmu/Cmax problems and MLSS (maximum left shift savings) rule is the best
for Fm/nwt/Cmax problems, but no single method is consistently the best for both
Fm/prmu/Cmax and Fm/nwt/Cmax problems.

The literature on HFS is still scarce (Linn & Zhang, 1999; Wang, 2005). According to Botta-
Genoulaz (2000), CDS heuristic is the best of 6 heuristics for HFS problems, including NEH
heuristic. The problem in Botta-Genoulaz (2000) is an n-job S-stage HFS problem to
minimize the maximum lateness. It is converted to an n-job S+1-stage HFS problem to
min(Cmax). The processing time of job i in stage S+1 is calculated by pi,S+1 = Dmax – di, i =
1,…,n, where Dmax = max(dk), and dk is the due date of job k, k = 1,…,n. When applying CDS
heuristic to HFS problems, Botta-Genoulaz converts the processing times, p’i,j = pi,j/OPTRj, j
= 1,…,S+1, where pi,j is the original processing time of job i in stage j, and OPTRj is the
number of operators/machines assigned to stage j.

For FFs/nwt/Cmax problems, Thornton and Hunsucker (2004) propose an NIS heuristic, the
best among CDS heuristic, LPT and SPT rules, and a heuristic of random sequence
generation. Different from CDS heuristic, NIS heuristic uses a filter concept to convert a
FFs/nwt/Cmax problem to a virtual 2-machine problem, and then applies JA to get a job
sequence. The stages before the filter are regarded as virtual machine 1, after the filter as
virtual machine 2, and the stages that are covered by the filter are ignored. The filter goes
from stage 2 to stage S–1, and the width of filter changes from 1 to S–2. In total, there are
1+(S–1)×(S–2)/2 sequences generated by NIS heuristic and the one with the minimum
makespan is the final schedule.

2.2 Requirements for adaptive production control

2.2.1 Three criteria

Three main criteria are used to evaluate a heuristic for adaptive production scheduling and
control (Li et al., 2011a): optimality, computational complexity, and flexibility. Usually
optimality is used to evaluate a heuristic for offline production scheduling. However, when
adaptive production control is taken into consideration, the computational complexity
becomes critical. That is why some heuristics based on artificial intelligence are not suitable
for adaptive production control, although they can get better solutions. Another criterion is

www.intechopen.com

Production Scheduling

120

the flexibility, that is, whether a heuristic can deal with a disturbance. Of course, different
situations have different requirements for optimality, computational complexity, and
flexibility of a heuristic. There is inevitably a trade-off among these criteria, and the selection
of heuristics for production scheduling and control depends on specifics of different
situations, such as the value of optimality as compared to near optimal scheduling, as well
as the type and volume of disturbances that underlies the requirements of response time.

2.2.2 Summary of existing heuristics for adaptive production control

For optimality, heuristics in phase 3 can get better solutions than heuristics in phases 1 and
2. However, for computational complexity, they take much longer time. For example, an
adaptive learning approach (ALA) heuristic is in phase 3 for Fm/prmu/Cmax problems
(Agarwal et al., 2006). The deviation of ALA heuristic is only 1.74% for Taillard’s
benchmarks (Taillard, 1993), much better than 3.56% of NEH heuristic. However, for the
largest instance in Taillard’s benchmarks, i.e. 500 jobs and 20 machines, it takes more than 19
hours for ALA heuristic to get a solution, more than 20 hours for Simulated Annealing, and
more than 30 hours for Tabu search (Agarwal et al., 2006). Even for the recent IG_RS
heuristic, it takes 300 seconds to get a solution to a 500-job 20-machine instance. For
flexibility, we need to see if a heuristic can deal with a disturbance. According to Pinedo
(2002), there are three types of disturbances in general for flow shop production, job
insertion or cancellation, operator absence or machine breakdown, and variation in
processing times. The perfect production information in OKP is available only after the
production (Wortmann, 1992). Therefore, if a heuristic operates the known processing time
only, it cannot deal with variation in processing times.

The performance of first eight of 19 heuristics is summarized in Table 2.1, and the optimality
of each heuristic is quoted from Ruiz and Maroto (2005). However, there is a discrepancy of
optimality of heuristics in the literature, because the optimality is evaluated by the deviation
from the best known upper bounds that are under continuous improvement. For example,
the deviation of 3.33% is for NEH and 9.96% for CDS in Ruiz and Maroto (2005), but 3.56%
for NEH and 10.22% for CDS in Agarwal et al. (2006), and 3.59% for NEH and 11.28% for
CDS in our case study. In the table, the column “Opt.” means the optimality on Taillard’s
benchmarks for Fm/prmu/Cmax problems, “I/C” means the job insertion or cancellation,
“OA/MB” means the operator absence or machine breakdown, and “Var.” means the
variation in processing times. The mark of “Yes§” means a heuristic can deal with a
disturbance only with a modification of processing times, e.g. in Botta-Genoulaz (2000).

 Computational Complexity Flexibility

 Opt. Note I/C OA/MB Var.

NEH 3.33% O(mn2) O(mn3) Yes Yes§ No
Suliman 6.21% Intractable CDS first, then swap job pairs Yes Yes§ No
RAES 7.43% Intractable RA first, then swap jobs Yes Yes§ No
HoCha 8.06% Intractable CDS first, then swap job pairs Yes Yes§ No
RACS 9.17% Intractable RA first, then swap jobs Yes Yes§ No
Koula 9.22% O(m2n2) JA first, then job passing Yes Yes§ No
HunRa 9.69% O(mn+nlogn) 3 × Palmer's slope index Yes Yes§ No
CDS 9.96% O(m2n+mnlogn) JA Yes Yes§ No

Table 2.1 Summary of 8 heuristics for adaptive production scheduling and control

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

121

It is self-illustrative for optimality and flexibility of each heuristic in the above table. We only
discuss the computational complexity in the following. NEH heuristic, in its original version,
has a computational complexity of O(mn3), but, by calculating the performance of all partial
sequences in a single step, its complexity is reduced to O(mn2) (Taillard, 1990). Both Suliman
(Suliman, 2000) and HoCha (Ho & Chang, 1991) heuristics use CDS heuristic to generate an
initial sequence, and then exchange job pairs to improve the performance, but they use
different mechanisms for job pair swaps. Because the number of job pair swaps depends on
the calculation of performance of each job pair, the computational complexities of Suliman and
HoCha heuristics are intractable. Job swaps are also involved in RACS and RAES heuristics
(Dannenbring, 1977), and their computational complexities are intractable too. These two
heuristics are based on a rapid access (RA) heuristic (Dannenbring, 1977), which is a mixture of
JA and Palmer’s slope index (Plamer, 1965). Koula heuristic (Koulamas, 1998) is not purely for
permutation flow shop problems. The job passing is allowed in Koula heuristic, because Potts
et al. (1991) point out that a permutation schedule is not necessarily optimal for all n-job m-
machine flow shop problems. Koula heuristic extensively uses JA to generate initial sequences,
and then job passing is allowed to make further improvement. The overall computational
complexity of Koula heuristic is O(m2n2). HunRa heuristic (Hundal & Rajgopal, 1988) is a
simple extension of Palmer’s slope index. HunRa heuristic generates three sequences, one by
Palmer’s slope index, the other two by calculating indices differently. Therefore, the HunRa
heuristic has the same computational complexity as Palmer’s slope index, O(mn+nlogn).
Usually, the number of jobs n is much larger than the number of machines m, thus, the
computational complexity of O(m2n+mnlogn) for CDS heuristic is comparable with that of
O(mn+nlogn) for HunRa heuristic.

