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1. Introduction 

Mass customization is one of competitive strategies in modern manufacturing (Blecker & 
Friedrich, 2006), the objective of which is to maximize customer satisfaction by producing 
highly customized products with high production efficiency. There are two starting points 
moving towards mass customization, mass production and one-of-a-kind production (OKP). 
The production volume of mass production is normally large, whereas that of OKP is 
usually small or extremely even just one. Mass production can achieve high production 
efficiency but relatively low customization, because products are designed in terms of 
standard product families, and produced repetitively in large volume. Comparatively, OKP 
can achieve high customization but relatively low production efficiency, because product 
design in OKP is highly customer involved, and each customer has different requirements. 
Therefore, the variation of customer requirements causes differences on each product. To 
improve production efficiency, OKP companies use mixed-product production on a flow 
line (Dean et al., 2008, 2009). Moreover, the production scheduling and control on OKP shop 
floors is severely challenged by the variation of customer requirements, whereas that in 
mass production is comparatively simple. Therefore, we focus on the adaptive production 
scheduling and control for OKP. 

1.1 Characteristics of one-of-a-kind production 

OKP is product-oriented, not capacity-oriented (Tu, 1996a). Customers can only choose a 
product within one of product families provided by an OKP company. Although customer 
choice is confined by product families, OKP is so customer involved that every product is 
highly customized based on specific customer requirements, and products differ on matters 
of colors, shapes, dimensions, functionalities, materials, processing times, and so on. 
Consequently, production of a product is rarely repeated in OKP (Wortmann et al., 1997). 
Moreover, OKP companies usually adopt a market strategy of make-to-order or 
engineering-to-order. Therefore, it is very important to meet the promised due dates in 
OKP. This market strategy challenges production scheduling and control differently from 
that of make-to-stock. 

Typically, there are five types of problems challenging production scheduling and control 

in an OKP company. (1) Job insertion or cancellation frequently happens in OKP due to 
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high customer involvement. (2) Operator absence or machine breakdown needs to be 

carefully controlled to fulfill the critical due dates. (3) Variation in processing times 

usually happens to an operation, because a highly customized product is rarely repeated. 

(4) The overflow of work-in-process (WIP) inventories occurs. (5) Production delay on the 

previous day will affect the production on the current day; so will production earliness. 

When these problems dynamically happen to an OKP company, the daily production has 

to be adjusted online, i.e. adaptive production control. Therefore, OKP companies are 

continuously seeking new methods for adaptive production scheduling and control on 

shop floors. 

1.2 Former research of flow shop production scheduling and control 

Flow shop production scheduling has been researched for more than five decades since 1954 

(Gupta & Stafford, 2006). Early research of flow shop production scheduling was highly 

theoretical, using optimization techniques to seek optimal solutions for n-job m-machine 

flow shop scheduling problems. However, the emergence of NP-completeness theory in 

1976 (Garey et al., 1976) profoundly influenced the direction of research in flow shop 

production scheduling. NP-completeness implies that it is highly unlikely to get an optimal 

solution in a polynomially bounded duration of time, for a given complex problem in 

general. That is why heuristics are required to solve large problems.  

Adaptive production control acutely challenges the research of flow shop production 

scheduling, because the relationship has not been completely revealed, among the number 

of jobs, the number of machines, job processing times and scheduling objectives. Moreover, 

the research of flow shop production scheduling is often based on strong assumptions, such 

as no machine breakdown or operator absence, processing times and some constraints are 

deterministic and known in advance (MacCarthy & Liu, 1993). During real production, 

disturbances are manifested in such occurrences as machine breakdown, operator absence, 

longer than expected processing times, new emergent orders, and so on (McKay et al., 2002), 

all of which may fail the original offline schedule and then require online re-scheduling for 

adaptive production control. Consequently, heuristics based on strong assumptions are not 

robust, making production scheduling systems inflexible (Kouvelis et al., 2005), and a large 

gap exists between theoretical research and industrial applications (Gupta & Stafford, 2006; 

MacCarthy & Liu, 1993). 

1.3 Status of production scheduling and control in OKP 

Currently, OKP companies primarily use priority dispatching rules (PDRs) to deal with 

disturbances. It is fast and simple to use PDRs to control production online, but PDRs 

depend heavily on the configuration of shop floors, characteristics of jobs, and scheduling 

objectives (Goyal et al., 1995), and no single specific PDR clearly dominates the others (Park 

et al., 1997). Moreover, the performance of PDRs is poor on some scheduling objectives 

(Ruiz & Maroto, 2005), and inconsistent when a processing constraint changes (King & 

Spachis, 1980). Consequently, there is a considerable difference between the scheduled and 

actual production progress (Ovacik & Uzsoy, 1997), and production may run into an “ad 

hoc fire fighting” manner (Tu, 1996a, 1996b). 
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Here is a real situation in Gienow Windows and Doors, Canada. Without a computer-

aided system for adaptive production scheduling and control, an experienced human 

scheduler in Gienow carries out scheduling three days before the real production. It is an 

offline scheduling. Processing times of operations are quoted by Gienow’s standards, 

which are the average processing times of similar operations in the past. On the 

production day, the production is initially carried out according to the offline schedule. 

However, real processing times of highly customized products might not be exactly the 

same as the quoted ones. Therefore, customer orders may be finished earlier or later than 

they are scheduled offline. This will cause problems such as the overflow of WIP 

inventories, the delay of customer orders, and so on. The production delay of customer 

orders is not allowed in Gienow, because the delivery schedule has a high priority. In 

addition, unexpected supply delays, machine breakdown and operator absence could 

even cause more problems. To cope with these dynamic disturbances, the shop floor 

managers and production scheduler in Gienow carry out the following activities based on 

their experience: 

1. Re-allocate operators among work stages in a production line or lines.  
2. Change the job sequence. 
3. Postpone the production of other orders purely for a rush order 
4. Cancel or insert orders into the current production. 
5. Alter the production routine to divert orders from one production line to another. 
6. Add more work shifts or overtime working. 

Carrying out these activities by experience may avoid the overflow of WIP inventories in 
one stage or line, but cause it in other stages or lines, smoothing the production progress in 
one stage but slowing down the whole progress in Gienow. Due to the lack of an efficient 
computer system, Gienow does the adaptive production scheduling and control manually 
and inefficiently. Obviously, OKP shop floors have to be adaptively scheduled and 
controlled by a computer aided system (Wortmann et al., 1997; Tu, 1996b).  

The rest of this chapter is organized as follows. Section 2 gives a brief literature review on 
flow shop production scheduling. Section 3 introduces a computer-aided production 
scheduling system for adaptive production scheduling and control in OKP, consisted of a 
feedback control scheme and a state space (SS) heuristic. Section 4 gives the results of 
various case studies. Finally, section 5 draws conclusions and proposes future work. 

2. Literature review 

In this section, we briefly review research of flow shop production scheduling from two 

perspectives first, seeking optimal solutions and seeking near-optimal solutions, and then 

discuss the requirements of heuristics for adaptive production scheduling and control. 

2.1 Flow shop scheduling 

2.1.1 Definition of flow shop scheduling 

Scheduling is a decision making process of allocating resources to jobs over time to 

optimize one or more objectives. According to Pinedo (2002), one type of flow shop 
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consists of m machines in series, and each job has the same flow pattern on m machines. 

This is typically called a traditional flow shop (TFS). Another type of flow shop is called a 

flexible flow shop or hybrid flow shop (HFS), where there are a number of 

machines/operators in parallel in each of S stages. In addition to the difference of flow 

shop configurations, processing constraints are also different for TFS and HFS. For TFS, if 

the first in first out (FIFO) rule is applied to jobs in WIP inventories, it becomes a no pre-

emption flow shop problem. It is also called a permutation (prmu) flow shop problem, 

because the processing sequence of jobs on each machine is the same. For HFS, because 

there are multiple machines/operators in a stage, the first job coming into a stage might 

not be the first job coming out of the stage. Therefore, the first come first serve (FCFS) rule 

is applied (Pinedo, 2002). Consequently, it is still a problem of no pre-emption flow shop. 

Another processing constraint could be no waiting (nwt), that is, there is no intermediate 

storage or WIP inventories between two machines or stages. The most common objective 

of flow shop scheduling is to minimize the maximum completion time or makespan, i.e. 

min(Cmax). By the three parameter notation, ǂ/ǃ/Ǆ (Graham et al., 1979), the above 

problems can be notated as Fm/prmu/Cmax for m machine TFS problems with no pre-

emption to minimize makespan, Fm/nwt/Cmax for m machine TFS problems with no 

waiting, FFs/FCFS/Cmax, for S-stage HFS problems with FCFS, and FFs/nwt/Cmax for S-

stage HFS problems with no waiting. 

2.1.2 Research of flow shop scheduling for optimal solutions 

2.1.2.1 Johnson’s algorithm 

Johnson proposed his seminal algorithm to get optimal solutions for n-job 2-machine flow 

shop problems in 1954 (Johnson, 1954), the objective of which is to min(Cmax). The 

mathematical proof of his algorithm by using combinatorial analysis is as follows.  

 

Fig. 2.1 n-job 2-machine flow shop problems, to min(Cmax) 

The makespan or Cmax consists of the sum of processing times and the sum of idle times 
caused by n jobs on the last machine (Fig. 2.1). For n-job 2-machine flow shop problems, Cmax 
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−∑ ∑ , in which pi,1 and pi,2 are the 

processing times of job i on machine 1 and machine 2 respectively. 

To illustrate how to sequence n jobs, Johnson uses a combinatorial analysis approach, which 
is to compare two sequences, {ǒ, i, i+1, Ǒ} and {ǒ, i+1, i, Ǒ}. The main difference of the two 
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sequences is that two jobs exchange the positions, and ǒ is a subset for selected jobs, Ǒ for 
unselected jobs, ǒ∩ i ∩ i+1 ∩ Ǒ = Ø, and ǒ∪ i ∪ i+1 ∪ Ǒ = {n}. An optimal ordering of jobs is 
given by the following scheme. Job i proceeds job i+1, if max {K1u, K1u+1} ≤ max {K2u, K2u+1}. 

By subtracting 
1

,11

u
ii

p
+

=∑ –
1

,21

u
ii

p
−

=∑  from every term of equation in the above scheme, we 

can get min {pi,1, pi+1,2} ≤ min {pi+1,1, pi,2}, and Johnson’s algorithm (JA) is developed 
accordingly.  

2.1.2.2 Extension of combinatorial approach 

Dudek and Teuton extend Johnson’s combinatorial approach to n-job m-machine flow 
shop problems to min(Cmax) (Dudek & Teuton, 1964), comparing the same two sequences 
as in Johnson’s proof, and then develop their dominance conditions. Dudek and Teuton 
began the analytical framework for the development of dominance conditions for flow 
shop scheduling, although their initial method is shown to be incorrect later (Karush, 
1965). 

Smith and Dudek correct Dudek and Teuton’s combinatorial approach, by introducing 
partial enumeration into dominance conditions (Smith & Dudek 1967). They propos two 
checks of dominance conditions. One is job dominance check and the other is sequence 
dominance check. The job dominance checks two different sequences, {ǒ, i, i+1, Ǒ’, Ǒ”} and {ǒ, 
i+1, Ǒ’, i, Ǒ”}, in which Ǒ’ and Ǒ” are all possible combinations of exclusive subsets of Ǒ. The 
sequence dominance checks another two sequences, {ǒ, Ǒ} and {ǒ’, Ǒ}, in which ǒ and ǒ’ are 
different permutations of the same selected jobs. The two dominance checks theoretically 
guarantee the optimal solution, but practically are still time consuming. 

Based on D-T’s framework, Szwarc proposes an elimination rule different from S-D’s 
dominance checks ( Szwarc, 1971a, 1971b). Let t (ǒa, k) be the completion time of all jobs of 
sequence ǒa on machine Mk. Then t (ǒa, k) = max {t (ǒa, k-1), t (ǒ, k)} + pa,k with t (Ø, k) = t (ǒ, 0) 
= 0, where k = 1,…,m. Define the difference of completion times of two sequences as Δk = t 
(ǒab, k) – t (ǒb, k), for k = 2,…,m. The elimination rule is to eliminate all sequences of the form 
ǒb if Δk-1 ≤ Δk ≤ pa,k. However, Szwarc clearly stated that “if there is no job c such that for all k: c1 
≤ ck or cm ≤ ck, then no single sequence could be eliminated. In this case, the elimination method offers 
no advantage since we could have to consider all n! sequences”. 

2.1.2.3 Branch and bound methods 

Besides the combinatorial approach, a branch and bound (BB) method is also a general 
framework for NP-hard problems. It can be used to get optimal solutions to flow shop 
scheduling problems (Ignall & Schrage, 1965; Lageweg et al., 1978).  

Usually, there are mainly three components in a BB method, a search tree, a search 
strategy, and a lower bound. A search tree represents the solution space of a problem (Fig. 
2.2), the nodes on the tree represent subsets of solutions, and the descendants or child-
nodes are given by a branching scheme. For an n-job m-machine flow shop problem, the 
search tree begins with a virtual node 0. For the first position in a sequence, there are n 
candidates or nodes, i.e. each of n jobs can be a candidate for position 1. If one job is 
selected for position 1, it will have n-1 descendants or child-nodes. Consequently, there 
are n×(n-1) nodes for position 2, n×(n-1)×(n-2) nodes for position 3, and finally, n! nodes 
for the last position n. 
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Fig. 2.2 A solution space of a BB method 

At each node, a lower bound is calculated in terms of makespan for all permutations that 
descend it. For each position, all nodes are examined and a node with the least lower bound 
is chosen for branching. When a node represents an allocation of all jobs and has a 
makespan less than or equal to the lower bound, it is an optimal solution.  

2.1.3 Heuristics for near-optimal solutions 

Framinan et al. propose a general framework for the development of heuristics (Framinan et 
al., 2004). It has three phases: index development, solution construction and solution 
improvement. Phase 1, index development, means a heuristic arranges jobs according to a 
certain property of processing times. For example, Campbell et al. propose a CDS heuristic for 
an n-job m-machine TFS problem to min(Cmax) (Campbell et al., 19770). CDS arranges jobs as 
follows. If there is a counter (Ctr) pointing to a machine j, then for each job i (i = 1,…,n) the sum 
of processing times on the first Ctr machines is regarded as its processing time on virtual 
machine 1, and that on the rest m–Ctr machines as on virtual machine 2. Then apply JA to this 
virtual 2-machine flow shop problem to get a sequence. As Ctr changes from machine 1 to 
machine m–1, m–1 sequences are generated by CDS, and the one with the minimum makespan 
is the final solution. In phase 2, solution construction, a heuristic constructs a job sequence by a 
recursive procedure, trying to insert an unscheduled job into a partial sequence until all jobs 
are inserted. NEH heuristic (Nawaz et al., 1983) is a typical heuristic in phase 2, for an n-job m-
machine TFS problem to min(Cmax). NEH constructs a job sequence as follows. Step 1, NEH 
heuristic calculates the sums of processing times on all of m machines for each of n jobs, and 
then arranges these sums in a non-ascending order. Step 2, NEH heuristic schedules the first 
two jobs in the order to get a partial sequence. Step 3, NEH heuristic inserts the third job into 
three possible positions to get another partial sequence, and so on. Finally, NEH heuristic 
inserts the last job into n possible positions, and then determines the final sequence. In phase 3, 
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solution improvement, heuristics have two main characteristics, an initial sequence generated 
by other heuristics and artificial intelligence to improve the initial sequence. One typical 
heuristic in phase 3 is an iterated greedy (IG) heuristic (Ruiz & Stützle, 2007), denoted as 
IG_RS heuristic. IG method consists of two central procedures, destruction and construction. 
The initial sequence of IG_RS heuristic is generated by NEH heuristic. For destruction, IG_RS 
heuristic randomly removes a number of d jobs from the initial sequence resulting a partial 
sequence ǑD; and for construction, IG_RS heuristic follows step 3 of NEH heuristic to insert 
each of d jobs back in to ǑD. Heuristic development in phase 1 is beneficial for future heuristic 
development in the other two phases (Framinan et al., 2004). 