For an industrial instance in Gienow with 1396 jobs and 5 machines, it takes NEH heuristic
more than 70 seconds to generate a sequence, which is too slow to keep up with the
production pace in Gienow. Therefore, NEH and other five heuristics, with computational
complexity higher than O(mn2), are not suitable for adaptive production scheduling and
control in Gienow. It takes less than one second for CDS or HunRa heuristics to generate a
sequence for the same industrial instance. However, their performance is not good from the
optimality perspective, with more than 9% deviation on Taillard’s benchmarks.

3. Adaptive production scheduling and control system

For adaptive production scheduling and control, it is necessary not only to monitor the
production on the shop floor, but also to give a solution in time when a disturbance
happens. Our computer-aided system for adaptive production scheduling and control in
OKP consists of a close-loop structure and a state space (SS) heuristic.

3.1 The feedback control scheme

For adaptive production scheduling and control, a computer-aided scheduling and control
system has been proposed as illustrated in Fig. 3.1, which consists of SS heuristic and a
simulation model called temporized hierarchical object-oriented coloured Petri nets with
changeable structure (THOCPN-CS) (Li, 2006). High customization and dynamic
disturbances in OKP demand for a great effort on a simulation model. Simultaneously,
adaptive production control demands for solutions in a short time. Therefore, the unique
feature of the THOCPN-CS simulation model makes it easy and flexible to simulate frequent
changes in OKP for adaptive production control. Steps to achieve adaptive production
scheduling and control in OKP are summarized as follows.

www.intechopen.com

Production Scheduling

122

Fig. 3.1 A computer-aided production scheduling and control system

Step 1. Assign possible manufacturing resources (e.g. operators/machines) to each stage,
and hence form a task-resource matrix (TRM) with jobs.

Step 2. Schedule the jobs by SS heuristic for offline scheduling, generating a sequence with
the good performance for the next step.

Step 3. Simulate the production by the THOCPN-CS model, and identify the bottleneck
stage(s) and overflow of WIP inventories. Human schedulers may carry out some
adjustment to smooth the production flow, such as re-allocate operators/machines
in stage(s), take some jobs away and then re-schedule the rest jobs, and so on.

Step 4. Re-schedule the jobs by both SS heuristic and human schedulers for offline
scheduling. For online re-scheduling, re-schedule the jobs by either or both of the
heuristic and scheduler, which depends on the time allowance for online re-
scheduling.

Step 5. Repeat Steps 3 and 4 in the offline production scheduling phase until a satisfactory
production schedule is obtained. This production schedule contains a job sequence
and a number of operators/machines in each stage. In the adaptive production
control phase, this step may be omitted, depending on specific requirements.

Step 6. Deliver the production schedule to the shop floor and switch the control loop from
the simulation model to the shop floor.

Step 7. If any disturbance occurs on a shop floor, switch the control loop back to the
simulation model, and go back to Step 3 if operators/machines re-allocation is
necessary, or go back to Step 4.

Through repeating the above-mentioned steps iteratively, the production on OKP shop
floors can be adaptively scheduled and controlled.

3.2 The state space heuristic

SS heuristic is mainly for HFS problems. Because there are multiple operators in each stage
and the capacity of WIP inventories is limited, SS heuristic is not only to min(Cmax), but also
to maximize the utilization, max(Util). There are two concepts used in SS heuristic, a state
space concept and a lever concept.

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

123

3.2.1 The state space concept

Consider a hybrid flow line with 3 work stages and 2 operators in each stage (see Fig. 3.2).

Fig. 3.2 A 3-stage flow line with 2 operators in each stage

The operators in each stage follow a FCFS rule. Then there is a next available time of each
stage, As, where As = min(as,k), for k = 1,…,OPTRs, in which as,k is the next available time of
operator k in stage s, and OPTRs is the number of operators in stage s. There are S–1 time
differences between S-stage available times. In the example above, there are two differences
of the next available times, A2–A1, and A3–A2. If we regard such a difference as a space,
SPACEs = As+1 – As for s = 1,…,S-1, then SPACEs is a time period available for stage s to finish
a job without causing idle to an operator in stage s+1. If the completion time of job i in stage
s is larger than the next available time of stage s+1, then such a job causes idle to stage s+1,
IDLEi,s = ci,s – As+1 where ci,s is the completion time of job i in stage s, ci,s = max(As, ci,s-1) + pi,s.
If the completion time of job i in stage s is smaller than the next available time of stage s+1,
then there are two possibilities depending on whether WIP is full. If the WIP inventory,
WIPs, is full, then a delay happens to operator k who processed job i in stage s, DELAYi,s =
As+1 – cis. Such a delay means that, after finishing job i, operator k in stage s has to hold it in
hand for DELAYi,s time units until there is a vacancy in WIPs. Therefore, the next available
time of operator k in stage s is delayed. Alternatively, if WIPs is not full, job i goes into the
inventory, and there is no IDLE or DELAY.

The main idea of SS is to find a job that fits S–1 spaces, without causing IDLE or DELAY.
After a job i is processed on a line, the next available times are changed, and the space is
changed accordingly. Greater IDLE and DELAY are not good for production if objectives are
to min(Cmax) and max(Util), while greater SPACE is good to some extent.

From the foregoing description of SS, we can see IDLE and DELAY are evaluated according
to job i and stage s, but SPACE is only evaluated by stage s. To make SPACE both job and
stage dependant, there are two ways to model SPACE. One model is SPACEi,s = ci,s+1 – As, for
s = 1,…,S-1. The other model is SPACEi,s = pi,s+1, for s = 1,…,S-1. In our current version of SS
heuristic, we use the latter model of SPACE, reducing one calculation in iteration and
increasing the computation speed for adaptive control. However, we illustrate the
alternative model, SPACEi,s = ci,s+1 – As, in section 4 to show the flexibility of SS concept.

3.2.2 The lever concept in SS

From our previous research on TFS problems, we find that the lever concept is suitable for
flow shop production (Li et al., 2011b), which means IDLE (or DELAY) in an earlier stage is
worse for min(Cmax) objective than in a later stage. Consider a lever where force F takes effect
and causes a torque of F×L, where F is the unit of force and L is the length of force arm. An
S-stage flow line is modelled as a lever, and IDLEi,s or DELAYi,s has a torque effect
manifested as IDLEi,s×LVR_IDLEs or DELAYi,s×LVR_DELAYs.

www.intechopen.com

Production Scheduling

124

The lever concept for IDLE in SS is shown in Fig. 3.3. For an S-stage flow line, a job could
cause at most S–1 times of IDLE. No IDLE is caused in stage 1 and an IDLE takes effect in the
next stage. Therefore, the fulcrum of a lever for IDLE is set between stages S–1 and S, and
the length of arm for an IDLE caused by stage s in stage s+1 is LVR_IDLEs = S–s.

Fig. 3.3 A lever concept for IDLE in SS

The lever concept for DELAY in SS is shown in Fig. 3.4. Like the number of possible IDLEs,
there could be S–1 DELAYs, and no DELAY in stage S. But a DELAY takes effect in current
stage s, whereas IDLE is in the next stage. Therefore, one unit of DELAY in stage s should be
worse than one unit of IDLE in stage s. Thus, the length of arm for a DELAY is LVR_DELAYs
= S–s+1, for s = 1,…,S-1. The fulcrum of a lever for DELAY is set in stage S.

Fig. 3.4 A lever concept for DELAY in SS

There is also a lever concept for SPACE in SS, shown in Fig. 3.5. The length of force arm for a
space is LVR_SPACEs = s, for s = 1,…,S-1. The fulcrum of a lever for SPACE is set between
stage 1 and stage 2, which means SPACE in a later stage is better than in an earlier stage.

Fig. 3.5 A lever concept for SPACE in SS

Therefore, all SPACEs, IDLEs, and DELAYs are converted to torques, that is, SPACE′i,s = pi,s+1
× LVR_SPACEs, IDLE′i,s = IDLEi,s×LVR_IDLEs, and DELAY′i,s = DELAYi,s×LVR_DELAYs. The

job selection scheme is ()1 1 1
, , ,1 1 11

max ' ' '
S S S

i s i s i ss s si n
SPACE IDLE DELAY

− − −

= = =≤ ≤

⎡ ⎤
− +⎢ ⎥⎣ ⎦∑ ∑ ∑ , that is, to

select the job with the maximum torque difference between SPACE′s and IDLE′s +
DELAY′s.

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

125

3.2.3 Steps to achieve the SS heuristic

Two items should be taken into consideration for initial job selection in SS. One is the
number of initial jobs, and the other is the initial job selection scheme. The number of initial
jobs is set as min(OPTRs, for s = 1,…,S). The reason is that if the number of initial jobs is
smaller than min(OPTRs), then the first available time of a stage is zero since all operators
are available at time zero; if the number is greater than min(OPTRs), then the number of
(initial job number – min(OPTRs)) jobs are not selected by the state space concept.

For initial job selection scheme, five 1×S vectors are introduced as follows: Vector_1 = [0]1×S;

Vector_3 = [APTs]1×S, where APTs = ,1

N
i si

p
=∑ /n is the average processing time of stage s;

Vector_5 = [max(pi,s), i = 1,…,n]1×S for s =1,…,S is the maximum processing time of stage s;
Vector_2 = Vector_3/2; Vector_4 = Vector_3+[Vector_5–Vector_3]/2. The initial number of jobs

are selected according to min(,1
_ ()

S
i ss

p Vector v s
=

−∑) for i = 1,…,n, which means the

minimum absolute difference between one job’s processing times and the vector.

Step 1. Determine the number of operators in each stage, i.e. OPTRs. (a): Calculate n and S.
(b): Set an expected throughput rate, r, which means a job is to be finished in every r
time units. (c): OPTRs = Roundup (APTs/r). (d): Set the start time of every operator
to 0. (e): Put all of n jobs into a candidate pool. (f): Set an output sequence to be a
1×n zero vector, Sequence_v.

Step 2. Set the capacity of each of S–1 WIP inventories.
Step 3. Calculate five vectors for initial job selection.
Step 4. FOR v = 1:5, an iteration loop to select initial jobs according to one Vector_v.
Step 5. Select a number of min(OPTRs, for s = 1,…,S) jobs according to Vector_v by the

equation min(,1
_ ()

S
i ss

p Vector v s
=

−∑). Then put selected jobs into a Sequence_v and

eliminate them from the candidate pool. Calculate the next available time of each
operator, the next available time of each stage, namely STATE, and WIP inventory
status, namely WIP_Status, which is initially a 1×(S–1) zero vector.

Step 6. FOR i = min(OPTRs) + 1: n, an iteration loop to sequence rest n – min(OPTRs) jobs.
Step 7. According to STATE and WIP_Status, calculate IDLE′is, DELAY′is and SPACE′is.

Step 8. Select job i according to ()1 1 1
, , ,1 1 11

max ' ' '
S S S

i s i s i ss s si n
SPACE IDLE DELAY

− − −

= = =≤ ≤

⎡ ⎤
− +⎢ ⎥⎣ ⎦∑ ∑ ∑ ,

and then put such job number into Sequence_v and eliminate it from the candidate
pool.

Step 9. Calculate intermediate completion time of a partial schedule Sequence_v, update
WIP_Status, and update STATE.

Step 10. END i. Calculate the utilization of a line. (a): Calculate utilization of each stage first,

Utils = (,1

n
i si

p
=∑ /OPTRs)/(cnks–c1k’s-1), c1k0 = 0, s = 1,…,S, in which cnks is the

completion time of the last job in stage s, and c1k’s-1 is the start time of the first job in
stage s, i.e. the completion time of the first job in stage s-1. (b): Calculate the average
utilization of each stage, i.e. Util = average (Utils), s = 1,…,S.

Step 11. ND v. Output each of five sequences and related makespan and utilization, and the
minimum makespan and the maximum utilization are regarded as the final
performance of SS.

www.intechopen.com

Production Scheduling

126

3.2.4 The computational complexity of SS

The computational complexity of SS heuristic consists of two parts, job selection and
makespan calculation.

For job selection, if the state of a flow line is known, then to select one out of n unscheduled
jobs takes S×n operations, which means the computational complexity for adaptive control
is O(Sn). As n decreases from n to 1, the overall selection of n jobs takes S×n×(n+1)/2
operations. Although SS heuristic generates five sequences for an n by S HFS problem, the
computational complexity of SS heuristic for job selection is O(Sn2), because only the highest
order of operations is counted in computational complexity.

For makespan calculation, we can model an n-job S-stage HFS problem by a 2-dimension
matrix, where the row dimension is for jobs, and the column dimension for stages. The
makespan calculation could be carried out along the column dimension. It means that, if the
input sequence of n jobs in stage 1 is known, then the output sequence of n jobs in stage 1 (or
the input sequence in stage 2) can be calculated; the output sequence is in a non-descending
order of completion times of n jobs; and then the output sequence in stage 2 can be
calculated, and so on, finally the output sequence in stage S can be calculated. However, the
capacities of WIP inventories are limited, which means the completion times of jobs in stage
s are constrained by the next available times of operators in stage s+1. For example, when
calculating the output sequence of stage s, if a job i’s completion time in stage s causes an
overflow of WIPs, which means at that time the WIPs is full and there is no operator
available in stage s+1 to process a job in WIPs, then a DELAY happens to such job i. This
DELAY means the job i’s completion time is delayed to a later time, and so is the next
available time of operator k, who processes the job i in stage s. Consequently, the DELAY
affects the completion times of all jobs following job i in stage s, and the completion times in
the previous stage need to be checked because of the limitation on WIP inventories. In an
extreme situation, when a DELAY happens in stage S-1, the job completion times in all
previous stages have to be recalculated. Because of the recalculations, it is time consuming
to calculate makespan along the column dimension.