Ruiz and Maroto (2005) compare 19 heuristics for Fm/prmu/Cmax problems, and concluded 
that NEH heuristic is the best, CDS heuristic the eighth, and two PDRs (LPT and SPT rules) 
the worst. However, CDS heuristic has the second simplest computational complexity 
among the first 8 heuristics, O(m2n+mnlogn). Moreover, King and Spachis (1980) compare 5 
PDRs and CDS heuristic for two different TFS problems, Fm/prmu/Cmax and Fm/nwt/Cmax. 
They conclude that CDS heuristic and LWBJD (least weighted between jobs delay) rule are 
the best for Fm/prmu/Cmax problems and MLSS (maximum left shift savings) rule is the best 
for Fm/nwt/Cmax problems, but no single method is consistently the best for both 
Fm/prmu/Cmax and Fm/nwt/Cmax problems.  

The literature on HFS is still scarce (Linn & Zhang, 1999; Wang, 2005). According to Botta-
Genoulaz (2000), CDS heuristic is the best of 6 heuristics for HFS problems, including NEH 
heuristic. The problem in Botta-Genoulaz (2000) is an n-job S-stage HFS problem to 
minimize the maximum lateness. It is converted to an n-job S+1-stage HFS problem to 
min(Cmax). The processing time of job i in stage S+1 is calculated by pi,S+1 = Dmax – di, i = 
1,…,n, where Dmax = max(dk), and dk is the due date of job k, k = 1,…,n. When applying CDS 
heuristic to HFS problems, Botta-Genoulaz converts the processing times, p’i,j = pi,j/OPTRj, j 
= 1,…,S+1, where pi,j is the original processing time of job i in stage j, and OPTRj is the 
number of operators/machines assigned to stage j.  

For FFs/nwt/Cmax problems, Thornton and Hunsucker (2004) propose an NIS heuristic, the 
best among CDS heuristic, LPT and SPT rules, and a heuristic of random sequence 
generation. Different from CDS heuristic, NIS heuristic uses a filter concept to convert a 
FFs/nwt/Cmax problem to a virtual 2-machine problem, and then applies JA to get a job 
sequence. The stages before the filter are regarded as virtual machine 1, after the filter as 
virtual machine 2, and the stages that are covered by the filter are ignored. The filter goes 
from stage 2 to stage S–1, and the width of filter changes from 1 to S–2. In total, there are 
1+(S–1)×(S–2)/2 sequences generated by NIS heuristic and the one with the minimum 
makespan is the final schedule. 

2.2 Requirements for adaptive production control 

2.2.1 Three criteria 

Three main criteria are used to evaluate a heuristic for adaptive production scheduling and 
control (Li et al., 2011a): optimality, computational complexity, and flexibility. Usually 
optimality is used to evaluate a heuristic for offline production scheduling. However, when 
adaptive production control is taken into consideration, the computational complexity 
becomes critical. That is why some heuristics based on artificial intelligence are not suitable 
for adaptive production control, although they can get better solutions. Another criterion is 
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the flexibility, that is, whether a heuristic can deal with a disturbance. Of course, different 
situations have different requirements for optimality, computational complexity, and 
flexibility of a heuristic. There is inevitably a trade-off among these criteria, and the selection 
of heuristics for production scheduling and control depends on specifics of different 
situations, such as the value of optimality as compared to near optimal scheduling, as well 
as the type and volume of disturbances that underlies the requirements of response time. 

2.2.2 Summary of existing heuristics for adaptive production control 

For optimality, heuristics in phase 3 can get better solutions than heuristics in phases 1 and 
2. However, for computational complexity, they take much longer time. For example, an 
adaptive learning approach (ALA) heuristic is in phase 3 for Fm/prmu/Cmax problems 
(Agarwal et al., 2006). The deviation of ALA heuristic is only 1.74% for Taillard’s 
benchmarks (Taillard, 1993), much better than 3.56% of NEH heuristic. However, for the 
largest instance in Taillard’s benchmarks, i.e. 500 jobs and 20 machines, it takes more than 19 
hours for ALA heuristic to get a solution, more than 20 hours for Simulated Annealing, and 
more than 30 hours for Tabu search (Agarwal et al., 2006). Even for the recent IG_RS 
heuristic, it takes 300 seconds to get a solution to a 500-job 20-machine instance. For 
flexibility, we need to see if a heuristic can deal with a disturbance. According to Pinedo 
(2002), there are three types of disturbances in general for flow shop production, job 
insertion or cancellation, operator absence or machine breakdown, and variation in 
processing times. The perfect production information in OKP is available only after the 
production (Wortmann, 1992). Therefore, if a heuristic operates the known processing time 
only, it cannot deal with variation in processing times. 

The performance of first eight of 19 heuristics is summarized in Table 2.1, and the optimality 
of each heuristic is quoted from Ruiz and Maroto (2005). However, there is a discrepancy of 
optimality of heuristics in the literature, because the optimality is evaluated by the deviation 
from the best known upper bounds that are under continuous improvement. For example, 
the deviation of 3.33% is for NEH and 9.96% for CDS in Ruiz and Maroto (2005), but 3.56% 
for NEH and 10.22% for CDS in Agarwal et al. (2006), and 3.59% for NEH and 11.28% for 
CDS in our case study. In the table, the column “Opt.” means the optimality on Taillard’s 
benchmarks for Fm/prmu/Cmax problems, “I/C” means the job insertion or cancellation, 
“OA/MB” means the operator absence or machine breakdown, and “Var.” means the 
variation in processing times. The mark of “Yes§” means a heuristic can deal with a 
disturbance only with a modification of processing times, e.g. in Botta-Genoulaz (2000). 

 

  Computational Complexity  Flexibility 

 Opt.  Note  I/C OA/MB Var. 

NEH 3.33% O(mn2) O(mn3)  Yes Yes§ No 
Suliman 6.21% Intractable CDS first, then swap job pairs  Yes Yes§ No 
RAES 7.43% Intractable RA first, then swap jobs  Yes Yes§ No 
HoCha 8.06% Intractable CDS first, then swap job pairs  Yes Yes§ No 
RACS 9.17% Intractable RA first, then swap jobs  Yes Yes§ No 
Koula 9.22% O(m2n2) JA first, then job passing  Yes Yes§ No 
HunRa 9.69% O(mn+nlogn) 3 × Palmer's slope index  Yes Yes§ No 
CDS 9.96% O(m2n+mnlogn) JA  Yes Yes§ No 

Table 2.1 Summary of 8 heuristics for adaptive production scheduling and control 
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It is self-illustrative for optimality and flexibility of each heuristic in the above table. We only 
discuss the computational complexity in the following. NEH heuristic, in its original version, 
has a computational complexity of O(mn3), but, by calculating the performance of all partial 
sequences in a single step, its complexity is reduced to O(mn2) (Taillard, 1990). Both Suliman 
(Suliman, 2000) and HoCha (Ho & Chang, 1991) heuristics use CDS heuristic to generate an 
initial sequence, and then exchange job pairs to improve the performance, but they use 
different mechanisms for job pair swaps. Because the number of job pair swaps depends on 
the calculation of performance of each job pair, the computational complexities of Suliman and 
HoCha heuristics are intractable. Job swaps are also involved in RACS and RAES heuristics 
(Dannenbring, 1977), and their computational complexities are intractable too. These two 
heuristics are based on a rapid access (RA) heuristic (Dannenbring, 1977), which is a mixture of 
JA and Palmer’s slope index (Plamer, 1965). Koula heuristic (Koulamas, 1998) is not purely for 
permutation flow shop problems. The job passing is allowed in Koula heuristic, because Potts 
et al. (1991) point out that a permutation schedule is not necessarily optimal for all n-job m-
machine flow shop problems. Koula heuristic extensively uses JA to generate initial sequences, 
and then job passing is allowed to make further improvement. The overall computational 
complexity of Koula heuristic is O(m2n2). HunRa heuristic (Hundal & Rajgopal, 1988) is a 
simple extension of Palmer’s slope index. HunRa heuristic generates three sequences, one by 
Palmer’s slope index, the other two by calculating indices differently. Therefore, the HunRa 
heuristic has the same computational complexity as Palmer’s slope index, O(mn+nlogn). 
Usually, the number of jobs n is much larger than the number of machines m, thus, the 
computational complexity of O(m2n+mnlogn) for CDS heuristic is comparable with that of 
O(mn+nlogn) for HunRa heuristic. 

For an industrial instance in Gienow with 1396 jobs and 5 machines, it takes NEH heuristic 
more than 70 seconds to generate a sequence, which is too slow to keep up with the 
production pace in Gienow. Therefore, NEH and other five heuristics, with computational 
complexity higher than O(mn2), are not suitable for adaptive production scheduling and 
control in Gienow. It takes less than one second for CDS or HunRa heuristics to generate a 
sequence for the same industrial instance. However, their performance is not good from the 
optimality perspective, with more than 9% deviation on Taillard’s benchmarks.  

3. Adaptive production scheduling and control system 

For adaptive production scheduling and control, it is necessary not only to monitor the 
production on the shop floor, but also to give a solution in time when a disturbance 
happens. Our computer-aided system for adaptive production scheduling and control in 
OKP consists of a close-loop structure and a state space (SS) heuristic.  

3.1 The feedback control scheme 

For adaptive production scheduling and control, a computer-aided scheduling and control 
system has been proposed as illustrated in Fig. 3.1, which consists of SS heuristic and a 
simulation model called temporized hierarchical object-oriented coloured Petri nets with 
changeable structure (THOCPN-CS) (Li, 2006). High customization and dynamic 
disturbances in OKP demand for a great effort on a simulation model. Simultaneously, 
adaptive production control demands for solutions in a short time. Therefore, the unique 
feature of the THOCPN-CS simulation model makes it easy and flexible to simulate frequent 
changes in OKP for adaptive production control. Steps to achieve adaptive production 
scheduling and control in OKP are summarized as follows. 
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Fig. 3.1 A computer-aided production scheduling and control system 

Step 1. Assign possible manufacturing resources (e.g. operators/machines) to each stage, 
and hence form a task-resource matrix (TRM) with jobs. 

Step 2. Schedule the jobs by SS heuristic for offline scheduling, generating a sequence with 
the good performance for the next step. 

Step 3. Simulate the production by the THOCPN-CS model, and identify the bottleneck 
stage(s) and overflow of WIP inventories. Human schedulers may carry out some 
adjustment to smooth the production flow, such as re-allocate operators/machines 
in stage(s), take some jobs away and then re-schedule the rest jobs, and so on. 

Step 4. Re-schedule the jobs by both SS heuristic and human schedulers for offline 
scheduling. For online re-scheduling, re-schedule the jobs by either or both of the 
heuristic and scheduler, which depends on the time allowance for online re-
scheduling. 

Step 5. Repeat Steps 3 and 4 in the offline production scheduling phase until a satisfactory 
production schedule is obtained. This production schedule contains a job sequence 
and a number of operators/machines in each stage. In the adaptive production 
control phase, this step may be omitted, depending on specific requirements. 

Step 6. Deliver the production schedule to the shop floor and switch the control loop from 
the simulation model to the shop floor. 

Step 7. If any disturbance occurs on a shop floor, switch the control loop back to the 
simulation model, and go back to Step 3 if operators/machines re-allocation is 
necessary, or go back to Step 4. 

Through repeating the above-mentioned steps iteratively, the production on OKP shop 
floors can be adaptively scheduled and controlled.  

3.2 The state space heuristic 

SS heuristic is mainly for HFS problems. Because there are multiple operators in each stage 
and the capacity of WIP inventories is limited, SS heuristic is not only to min(Cmax), but also 
to maximize the utilization, max(Util). There are two concepts used in SS heuristic, a state 
space concept and a lever concept. 
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3.2.1 The state space concept 

Consider a hybrid flow line with 3 work stages and 2 operators in each stage (see Fig. 3.2).  

 

Fig. 3.2 A 3-stage flow line with 2 operators in each stage 

The operators in each stage follow a FCFS rule. Then there is a next available time of each 
stage, As, where As = min(as,k), for k = 1,…,OPTRs, in which as,k is the next available time of 
operator k in stage s, and OPTRs is the number of operators in stage s. There are S–1 time 
differences between S-stage available times. In the example above, there are two differences 
of the next available times, A2–A1, and A3–A2. If we regard such a difference as a space, 
SPACEs = As+1 – As for s = 1,…,S-1, then SPACEs is a time period available for stage s to finish 
a job without causing idle to an operator in stage s+1. If the completion time of job i in stage 
s is larger than the next available time of stage s+1, then such a job causes idle to stage s+1, 
IDLEi,s = ci,s – As+1 where ci,s is the completion time of job i in stage s, ci,s = max(As, ci,s-1) + pi,s. 
If the completion time of job i in stage s is smaller than the next available time of stage s+1, 
then there are two possibilities depending on whether WIP is full. If the WIP inventory, 
WIPs, is full, then a delay happens to operator k who processed job i in stage s, DELAYi,s = 
As+1 – cis. Such a delay means that, after finishing job i, operator k in stage s has to hold it in 
hand for DELAYi,s time units until there is a vacancy in WIPs. Therefore, the next available 
time of operator k in stage s is delayed. Alternatively, if WIPs is not full, job i goes into the 
inventory, and there is no IDLE or DELAY. 

The main idea of SS is to find a job that fits S–1 spaces, without causing IDLE or DELAY. 
After a job i is processed on a line, the next available times are changed, and the space is 
changed accordingly. Greater IDLE and DELAY are not good for production if objectives are 
to min(Cmax) and max(Util), while greater SPACE is good to some extent.  

From the foregoing description of SS, we can see IDLE and DELAY are evaluated according 
to job i and stage s, but SPACE is only evaluated by stage s. To make SPACE both job and 
stage dependant, there are two ways to model SPACE. One model is SPACEi,s = ci,s+1 – As, for 
s = 1,…,S-1. The other model is SPACEi,s = pi,s+1, for s = 1,…,S-1. In our current version of SS 
heuristic, we use the latter model of SPACE, reducing one calculation in iteration and 
increasing the computation speed for adaptive control. However, we illustrate the 
alternative model, SPACEi,s = ci,s+1 – As, in section 4 to show the flexibility of SS concept.  

3.2.2 The lever concept in SS 

From our previous research on TFS problems, we find that the lever concept is suitable for 
flow shop production (Li et al., 2011b), which means IDLE (or DELAY) in an earlier stage is 
worse for min(Cmax) objective than in a later stage. Consider a lever where force F takes effect 
and causes a torque of F×L, where F is the unit of force and L is the length of force arm. An 
S-stage flow line is modelled as a lever, and IDLEi,s or DELAYi,s has a torque effect 
manifested as IDLEi,s×LVR_IDLEs or DELAYi,s×LVR_DELAYs. 
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The lever concept for IDLE in SS is shown in Fig. 3.3. For an S-stage flow line, a job could 
cause at most S–1 times of IDLE. No IDLE is caused in stage 1 and an IDLE takes effect in the 
next stage. Therefore, the fulcrum of a lever for IDLE is set between stages S–1 and S, and 
the length of arm for an IDLE caused by stage s in stage s+1 is LVR_IDLEs = S–s. 