For the makespan calculation along the row dimension, as n increases from 1 to n, the
computational complexity is also O(Sn2), although makespan calculation is carried out five
times. Therefore, the overall computational complexity of the SS heuristic is O(Sn2).

For an industrial instance with 1396 jobs and 5 machines in Gienow, the computation time of
SS heuristic is 70.67 seconds, much longer than 782 milliseconds for CDS heuristic.
However, the 782 milliseconds are only for CDS to generate sequences. Taking the
makespan calculation into consideration, CDS will have the same computational complexity
as SS. Moreover, from the adaptive control perspective, the computational complexity of SS
heuristic is only O(Sn), which means it takes only 10.12 milliseconds for SS heuristic to select
the next job dealing with disturbances in Gienow for this instance.

4. Case studies

The computational complexities of some existing heuristics and SS heuristic are analyzed in
sections 2 and 3 respectively. In this section, the comparison and evaluation of heuristics are
mainly based on optimality and flexibility. Two kinds of case studies, with and without
disturbances, are carried out on Taillard’s benchmarks (Taillard, 1993) and on an industrial

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

127

case. Section 4.1 is for without disturbances, Section 4.2 is for with disturbances, and at last
Section 4.3 gives a comparison between SS heuristic and Johnson’s algorithm (JA).

4.1 Case studies without disturbances

4.1.1 Fm/prmu/Cmax on Taillard’s benchmarks

For traditional permutation flow shop scheduling problems, the deviation (DEV) from the
best known upper bounds is used to evaluate the performance of a heuristic, where DEV =
(Cmax of a heuristic – The upper bound) ÷ (The upper bound) in percentage. The results of the
deviation studies for CDS, NIS and SS, and a version of SS without the lever concept,
SSnoLVR, heuristics are shown in Table 4.1.

In Table 4.1, the column “Scale” means the size of problems. For example, 20*5 means 20-job
5-machine problems. The column “Inst” means the number of instances in each scale.
Columns 3 to 6 represent the average deviation of each of the CDS, NIS, SS, and SSnoLVR,
heuristics respectively. We can see that SS heuristic has the smallest total average deviation
for all 120 instances in Taillard’s benchmarks, at 8.11%, NIS heuristic ranks the second at
9.01%, and CDS heuristic ranks the last at 11.28%. We can also see from Table 4.1 that the
lever concept is suitable for flow shop production to minimize the makespan. The SS
heuristic is better than the SSnoLVR heuristic, with a deviation of 8.11% versus 8.80%. To
further compare the performance of the SS heuristic with the CDS heuristic’s, a t-test is
carried out using a function of TTEST (CDS results, SS results, 2, 1) in excel. The the SS
heuristic’s p-value is 3.20 × 10-5, which means the improvement is extremely significant.

Scale Inst CDS NIS SS SSnoLVR

20*5 10 9.05 7.41 9.14 7.80
20*10 10 13.48 9.46 10.18 13.13
20*20 10 11.07 7.30 10.64 14.02
50*5 10 7.15 4.96 3.60 3.38
50*10 10 14.46 11.57 9.67 9.24
50*20 10 18.13 14.50 16.15 16.12
100*5 10 5.25 4.70 1.60 1.75

100*10 10 9.51 8.27 6.71 6.05
100*20 10 16.45 13.50 11.83 15.71
200*10 10 7.55 6.61 3.09 2.48
200*20 10 13.75 11.33 9.10 11.31
500*20 10 9.56 8.44 5.63 4.60

Total Average 11.28 9.01 8.11 8.80
MAX 21.13 16.62 20.83 22.02
MIN 0.66 0.86 0.78 0.60

Table 4.1 Average deviations from Taillard’s benchmarks for Fm/prmu/Cmax problems (%).

4.1.2 Fm/nwt/Cmax on Taillard’s benchmarks

For traditional no wait flow shop problems, an improvement (IMPR) over NIS heuristic is
used to evaluate the performance of CDS and SS heuristics based on Taillard’s benchmarks.
IMPR = (Cmax of NIS – Cmax of CDS or SS) ÷ (Cmax of NIS) in percentage is shown in Table 4.2.

www.intechopen.com

Production Scheduling

128

Scale Inst CDS SS

20*5 10 -0.32 2.01
20*10 10 -2.59 -2.86
20*20 10 -3.50 -2.71
50*5 10 0.29 8.29
50*10 10 -1.29 0.49
50*20 10 -2.42 -1.67
100*5 10 -0.27 9.20
100*10 10 -0.61 3.78
100*20 10 -1.00 -0.02
200*10 10 -0.22 5.59
200*20 10 -0.41 1.69
500*20 10 -0.10 3.46

Total Average -1.04 2.27

Table 4.2 Improvement over NIS heuristic for Fm/nwt/Cmax problems (%)

In Table 4.2, CDS heuristic performs 1.04% worse than NIS heuristic. In contrast, SS

performs better than NIS on average, with an improvement of 2.27%. For the t-test based on

12 averages, SS heuristic’s p-value is 0.0739. However, if the t-test is based on 120 individual

cases, the SS’ p-value is 2.07 × 10-11, which means an extremely significant improvement.

Moreover, we recognize that for HFS no wait problems the improvement of SS over NIS will

shrink as the number of operators/machines in each stage increases. For example, if the

number of operators in each stage is the same as the number of jobs, then Cmax is fixed as

max (,1

S
i ss

p
=∑) for i = 1,…,n, no matter for no wait or no pre-emption flow shop problems.

4.1.3 FFs/nwt/Cmax on Taillard’s benchmarks

For hybrid no wait flow shop problems with identical parallel operators/machines in each
stage, two operators/machines are assigned to each stage. The improvement of CDS and SS
heuristics over NIS heuristic is shown in Table 4.3.

Scale Inst CDS SS

20*5 10 -1.71 -2.66
20*10 10 -2.72 -2.02
20*20 10 -3.06 -2.88
50*5 10 -0.77 3.34
50*10 10 -1.50 -2.18
50*20 10 -3.48 -2.04
100*5 10 0.21 7.15
100*10 10 -0.55 0.60
100*20 10 -1.75 -1.13
200*10 10 -0.15 3.54
200*20 10 -0.50 0.97
500*20 10 0.01 2.00

Total Average -1.33 0.39

Table 4.3 Improvement over NIS heuristic for FFs/nwt/Cmax problems (%)

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

129

For such hybrid no wait flow shop problems with two operators/machines in each stage, SS
heuristic has a small improvement of 0.39% over NIS heuristic, and CDS heuristic still
performs worse, -1.33%. For the t-test, SS heuristic’s p-value is 0.6739, meaning that its
improvement over NIS heuristic is not statistically significant.

4.1.4 FFs/FCFS/Cmax on Taillard’s benchmarks

Scale Inst min(Cmax) max(Util)

20*5 10 -2.39 7.33
20*10 10 0.27 5.66
20*20 10 -2.65 -0.02
50*5 10 2.87 4.90
50*10 10 2.47 6.17
50*20 10 0.08 1.45
100*5 10 2.42 3.47
100*10 10 1.34 4.69
100*20 10 1.54 2.43
200*10 10 3.14 3.96
200*20 10 2.03 4.41
500*20 10 2.79 3.14

Total Average 1.16 3.96

Table 4.4 Improvement over CDS heuristic for FFs/FCFS/Cmax problems (%)

For HFS problems with the FCFS rule applied to jobs in WIP inventories, two variables are
set. One is a throughput rate r = 31, used to calculate the number of operators in each stage,
where OPTRs = Roundup (APTs/r). The average processing time of each stage ranges from
30.75 to 64.40 for all of 120 instances in Taillard’s benchmarks, therefore, OPTRs varies from
1 to 3 for each stage. Another variable is the capacity of WIP inventories. Different
configurations of WIP inventories have different impacts on production (Vergara & Kim,
2009). For the ease of case study, the capacity of each WIP inventory is set the same, WIPs =
5, even though in theory each could be set to a different value. The calculation of processing
times in CDS is p’i,s = pi,s/OPTRs, s = 1,…,S (Botta-Genoulaz, 2000). For the objective of
min(Cmax), the improvement (IMPR) of SS heuristic over CDS heuristic is used to evaluate
performance, where IMPR1 = (Cmax of CDS – Cmax of SS) ÷ (Cmax of CDS) in percentage. For the
objective of max(Util), the improvement of SS heuristic over CDS heuristic is IMPR2 = (Util
of SS – Util of CDS) ÷ (Util of CDS). The results are shown in Table 4.4.

For the objective of max(Util), SS heuristic has an average 3.96% improvement over CDS
heuristic on Taillard’s benchmarks, and for the objective of min(Cmax), SS heuristic has an
average 1.16% improvement. For the t-test, SS heuristic’s p-value is 0.0666 for min(Cmax)
meaning the improvement over CDS heuristic is not quite statistically significant. However,
for max(Util), the p-value of SS heuristic is 3.34 × 10-5, an extremely significant improvement.

4.1.5 An industrial case study

To validate the SS heuristic in a real setting, an industrial case study was carried out in
Gienow Windows and Doors, Canada. This case consists of 1396 jobs on a flow line with 5

www.intechopen.com

Production Scheduling

130

stages for one-day production. These jobs are delivered to customers at a predetermined
time in 28 batches. Each batch of products is destined for customers in a given geographic
area. Using data provided by Gienow, SS heuristic produces the results shown in Table 4.5.
In the SS heuristic, the SPACE is modelled as SPACEi,s = ci,s+1 – As.

 Gienow SS IMPR Gienow SS IMPR

1 1,795 1,711 84 16 1,489 1,489 0
2 1,458 1,444 14 17 1,477 1,477 0
3 1,698 1,697 1 18 1,743 1,712 31
4 2,292 2,261 31 19 1,751 1,745 6
5 1,570 1,556 14 20 1,434 1,430 4
6 1,798 1,753 45 21 1,587 1,570 17
7 1,420 1,420 0 22 1,587 1,393 194
8 1,573 1,567 6 23 1,196 1,165 31
9 1,828 1,805 23 24 1,094 1,083 11
10 1,676 1,676 0 25 1,362 1,362 0
11 1,568 1,568 0 26 1,281 1,281 0
12 1,691 1,691 0 27 923 923 0
13 1,465 1,465 0 28 857 851 6
14 1,364 1,353 11 Total 42,300 41,771 529
15 1,323 1,323 0 Percent 1.25%

Table 4.5 An industrial case study

As shown in Table 4.5, Gienow used 42,300 time units to finish 1396 jobs. The production of
1396 jobs in 42,300 time units was achieved by Gienow’s original schedule, which was
generated by an experienced production scheduler in Gienow. SS heuristic can generate new
schedules, respectively reducing 42,300 time units to 41,771, a 1.25% improvement in
productivity. Such improvement translates into the production of 17 additional products
daily, or more than $5000 revenue per day. For the t-test, SS heuristic’s p-value is 0.0164,
which means the improvement is very significant.

4.2 Case studies with disturbances

To test the suitability of SS heuristic to adaptive production control, a case study of operator
absence is carried out on Taillard’s benchmarks. Modeling operator absence is the same as
modeling machine breakdown. We assume that, when a half of jobs are finished, one
operator is absent in the middle stage of a flow line, specifically in stage 3, 6, or 11 according
to the scale of instances in Taillard’s benchmarks. For the remaining half of the jobs, if the
production is carried on according to the original schedule when such disturbances happen
to the shop floor, then the completion time is recorded as Original. If adaptive control is
applied, that is, using SS heuristic to re-schedule the remaining jobs, then the completion
time is recorded as Adaptive. The improvement of adaptive control over no adaptive control
is used to evaluate the performance, i.e. (Original – Adaptive) ÷ (Original) in percentage.

To show the potential of the SS heuristic, case studies on operator absence are carried out
under the two definitions of SPACE, SPACEi,s = pi,s+1 and SPACEi,s = ci,s+1 – As. Moreover, a
simple optimization method is also integrated with the SS heuristic.

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

131

4.2.1 SPACEi,s = pi,s+1

The results are given in Table 4.6. As we see, adaptive control is slightly better than no
adaptive control with a 0.10% improvement for the SS heuristic if SPACEi,s = pi,s+1.

Scale Inst SS

20*5 10 2.46
20*10 10 1.81
20*20 10 3.01
50*5 10 0.88
50*10 10 2.17
50*20 10 -2.80
100*5 10 0.39
100*10 10 0.29
100*20 10 -4.18
200*10 10 -0.41
200*20 10 -1.25
500*20 10 -1.21

Total Average 0.10

Table 4.6 Adaptive control over no adaptive control, where SPACEi,s = pi,s+1

4.2.2 SPACEi,s = ci,s+1 – As

The results are given in Table 4.7. As we see, for SS heuristic, if we model SPACEi,s = ci,s+1 –
As, the adaptive control has a 2.02% improvement over no adaptive control.