 

Fig. 3.3 A lever concept for IDLE in SS 

The lever concept for DELAY in SS is shown in Fig. 3.4. Like the number of possible IDLEs, 
there could be S–1 DELAYs, and no DELAY in stage S. But a DELAY takes effect in current 
stage s, whereas IDLE is in the next stage. Therefore, one unit of DELAY in stage s should be 
worse than one unit of IDLE in stage s. Thus, the length of arm for a DELAY is LVR_DELAYs 
= S–s+1, for s = 1,…,S-1. The fulcrum of a lever for DELAY is set in stage S. 

 

Fig. 3.4 A lever concept for DELAY in SS 

There is also a lever concept for SPACE in SS, shown in Fig. 3.5. The length of force arm for a 
space is LVR_SPACEs = s, for s = 1,…,S-1. The fulcrum of a lever for SPACE is set between 
stage 1 and stage 2, which means SPACE in a later stage is better than in an earlier stage. 

 

Fig. 3.5 A lever concept for SPACE in SS 

Therefore, all SPACEs, IDLEs, and DELAYs are converted to torques, that is, SPACE′i,s = pi,s+1 
× LVR_SPACEs, IDLE′i,s = IDLEi,s×LVR_IDLEs, and DELAY′i,s = DELAYi,s×LVR_DELAYs. The 

job selection scheme is ( )1 1 1
, , ,1 1 11

max ' ' '
S S S

i s i s i ss s si n
SPACE IDLE DELAY

− − −

= = =≤ ≤

⎡ ⎤
− +⎢ ⎥⎣ ⎦∑ ∑ ∑ , that is, to 

select the job with the maximum torque difference between SPACE′s and IDLE′s + 
DELAY′s.  
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3.2.3 Steps to achieve the SS heuristic 

Two items should be taken into consideration for initial job selection in SS. One is the 
number of initial jobs, and the other is the initial job selection scheme. The number of initial 
jobs is set as min(OPTRs, for s = 1,…,S). The reason is that if the number of initial jobs is 
smaller than min(OPTRs), then the first available time of a stage is zero since all operators 
are available at time zero; if the number is greater than min(OPTRs), then the number of 
(initial job number – min(OPTRs)) jobs are not selected by the state space concept. 

For initial job selection scheme, five 1×S vectors are introduced as follows: Vector_1 = [0]1×S; 

Vector_3 = [APTs]1×S, where APTs = ,1

N
i si

p
=∑ /n is the average processing time of stage s; 

Vector_5 = [max(pi,s), i = 1,…,n]1×S for s =1,…,S is the maximum processing time of stage s; 
Vector_2 = Vector_3/2; Vector_4 = Vector_3+[Vector_5–Vector_3]/2. The initial number of jobs 

are selected according to min( ,1
_ ( )

S
i ss

p Vector v s
=

−∑ ) for i = 1,…,n, which means the 

minimum absolute difference between one job’s processing times and the vector. 

Step 1. Determine the number of operators in each stage, i.e. OPTRs. (a): Calculate n and S. 
(b): Set an expected throughput rate, r, which means a job is to be finished in every r 
time units. (c): OPTRs = Roundup (APTs/r). (d): Set the start time of every operator 
to 0. (e): Put all of n jobs into a candidate pool. (f): Set an output sequence to be a 
1×n zero vector, Sequence_v. 

Step 2. Set the capacity of each of S–1 WIP inventories. 
Step 3. Calculate five vectors for initial job selection. 
Step 4. FOR v = 1:5, an iteration loop to select initial jobs according to one Vector_v. 
Step 5. Select a number of min(OPTRs, for s = 1,…,S) jobs according to Vector_v by the 

equation min( ,1
_ ( )

S
i ss

p Vector v s
=

−∑ ). Then put selected jobs into a Sequence_v and 

eliminate them from the candidate pool. Calculate the next available time of each 
operator, the next available time of each stage, namely STATE, and WIP inventory 
status, namely WIP_Status, which is initially a 1×(S–1) zero vector. 

Step 6. FOR i = min(OPTRs) + 1: n, an iteration loop to sequence rest n – min(OPTRs) jobs. 
Step 7. According to STATE and WIP_Status, calculate IDLE′is, DELAY′is and SPACE′is. 

Step 8. Select job i according to ( )1 1 1
, , ,1 1 11

max ' ' '
S S S

i s i s i ss s si n
SPACE IDLE DELAY

− − −

= = =≤ ≤

⎡ ⎤
− +⎢ ⎥⎣ ⎦∑ ∑ ∑ , 

and then put such job number into Sequence_v and eliminate it from the candidate 
pool. 

Step 9. Calculate intermediate completion time of a partial schedule Sequence_v, update 
WIP_Status, and update STATE. 

Step 10. END i. Calculate the utilization of a line. (a): Calculate utilization of each stage first, 

Utils = ( ,1

n
i si

p
=∑ /OPTRs)/(cnks–c1k’s-1), c1k0 = 0, s = 1,…,S, in which cnks is the 

completion time of the last job in stage s, and c1k’s-1 is the start time of the first job in 
stage s, i.e. the completion time of the first job in stage s-1. (b): Calculate the average 
utilization of each stage, i.e. Util = average (Utils), s = 1,…,S. 

Step 11. ND v. Output each of five sequences and related makespan and utilization, and the 
minimum makespan and the maximum utilization are regarded as the final 
performance of SS. 
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3.2.4 The computational complexity of SS 

The computational complexity of SS heuristic consists of two parts, job selection and 
makespan calculation.  

For job selection, if the state of a flow line is known, then to select one out of n unscheduled 
jobs takes S×n operations, which means the computational complexity for adaptive control 
is O(Sn). As n decreases from n to 1, the overall selection of n jobs takes S×n×(n+1)/2 
operations. Although SS heuristic generates five sequences for an n by S HFS problem, the 
computational complexity of SS heuristic for job selection is O(Sn2), because only the highest 
order of operations is counted in computational complexity. 

For makespan calculation, we can model an n-job S-stage HFS problem by a 2-dimension 
matrix, where the row dimension is for jobs, and the column dimension for stages. The 
makespan calculation could be carried out along the column dimension. It means that, if the 
input sequence of n jobs in stage 1 is known, then the output sequence of n jobs in stage 1 (or 
the input sequence in stage 2) can be calculated; the output sequence is in a non-descending 
order of completion times of n jobs; and then the output sequence in stage 2 can be 
calculated, and so on, finally the output sequence in stage S can be calculated. However, the 
capacities of WIP inventories are limited, which means the completion times of jobs in stage 
s are constrained by the next available times of operators in stage s+1. For example, when 
calculating the output sequence of stage s, if a job i’s completion time in stage s causes an 
overflow of WIPs, which means at that time the WIPs is full and there is no operator 
available in stage s+1 to process a job in WIPs, then a DELAY happens to such job i. This 
DELAY means the job i’s completion time is delayed to a later time, and so is the next 
available time of operator k, who processes the job i in stage s. Consequently, the DELAY 
affects the completion times of all jobs following job i in stage s, and the completion times in 
the previous stage need to be checked because of the limitation on WIP inventories. In an 
extreme situation, when a DELAY happens in stage S-1, the job completion times in all 
previous stages have to be recalculated. Because of the recalculations, it is time consuming 
to calculate makespan along the column dimension. 

For the makespan calculation along the row dimension, as n increases from 1 to n, the 
computational complexity is also O(Sn2), although makespan calculation is carried out five 
times. Therefore, the overall computational complexity of the SS heuristic is O(Sn2). 