Scale Inst SS

20*5 10 7.75

20*10 10 6.62

20*20 10 -8.49

50*5 10 1.23

50*10 10 3.10

50*20 10 2.99

100*5 10 0.22

100*10 10 3.26

100*20 10 4.50

200*10 10 0.55

200*20 10 1.64

500*20 10 0.86

Total Average 2.02

Table 4.7 Adaptive control over no adaptive control, where SPACEi,s = ci,s+1 – As

4.2.3 Integration with an optimization method

There are two effects in SS heuristic impacting the final production performance. SPACE is

good for production but “IDLE & DELAY” is bad. We can introduce a weighting factor, α,

www.intechopen.com

Production Scheduling

132

into SS heuristic, and then sequence jobs according to max[(1–α)×
1

1
'

S
iss

SPACE
−

=∑ –

α×(
1

1
'

S
iss

IDLE
−

=∑ +
1

1
'

S
iss

DELAY
−

=∑)]. As α changes from 0 to 1 with increments of 0.1, the

performance of SS heuristic, with SPACEi,s = pi,s+1, is shown in Table 4.8. The columns

represent the performance of each α integrated with SS heuristic. A weight α = 0.0 means no

IDLE or DELAY is taken into consideration to sequence jobs, and α = 1.0 means no SPACE.

We can see that SPACE affects the production more than IDLE or DELAY, where α = 0.1 has

the greatest improvement of 2.77%.

Scale Inst 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20*5 10 -0.59 0.75 2.17 3.12 1.97 2.46 -2.31 -7.08 -7.68 -9.25 -2.30

20*10 10 0.67 0.77 0.56 5.01 3.68 1.81 -2.86 -4.62 -2.11 -1.59 -4.27

20*20 10 7.50 10.0 8.69 6.74 6.15 3.01 0.00 -9.46 -9.12 -8.99 -9.79

50*5 10 0.22 1.11 1.17 0.97 1.55 0.88 0.15 -1.66 -1.33 -1.24 -0.64

50*10 10 5.50 4.97 4.06 2.80 2.75 2.17 -4.35 -7.10 -6.20 -8.76 -8.89

50*20 10 1.65 3.67 1.94 2.90 -5.41 -2.80 -5.53 -5.22 -7.50 -0.22 -1.07

100*5 10 0.43 0.88 0.36 0.49 0.58 0.39 0.17 -0.98 -1.09 -1.16 -2.24

100*10 10 3.05 3.02 2.20 2.42 1.05 0.29 -2.35 -1.97 -2.76 -1.42 -2.50

100*20 10 5.94 5.24 5.79 4.76 -0.39 -4.18 -5.26 -5.76 -6.61 -5.73 -7.49

200*10 10 0.47 0.47 0.05 0.27 0.15 -0.41 -0.75 -1.26 -1.10 -1.58 -1.15

200*20 10 1.53 2.24 2.39 0.82 -0.15 -1.25 -1.44 -1.48 -2.34 -2.36 -1.98

500*20 10 0.17 0.18 0.16 -0.02 -0.64 -1.21 -1.63 -1.69 -1.66 -1.59 -1.54

Total average 2.21 2.77 2.46 2.52 0.94 0.10 -2.18 -4.02 -4.96 -5.33 -6.15

Table 4.8 Adaptive control with α over no adaptive control, where SPACEi,s = pi,s+1

4.2.4 Case studies on variation in processing times

It is normal to have variation in processing times, especially for the production of highly
customized products and with manual operations. Thus, it is necessary to test the suitability
of SS heuristic to the disturbance of variation in processing times. In Gienow, processing
times of products are quoted by the company standards.

For variation in processing times in the industrial case, we assume that, initially, we have a
matrix of quoted processing times of n jobs in S stages, and we do not know the real
processing time beforehand, because the perfect production information in OKP can be
available only after the production (Wortmann, 1992). If we define this matrix as B, which
means before production, we carry out the offline scheduling according to B to get a
sequence SB. We might setup due dates based on the performance of SB, that is, the original
performance, PO. After the actual production, we have a matrix of real processing times of n
jobs in S stages, i.e. matrix A.

During the production, when variation in processing times happens and the production is
carried out according to the sequence SB, the performance is PB. It means no adaptive
control. It is difficult to use CDS heuristic for such disturbance, because we only know part
of matrix A for finished jobs, but not the rest for unfinished jobs. However, we can
adaptively re-schedule the rest jobs by SS heuristic, because the actual processing times of
finished jobs affect the space, although we only know matrix B for the unfinished jobs. After
one job has been produced, we use SS heuristic to select a job from remaining jobs according
to processing times of unfinished jobs in matrix B and the actual space created by finished

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

133

jobs. Consequently, the performance of adaptive control by SS heuristic is PA. The SPACE of
SS heuristic is modeled as SPACEi,s = ci,s+1 – As. We compare the performance of no adaptive
control PB or adaptive control PA with the original performance PO, by: Diff_OB = (PB –
PO) ÷ PO and Diff_OA = (PA – PO) ÷ PO, both of which are in percentage. Four ranges of
normal distribution are introduced into the processing times in the industrial case, [-5%,
5%], [0%, 10%], [0%, 25%] and [0%, 50%]. The results are summarized in Tables 4.9.

 Diff_OB Diff_OA

[-5%, 5%]

Average 0.83 0.27

MAX 3.76 1.17

MIN 0.01 0.03

[0%, 10%]

Average 5.45 5.12

MAX 7.89 5.88

MIN 4.00 4.47

[0%, 25%]

Average 13.08 12.76

MAX 15.72 15.69

MIN 9.72 9.37

[0%, 50%]

Average 25.37% 24.98

MAX 28.75% 28.19

MIN 20.94% 20.38

Table 4.9 Adaptive control for variation in processing times

From Table 4.9, we can see that adaptive control performs better than no adaptive control
for all four ranges of variation in processing times. Moreover, SS heuristic is stable to such
disturbance, because its average difference of performance is close to the expected value of
variation in four ranges respectively.

4.3 A case study on a 2-machine flow shop problem

To reveal the rationale and coherent logic of the state space concept, a scaled down version
of SS heuristic is compared with JA for a 2-machine flow shop problem, F2/prmu/Cmax. For
F2/prmu/Cmax problems, the lever concept has no effect on the job selection in SS heuristic.
This is because for this type of F2/prmu/Cmax problems, the WIP inventory between
machines 1 and 2 is unlimited, thus no DELAY is taken into consideration. In addition, the
length of force arm for SPACE or IDLE equals to one. However, the state space concept can
yield different job sequences than JA. A numerical example is provided in Table 4.10.

 M1 M2

Job 1 5 20
Job 2 20 10
Job 3 10 15
Job 4 15 12

Table 4.10 A 2-machine flow shop example

JA sequences jobs according to the following scheme. If min {pi,1, pi+1,2} ≤ min {pi+1,1, pi,2}, then
job i should be processed earlier than job i+1. Therefore, for the example in the above table,

www.intechopen.com

Production Scheduling

134

JA generates a sequence of [Job 1, 3, 4, 2] with Cmax = 62. According to the state space concept
(but not exactly SS heuristic), and using JA for the initial job selection, two additional
sequences can be obtained, [Job 1, 2, 3, 4] and [Job 1, 4, 3, 2], both of which have Cmax = 62,
and are different from the one generated by JA. Therefore, it is obvious that JA uses a
sufficient condition for F2/prmu/Cmax problems, but not necessary in some cases. The state
space concept can yield different sequences than JA with the same level of optimality, and
hence can provide greater opportunities for improvement as the core of a more elaborate
heuristic for adaptive production scheduling and control.

5. Conclusions and future work

One-of-a-kind production (OKP) challenges production scheduling differently from mass
production, because of high customer involvement in OKP. Especially, it challenges
production control severely, because of dynamic disturbances. Traditionally, offline
production scheduling is separated from the online adaptive production control. Dynamic
disturbances in OKP fail the production schedule, which are generated by heuristics that are
developed based on strong assumptions for offline scheduling (MacCarty & Liu, 1993).
Accordingly, adaptive production control is in need to deal with disturbances. Currently,
the adaptive production control in OKP companies is carried out by shop floor managers
using priority dispatching rules (PDRs) and their experience. However, the performance of
PDRs is poor on most scheduling objectives (Ruiz & Maroto, 2005), and the experience
might be good for local optimization but definitely lacks global optimization for the overall
production. Therefore, the adaptive production scheduling and control is essential and
indispensable to improve the production efficiency in OKP.

In regards to three criteria of optimality, computational complexity, and flexibility to
evaluate a heuristic for adaptive production control (Li et al., 2011a), the state space (SS)
heuristic is the better than most existing heuristics. For optimality, SS heuristic outperforms
the most popular alternative heuristics (CDS, NIS) against Taillard’s benchmarks no matter
for Fm/prmu/Cmax, Fm/nwt/Cmax, FFs/nwt/Cmax and FFs/FCFS/Cmax problems. In addition,
the production schedule generated by SS heuristic outperforms Gienow’s original schedule,
improving Gienow’s daily productivity by 1.25%. For computational complexity,
O(m2n+mnlogn) of CDS heuristic is simpler one than O(mn2) of SS heuristic for offline
scheduling. However, if taking sequence evaluation into consideration, they have the same
computational complexity of O(mn2). In addition, for online adaptive production control, the
computational complexity of SS decreases to O(mn), but that of CDS keeps the same. For
flexibility, SS heuristic is more flexible than other heuristics. SS heuristic can deal with all
three typical disturbances proposed by Pinedo (2002), job insertion or cancellation, operator
absence or machine breakdown, and variation in processing times, whereas, CDS cannot
deal with variation in processing times. Although NEH heuristic has the best performance
for Fm/prmu/Cmax problems, its inflexible procedure to construct a job sequence renders it
little flexibility to deal with disturbances. Moreover, SS heuristic is in the phase of index
development, a phase that is beneficial for heuristic development in the other two phases
(Framinan et al. 2004).

As discussed in this chapter, adaptive production scheduling and control in OKP
challenges nearly all existing scheduling algorithms and heuristics, and almost all
manufacturing companies are facing a certain level of disturbances, such as unreliable

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

135

supplies, unexpected operator absence, machine breakdowns, etc. There is still a gap
between the theoretical research and industrial applications. Industrial applications
require further understandings and studies of production scheduling and control. This
draws the following future work. (1) Production planning on the company level should be
integrated with production scheduling and control on the shop floor level. Production
planning provides a company the production capacity that is a constraint for adaptive
production scheduling and control. Meanwhile, the adaptive production scheduling and
control requires frequent re-planning according to the production progress under
unexpected disturbances. This is to meet due dates of customer orders or provide better
estimated lead-times. The synergy and co-optimization between these two levels are
necessary and should be further researched. (2) Consequently, adaptive production
scheduling and control for non-deterministic problems is inevitable. Stochastic modeling
or simulation for non-deterministic production problems is a valuable research topic and
lucrative. (3) It is critical to integrate material flows on shop floors into a supply chain to
successfully achieve adaptive production scheduling and control in OKP. This is in fact an
urgent research topic to be studied.

6. References

Agarwal, A.; Colak, S. & Eryarsoy, E. (2006). Improvement heuristic for the flow-shop
scheduling problem: An adaptive-learning approach. European Journal of Operational

Research, Vol.169, No.3, pp. 801-815
Blecker, T. & Friedrich, G. (Eds.) (2006). Mass Customization: Challenges and Solutions.

Springer, ISBN 987-038-7322-22-3, New York, USA
Botta-Genoulaz, V. (2000). Hybrid flow shop scheduling with precedence constraints and

time lags to minimize maximum lateness. International Journal of Production

Economics, Vol.64, No.1, pp. 101-111
Campbell, H.G.; Dudek, R.A. & Smith, M.L. (1970). A heuristic algorithm for the n-job, m-

machine scheduling problem. Management Science, Vol.16, No.10, pp. 630-637
Dannenbring, D.G. (1977). An evaluation of flow shop sequencing heuristics. Management

Science, Vol.23, No.11, 1174–1182

Dean, P.R.; Tu, Y.L. & Xue, D. (2009). An Information System for One-of-a-Kind Production.
International Journal of Production Research, Vol.47, No.4, pp. 1071-1087

Dean, P.R.; Tu, Y.L. & Xue, D. (2008). A Framework for Generating Product Production
Information for Mass Customization. International Journal of Advanced Manufacturing

Technology, Vol.38, No.11-12, pp. 1244-1259
Dudek, R.A. & Teuton Jr., O.F. (1964). Development of M-state decision rule for scheduling

n jobs through M machines. Operations Research, Vol.12, No.3, pp. 471-497
Framinan, J.M.; Gupta, J.N.D. & Leisten, R. (2004). A review and classification of heuristics

for permutation flow-shop scheduling with makespan objective. Journal of the

Operational Research Society, Vol.55, No.12, pp. 1243-1255
Garey, M.R.; Johnson, D.S. & Sethi, R. (1976). The complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research, Vol.1, No.2, pp. 117-129

www.intechopen.com

Production Scheduling

136

Goyal, S.K.; Mehta, K.; Kodali, R. & Deshmukh, S.G. (1995). Simulation for analysis of
scheduling rules for a flexible manufacturing system. Integrated Manufacturing

Systems, Vol.6, No.5, pp. 21-26
Graham, R.L.; Lawler, E.L.; Lenstra, J.K & Rinnooy Kan, A.H.G. (1979). Optimization and

approximation in deterministic sequencing and scheduling: A survey. Annals of

Discrete Mathematics, Vol.5, pp. 287-326
Gupta, J.N.D. & Stafford, E.F. (2006). Flowshop Research after Five Decades. European

Journal of Operational Research, Vol.169, No.3, pp 699-711
Ho, J.C. & Chang, Y.L. (1991). A new heuristic for the n-job, m-machine flow-shop problem.