For an industrial instance with 1396 jobs and 5 machines in Gienow, the computation time of 
SS heuristic is 70.67 seconds, much longer than 782 milliseconds for CDS heuristic. 
However, the 782 milliseconds are only for CDS to generate sequences. Taking the 
makespan calculation into consideration, CDS will have the same computational complexity 
as SS. Moreover, from the adaptive control perspective, the computational complexity of SS 
heuristic is only O(Sn), which means it takes only 10.12 milliseconds for SS heuristic to select 
the next job dealing with disturbances in Gienow for this instance. 

4. Case studies 

The computational complexities of some existing heuristics and SS heuristic are analyzed in 
sections 2 and 3 respectively. In this section, the comparison and evaluation of heuristics are 
mainly based on optimality and flexibility. Two kinds of case studies, with and without 
disturbances, are carried out on Taillard’s benchmarks (Taillard, 1993) and on an industrial 
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case. Section 4.1 is for without disturbances, Section 4.2 is for with disturbances, and at last 
Section 4.3 gives a comparison between SS heuristic and Johnson’s algorithm (JA). 

4.1 Case studies without disturbances 

4.1.1 Fm/prmu/Cmax on Taillard’s benchmarks 

For traditional permutation flow shop scheduling problems, the deviation (DEV) from the 
best known upper bounds is used to evaluate the performance of a heuristic, where DEV = 
(Cmax of a heuristic – The upper bound) ÷ (The upper bound) in percentage. The results of the 
deviation studies for CDS, NIS and SS, and a version of SS without the lever concept, 
SSnoLVR, heuristics are shown in Table 4.1.  

In Table 4.1, the column “Scale” means the size of problems. For example, 20*5 means 20-job 
5-machine problems. The column “Inst” means the number of instances in each scale. 
Columns 3 to 6 represent the average deviation of each of the CDS, NIS, SS, and SSnoLVR, 
heuristics respectively. We can see that SS heuristic has the smallest total average deviation 
for all 120 instances in Taillard’s benchmarks, at 8.11%, NIS heuristic ranks the second at 
9.01%, and CDS heuristic ranks the last at 11.28%. We can also see from Table 4.1 that the 
lever concept is suitable for flow shop production to minimize the makespan. The SS 
heuristic is better than the SSnoLVR heuristic, with a deviation of 8.11% versus 8.80%. To 
further compare the performance of the SS heuristic with the CDS heuristic’s, a t-test is 
carried out using a function of TTEST (CDS results, SS results, 2, 1) in excel. The the SS 
heuristic’s p-value is 3.20 × 10-5, which means the improvement is extremely significant. 
 

Scale Inst CDS NIS SS SSnoLVR 

20*5 10 9.05 7.41 9.14 7.80 
20*10 10 13.48 9.46 10.18 13.13 
20*20 10 11.07 7.30 10.64 14.02 
50*5 10 7.15 4.96 3.60 3.38 
50*10 10 14.46 11.57 9.67 9.24 
50*20 10 18.13 14.50 16.15 16.12 
100*5 10 5.25 4.70 1.60 1.75 

100*10 10 9.51 8.27 6.71 6.05 
100*20 10 16.45 13.50 11.83 15.71 
200*10 10 7.55 6.61 3.09 2.48 
200*20 10 13.75 11.33 9.10 11.31 
500*20 10 9.56 8.44 5.63 4.60 

Total Average 11.28 9.01 8.11 8.80 
MAX 21.13 16.62 20.83 22.02 
MIN 0.66 0.86 0.78 0.60 

Table 4.1 Average deviations from Taillard’s benchmarks for Fm/prmu/Cmax problems (%). 

4.1.2 Fm/nwt/Cmax on Taillard’s benchmarks 

For traditional no wait flow shop problems, an improvement (IMPR) over NIS heuristic is 
used to evaluate the performance of CDS and SS heuristics based on Taillard’s benchmarks. 
IMPR = (Cmax of NIS – Cmax of CDS or SS) ÷ (Cmax of NIS) in percentage is shown in Table 4.2. 
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Scale Inst CDS SS 

20*5 10 -0.32 2.01 
20*10 10 -2.59 -2.86 
20*20 10 -3.50 -2.71 
50*5 10 0.29 8.29 
50*10 10 -1.29 0.49 
50*20 10 -2.42 -1.67 
100*5 10 -0.27 9.20 
100*10 10 -0.61 3.78 
100*20 10 -1.00 -0.02 
200*10 10 -0.22 5.59 
200*20 10 -0.41 1.69 
500*20 10 -0.10 3.46 

Total Average -1.04 2.27 

Table 4.2 Improvement over NIS heuristic for Fm/nwt/Cmax problems (%) 

In Table 4.2, CDS heuristic performs 1.04% worse than NIS heuristic. In contrast, SS 

performs better than NIS on average, with an improvement of 2.27%. For the t-test based on 

12 averages, SS heuristic’s p-value is 0.0739. However, if the t-test is based on 120 individual 

cases, the SS’ p-value is 2.07 × 10-11, which means an extremely significant improvement. 

Moreover, we recognize that for HFS no wait problems the improvement of SS over NIS will 

shrink as the number of operators/machines in each stage increases. For example, if the 

number of operators in each stage is the same as the number of jobs, then Cmax is fixed as 

max ( ,1

S
i ss

p
=∑ ) for i = 1,…,n, no matter for no wait or no pre-emption flow shop problems. 

4.1.3 FFs/nwt/Cmax on Taillard’s benchmarks 

For hybrid no wait flow shop problems with identical parallel operators/machines in each 
stage, two operators/machines are assigned to each stage. The improvement of CDS and SS 
heuristics over NIS heuristic is shown in Table 4.3. 
 

Scale Inst CDS SS 

20*5 10 -1.71 -2.66 
20*10 10 -2.72 -2.02 
20*20 10 -3.06 -2.88 
50*5 10 -0.77 3.34 
50*10 10 -1.50 -2.18 
50*20 10 -3.48 -2.04 
100*5 10 0.21 7.15 
100*10 10 -0.55 0.60 
100*20 10 -1.75 -1.13 
200*10 10 -0.15 3.54 
200*20 10 -0.50 0.97 
500*20 10 0.01 2.00 

Total Average -1.33 0.39 

Table 4.3 Improvement over NIS heuristic for FFs/nwt/Cmax problems (%) 
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For such hybrid no wait flow shop problems with two operators/machines in each stage, SS 
heuristic has a small improvement of 0.39% over NIS heuristic, and CDS heuristic still 
performs worse, -1.33%. For the t-test, SS heuristic’s p-value is 0.6739, meaning that its 
improvement over NIS heuristic is not statistically significant. 

4.1.4 FFs/FCFS/Cmax on Taillard’s benchmarks 

 

Scale Inst min(Cmax) max(Util) 

20*5 10 -2.39 7.33 
20*10 10 0.27 5.66 
20*20 10 -2.65 -0.02 
50*5 10 2.87 4.90 
50*10 10 2.47 6.17 
50*20 10 0.08 1.45 
100*5 10 2.42 3.47 
100*10 10 1.34 4.69 
100*20 10 1.54 2.43 
200*10 10 3.14 3.96 
200*20 10 2.03 4.41 
500*20 10 2.79 3.14 

Total Average 1.16 3.96 

Table 4.4 Improvement over CDS heuristic for FFs/FCFS/Cmax problems (%) 

For HFS problems with the FCFS rule applied to jobs in WIP inventories, two variables are 
set. One is a throughput rate r = 31, used to calculate the number of operators in each stage, 
where OPTRs = Roundup (APTs/r). The average processing time of each stage ranges from 
30.75 to 64.40 for all of 120 instances in Taillard’s benchmarks, therefore, OPTRs varies from 
1 to 3 for each stage. Another variable is the capacity of WIP inventories. Different 
configurations of WIP inventories have different impacts on production (Vergara & Kim, 
2009). For the ease of case study, the capacity of each WIP inventory is set the same, WIPs = 
5, even though in theory each could be set to a different value. The calculation of processing 
times in CDS is p’i,s = pi,s/OPTRs, s = 1,…,S (Botta-Genoulaz, 2000). For the objective of 
min(Cmax), the improvement (IMPR) of SS heuristic over CDS heuristic is used to evaluate 
performance, where IMPR1 = (Cmax of CDS – Cmax of SS) ÷ (Cmax of CDS) in percentage. For the 
objective of max(Util), the improvement of SS heuristic over CDS heuristic is IMPR2 = (Util 
of SS – Util of CDS) ÷ (Util of CDS). The results are shown in Table 4.4. 