European Journal of Operational Research, Vol.52, pp. 194–202

Hundal, T.S. & Rajgopal, J. (1988). An extension of Palmer’s heuristic for the flow shop
scheduling problem. International Journal of Production Research, Vol.26, No.6, pp.
1119-1124

Ignall, E. & Schrage, L. (1965). Application of branch-and-bound technique to some flow
shop problems. Operations Research, Vol.13, No.3, pp. 400-412

Johnson, S.M. (1954). Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, Vol.1, No.1, pp. 61-68

Karush, W. (1965). A counterexample of a proposed algorithm for optimal sequencing of
jobs. Operations Research, Vol.13, No.2, pp. 323-325

King, J.R. & Spachis, A.S. (1980). Heuristics for flow-shop scheduling. International Journal of

Production Research, Vol.18, No.3, pp. 345-357
Koulamas, C. (1998). A new constructive heuristic for the flowshop scheduling problem.

European Journal of Operational Research, Vol.105, No.1, pp. 66-71
Kouvelis, P.; Chambers, C. & Yu, D.Z. (2005). Manufacturing operations manuscripts

published in the first 52 issues of POM: review, trends, and opportunities.
Production and Operations Management, Vol.14, No.4, pp. 450-467

Lageweg, B.J.; Lenstra, J.K. & Rinnooy Kan, A.H.G. (1978). A general bounding scheme for
the permutation flow-shop problem. Operations Research, Vol.26, No.1, pp. 53-67

Li, W. (2006). Adaptive Production Scheduling and Control in One-of-a-Kind Production, Thesis
(M.Sc.), University of Calgary, Canada

Li, W.; Nault, B.R.; Xue, D. & Tu, Y.L. (2011a). An efficient heuristic for adaptive production
scheduling and control in one-of-a-kind production. Computers & Operations

Research, Vol.38, No.1, pp. 267-276
Li, W.; Luo, X.G.; Xue, D. & Tu, Y.L. (2011b). A heuristic for adaptive production scheduling

and control in flow shop production. International Journal of Production Research,
Vol.49, No.11, pp. 3151–3170

Linn, R. & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers & Industrial

Engineering, Vol.37, No.1, pp. 57-61
MacCarthy, B.L. & Liu, J. (1993). Addressing the gap in scheduling research: a review of

optimization and heuristic methods in production scheduling. International Journal

of Production Research, Vol.31, No.1, pp. 59-79
McKay, K.; Pinedo, M. & Webster, S. (2002). Practice-focused research issues for

scheduling systems. Production and Operations Management, Vol.11, No.2, pp. 249-
258

www.intechopen.com

Adaptive Production Scheduling and Control in One-Of-A-Kind Production

137

Nawaz, M.; Enscore, E.E. & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA The International Journal of Management

Science, Vol.11, No.1, pp. 91-95
Ovacik, I.M. & Uzsoy, R. (1997). Decomposition Methods for Complex Factory Scheduling

Problems. Kluwer Academic Publishers, ISBN 079-2398-351, Boston, USA
Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time

– a quick method of obtaining a near optimum. Operational Research Quarterly,
Vol.16, No.1, pp. 101-107

Park, S.C.; Raman, N. & Shaw, M.J. (1997). Adaptive scheduling in dynamic flexible
manufacturing systems: a dynamic rule selection approach. IEEE Transactions on

Robotics and Automation, Vol.13, No.4, pp. 486-502
Pinedo, M. (2002). Scheduling Theory, Algorithms, and Systems. Prentice Hall, ISBN 013-0281-

387, New Jersey, USA
Potts, C.N.; Shmoys, D.B. & Williamson, D.P. (1991). Permutation vs. non-permutation flow

shop schedules. Operations Research Letters, Vol.10, No.5, pp. 281-284
Ruiz, R. & Maroto, C. (2005). A comprehensive review and evaluation of permutation

flowshop heuristics. European Journal of Operational Research, 165, No.2, pp. 479-
494

Ruiz, R. & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
Vol.177, No.3, pp. 2033-2049

Smith, R.D. & Dudek, R.A. (1967). A general algorithm for solution of the n-job M-
machine sequencing problems of the flow shop. Operations Research, Vol.15, No.1,
pp. 71-82 Also see their correction (1969). Errata. Operations Research, Vol.17,
No.4, pp. 756

Suliman, S. (2000). A two-phase heuristic approach to the permutation flow-shop scheduling
problem. International Journal of Production Economics, Vol.64, No.1-3, pp. 143-152

Szwarc, W. (1971a). Elimination methods in the m×n sequencing problem. Naval Research

Logistics Quarterly, Vol.18, No.3, pp. 295-305
Szwarc, W. (1971b). Optimal elimination methods in the m×n flow-shop scheduling

problem. Operations Research. Vol.16, No.3, pp. 250-1259
Taillard E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational

Research, Vol.64, No.2, pp. 278-285
Taillard, E. (1990). Some efficient heuristic methods for the flow-shop sequencing problem.

European Journal of Operational Research, Vol.47, No.1, pp. 65-74
Thornton, H.W. & Hunsucker, J.L. (2004). A new heuristic for minimal makespan in flow

shops with multiple processors and no intermediate storage. European Journal of

Operational Research, Vol.152, No.1, pp. 96-114
Tu, Y.L. (1996a). A Framework for Production Planning and Control in a Virtual OKP

Company. Trans. North American Manufacturing Research Institution of SME, Vol.24,
pp. 121-126

Tu, Y.L. (1996b). Automatic Scheduling and Control of a Ship Welding Assembly Line.
Computers in Industry, Vol.29, No.3, pp. 169-177

www.intechopen.com

Production Scheduling

138

Vergara H.A. & Kim, D.S. (2009). A new method for the placement of buffers in serial
production lines. International Journal of Production Research, Vol.47, No.16, pp. 4437-
4456

Wang, H. (2005). Flexible flow shop scheduling: optimum, heuristic and artificial
intelligence solutions. Expert Systems, Vol.22, No.2, pp. 78-85

Wortmann, J.C. (1992). Production management systems for one-of-a-kind products.
Computers in Industry, Vol.19, No.1, pp. 79-88

Wortmann, J.C.; Muntslag, D.R. & Timmermans, P.J.M. (1997). Customer-Driven

Manufacturing. Chapman & Hall, ISBN 041-2570-300, London, UK

www.intechopen.com

Production Scheduling

Edited by Prof. Rodrigo Righi

ISBN 978-953-307-935-6

Hard cover, 242 pages

Publisher InTech

Published online 11, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of

target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production

scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten

chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for

production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes

heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two

test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation

of a production scheduling system. Finally, Section 5 presents some modeling strategies for building

production scheduling systems. This book will be of interest to those working in the decision-making branches

of production, in various operational research areas, as well as computational methods design. People from a

diverse background ranging from academia and research to those working in industry, can take advantage of

this volume.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wei Li and Yiliu Tu (2012). Adaptive Production Scheduling and Control in One-Of-A-Kind Production,

Production Scheduling, Prof. Rodrigo Righi (Ed.), ISBN: 978-953-307-935-6, InTech, Available from:

http://www.intechopen.com/books/production-scheduling/adaptive-production-scheduling-and-control-in-one-

of-a-kind-production

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