For the objective of max(Util), SS heuristic has an average 3.96% improvement over CDS 
heuristic on Taillard’s benchmarks, and for the objective of min(Cmax), SS heuristic has an 
average 1.16% improvement. For the t-test, SS heuristic’s p-value is 0.0666 for min(Cmax) 
meaning the improvement over CDS heuristic is not quite statistically significant. However, 
for max(Util), the p-value of SS heuristic is 3.34 × 10-5, an extremely significant improvement. 

4.1.5 An industrial case study 

To validate the SS heuristic in a real setting, an industrial case study was carried out in 
Gienow Windows and Doors, Canada. This case consists of 1396 jobs on a flow line with 5 
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stages for one-day production. These jobs are delivered to customers at a predetermined 
time in 28 batches. Each batch of products is destined for customers in a given geographic 
area. Using data provided by Gienow, SS heuristic produces the results shown in Table 4.5. 
In the SS heuristic, the SPACE is modelled as SPACEi,s = ci,s+1 – As. 
 

 Gienow SS IMPR  Gienow SS IMPR 

1 1,795 1,711 84 16 1,489 1,489 0 
2 1,458 1,444 14 17 1,477 1,477 0 
3 1,698 1,697 1 18 1,743 1,712 31 
4 2,292 2,261 31 19 1,751 1,745 6 
5 1,570 1,556 14 20 1,434 1,430 4 
6 1,798 1,753 45 21 1,587 1,570 17 
7 1,420 1,420 0 22 1,587 1,393 194 
8 1,573 1,567 6 23 1,196 1,165 31 
9 1,828 1,805 23 24 1,094 1,083 11 
10 1,676 1,676 0 25 1,362 1,362 0 
11 1,568 1,568 0 26 1,281 1,281 0 
12 1,691 1,691 0 27 923 923 0 
13 1,465 1,465 0 28 857 851 6 
14 1,364 1,353 11 Total 42,300 41,771 529 
15 1,323 1,323 0 Percent   1.25% 

Table 4.5 An industrial case study 

As shown in Table 4.5, Gienow used 42,300 time units to finish 1396 jobs. The production of 
1396 jobs in 42,300 time units was achieved by Gienow’s original schedule, which was 
generated by an experienced production scheduler in Gienow. SS heuristic can generate new 
schedules, respectively reducing 42,300 time units to 41,771, a 1.25% improvement in 
productivity. Such improvement translates into the production of 17 additional products 
daily, or more than $5000 revenue per day. For the t-test, SS heuristic’s p-value is 0.0164, 
which means the improvement is very significant. 

4.2 Case studies with disturbances 

To test the suitability of SS heuristic to adaptive production control, a case study of operator 
absence is carried out on Taillard’s benchmarks. Modeling operator absence is the same as 
modeling machine breakdown. We assume that, when a half of jobs are finished, one 
operator is absent in the middle stage of a flow line, specifically in stage 3, 6, or 11 according 
to the scale of instances in Taillard’s benchmarks. For the remaining half of the jobs, if the 
production is carried on according to the original schedule when such disturbances happen 
to the shop floor, then the completion time is recorded as Original. If adaptive control is 
applied, that is, using SS heuristic to re-schedule the remaining jobs, then the completion 
time is recorded as Adaptive. The improvement of adaptive control over no adaptive control 
is used to evaluate the performance, i.e. (Original – Adaptive) ÷ (Original) in percentage. 

To show the potential of the SS heuristic, case studies on operator absence are carried out 
under the two definitions of SPACE, SPACEi,s = pi,s+1 and SPACEi,s = ci,s+1 – As. Moreover, a 
simple optimization method is also integrated with the SS heuristic.  

www.intechopen.com



 
Adaptive Production Scheduling and Control in One-Of-A-Kind Production 

 

131 

4.2.1 SPACEi,s = pi,s+1  

The results are given in Table 4.6. As we see, adaptive control is slightly better than no 
adaptive control with a 0.10% improvement for the SS heuristic if SPACEi,s = pi,s+1.  
 

Scale Inst SS 

20*5 10 2.46 
20*10 10 1.81 
20*20 10 3.01 
50*5 10 0.88 
50*10 10 2.17 
50*20 10 -2.80 
100*5 10 0.39 
100*10 10 0.29 
100*20 10 -4.18 
200*10 10 -0.41 
200*20 10 -1.25 
500*20 10 -1.21 

Total Average 0.10 

Table 4.6 Adaptive control over no adaptive control, where SPACEi,s = pi,s+1 

4.2.2 SPACEi,s = ci,s+1 – As  

The results are given in Table 4.7. As we see, for SS heuristic, if we model SPACEi,s = ci,s+1 – 
As, the adaptive control has a 2.02% improvement over no adaptive control.  
 

Scale Inst SS 

20*5 10 7.75 

20*10 10 6.62 

20*20 10 -8.49 

50*5 10 1.23 

50*10 10 3.10 

50*20 10 2.99 

100*5 10 0.22 

100*10 10 3.26 

100*20 10 4.50 

200*10 10 0.55 

200*20 10 1.64 

500*20 10 0.86 

Total Average 2.02 

Table 4.7 Adaptive control over no adaptive control, where SPACEi,s = ci,s+1 – As 

4.2.3 Integration with an optimization method 

There are two effects in SS heuristic impacting the final production performance. SPACE is 

good for production but “IDLE & DELAY” is bad. We can introduce a weighting factor, α, 
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into SS heuristic, and then sequence jobs according to max[(1–α)×
1

1
'

S
iss

SPACE
−

=∑ – 

α×(
1

1
'

S
iss

IDLE
−

=∑ +
1

1
'

S
iss

DELAY
−

=∑ )]. As α changes from 0 to 1 with increments of 0.1, the 

performance of SS heuristic, with SPACEi,s = pi,s+1, is shown in Table 4.8. The columns 

represent the performance of each α integrated with SS heuristic. A weight α = 0.0 means no 

IDLE or DELAY is taken into consideration to sequence jobs, and α = 1.0 means no SPACE. 

We can see that SPACE affects the production more than IDLE or DELAY, where α = 0.1 has 

the greatest improvement of 2.77%. 
 

Scale Inst 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

20*5 10 -0.59 0.75 2.17 3.12 1.97 2.46 -2.31 -7.08 -7.68 -9.25 -2.30 

20*10 10 0.67 0.77 0.56 5.01 3.68 1.81 -2.86 -4.62 -2.11 -1.59 -4.27 

20*20 10 7.50 10.0 8.69 6.74 6.15 3.01 0.00 -9.46 -9.12 -8.99 -9.79 

50*5 10 0.22 1.11 1.17 0.97 1.55 0.88 0.15 -1.66 -1.33 -1.24 -0.64 

50*10 10 5.50 4.97 4.06 2.80 2.75 2.17 -4.35 -7.10 -6.20 -8.76 -8.89 

50*20 10 1.65 3.67 1.94 2.90 -5.41 -2.80 -5.53 -5.22 -7.50 -0.22 -1.07 

100*5 10 0.43 0.88 0.36 0.49 0.58 0.39 0.17 -0.98 -1.09 -1.16 -2.24 

100*10 10 3.05 3.02 2.20 2.42 1.05 0.29 -2.35 -1.97 -2.76 -1.42 -2.50 

100*20 10 5.94 5.24 5.79 4.76 -0.39 -4.18 -5.26 -5.76 -6.61 -5.73 -7.49 

200*10 10 0.47 0.47 0.05 0.27 0.15 -0.41 -0.75 -1.26 -1.10 -1.58 -1.15 

200*20 10 1.53 2.24 2.39 0.82 -0.15 -1.25 -1.44 -1.48 -2.34 -2.36 -1.98 

500*20 10 0.17 0.18 0.16 -0.02 -0.64 -1.21 -1.63 -1.69 -1.66 -1.59 -1.54 

Total average 2.21 2.77 2.46 2.52 0.94 0.10 -2.18 -4.02 -4.96 -5.33 -6.15 

Table 4.8 Adaptive control with α over no adaptive control, where SPACEi,s = pi,s+1 

4.2.4 Case studies on variation in processing times 

It is normal to have variation in processing times, especially for the production of highly 
customized products and with manual operations. Thus, it is necessary to test the suitability 
of SS heuristic to the disturbance of variation in processing times. In Gienow, processing 
times of products are quoted by the company standards.  

For variation in processing times in the industrial case, we assume that, initially, we have a 
matrix of quoted processing times of n jobs in S stages, and we do not know the real 
processing time beforehand, because the perfect production information in OKP can be 
available only after the production (Wortmann, 1992). If we define this matrix as B, which 
means before production, we carry out the offline scheduling according to B to get a 
sequence SB. We might setup due dates based on the performance of SB, that is, the original 
performance, PO. After the actual production, we have a matrix of real processing times of n 
jobs in S stages, i.e. matrix A. 

During the production, when variation in processing times happens and the production is 
carried out according to the sequence SB, the performance is PB. It means no adaptive 
control. It is difficult to use CDS heuristic for such disturbance, because we only know part 
of matrix A for finished jobs, but not the rest for unfinished jobs. However, we can 
adaptively re-schedule the rest jobs by SS heuristic, because the actual processing times of 
finished jobs affect the space, although we only know matrix B for the unfinished jobs. After 
one job has been produced, we use SS heuristic to select a job from remaining jobs according 
to processing times of unfinished jobs in matrix B and the actual space created by finished 
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jobs. Consequently, the performance of adaptive control by SS heuristic is PA. The SPACE of 
SS heuristic is modeled as SPACEi,s = ci,s+1 – As. We compare the performance of no adaptive 
control PB or adaptive control PA with the original performance PO, by: Diff_OB = (PB – 
PO) ÷ PO and Diff_OA = (PA – PO) ÷ PO, both of which are in percentage. Four ranges of 
normal distribution are introduced into the processing times in the industrial case, [-5%, 
5%], [0%, 10%], [0%, 25%] and [0%, 50%]. The results are summarized in Tables 4.9.  

 

  Diff_OB Diff_OA 

[-5%, 5%] 

Average 0.83 0.27 

MAX 3.76 1.17 

MIN 0.01 0.03 

[0%, 10%] 

Average 5.45 5.12 

MAX 7.89 5.88 

MIN 4.00 4.47 

[0%, 25%] 

Average 13.08 12.76 

MAX 15.72 15.69 

MIN 9.72 9.37 

[0%, 50%] 

Average 25.37% 24.98 

MAX 28.75% 28.19 

MIN 20.94% 20.38 

Table 4.9 Adaptive control for variation in processing times 

From Table 4.9, we can see that adaptive control performs better than no adaptive control 
for all four ranges of variation in processing times. Moreover, SS heuristic is stable to such 
disturbance, because its average difference of performance is close to the expected value of 
variation in four ranges respectively.  

4.3 A case study on a 2-machine flow shop problem 

To reveal the rationale and coherent logic of the state space concept, a scaled down version 
of SS heuristic is compared with JA for a 2-machine flow shop problem, F2/prmu/Cmax. For 
F2/prmu/Cmax problems, the lever concept has no effect on the job selection in SS heuristic. 
This is because for this type of F2/prmu/Cmax problems, the WIP inventory between 
machines 1 and 2 is unlimited, thus no DELAY is taken into consideration. In addition, the 
length of force arm for SPACE or IDLE equals to one. However, the state space concept can 
yield different job sequences than JA. A numerical example is provided in Table 4.10. 
 

 M1 M2 

Job 1 5 20 
Job 2 20 10 
Job 3 10 15 
Job 4 15 12 

Table 4.10 A 2-machine flow shop example 

JA sequences jobs according to the following scheme. If min {pi,1, pi+1,2} ≤ min {pi+1,1, pi,2}, then 
job i should be processed earlier than job i+1. Therefore, for the example in the above table, 
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JA generates a sequence of [Job 1, 3, 4, 2] with Cmax = 62. According to the state space concept 
(but not exactly SS heuristic), and using JA for the initial job selection, two additional 
sequences can be obtained, [Job 1, 2, 3, 4] and [Job 1, 4, 3, 2], both of which have Cmax = 62, 
and are different from the one generated by JA. Therefore, it is obvious that JA uses a 
sufficient condition for F2/prmu/Cmax problems, but not necessary in some cases. The state 
space concept can yield different sequences than JA with the same level of optimality, and 
hence can provide greater opportunities for improvement as the core of a more elaborate 
heuristic for adaptive production scheduling and control. 

5. Conclusions and future work 

One-of-a-kind production (OKP) challenges production scheduling differently from mass 
production, because of high customer involvement in OKP. Especially, it challenges 
production control severely, because of dynamic disturbances. Traditionally, offline 
production scheduling is separated from the online adaptive production control. Dynamic 
disturbances in OKP fail the production schedule, which are generated by heuristics that are 
developed based on strong assumptions for offline scheduling (MacCarty & Liu, 1993). 
Accordingly, adaptive production control is in need to deal with disturbances. Currently, 
the adaptive production control in OKP companies is carried out by shop floor managers 
using priority dispatching rules (PDRs) and their experience. However, the performance of 
PDRs is poor on most scheduling objectives (Ruiz & Maroto, 2005), and the experience 
might be good for local optimization but definitely lacks global optimization for the overall 
production. Therefore, the adaptive production scheduling and control is essential and 
indispensable to improve the production efficiency in OKP. 

In regards to three criteria of optimality, computational complexity, and flexibility to 
evaluate a heuristic for adaptive production control (Li et al., 2011a), the state space (SS) 
heuristic is the better than most existing heuristics. For optimality, SS heuristic outperforms 
the most popular alternative heuristics (CDS, NIS) against Taillard’s benchmarks no matter 
for Fm/prmu/Cmax, Fm/nwt/Cmax, FFs/nwt/Cmax and FFs/FCFS/Cmax problems. In addition, 
the production schedule generated by SS heuristic outperforms Gienow’s original schedule, 
improving Gienow’s daily productivity by 1.25%. For computational complexity, 
O(m2n+mnlogn) of CDS heuristic is simpler one than O(mn2) of SS heuristic for offline 
scheduling. However, if taking sequence evaluation into consideration, they have the same 
computational complexity of O(mn2). In addition, for online adaptive production control, the 
computational complexity of SS decreases to O(mn), but that of CDS keeps the same. For 
flexibility, SS heuristic is more flexible than other heuristics. SS heuristic can deal with all 
three typical disturbances proposed by Pinedo (2002), job insertion or cancellation, operator 
absence or machine breakdown, and variation in processing times, whereas, CDS cannot 
deal with variation in processing times. Although NEH heuristic has the best performance 
for Fm/prmu/Cmax problems, its inflexible procedure to construct a job sequence renders it 
little flexibility to deal with disturbances. Moreover, SS heuristic is in the phase of index 
development, a phase that is beneficial for heuristic development in the other two phases 
(Framinan et al. 2004).  

As discussed in this chapter, adaptive production scheduling and control in OKP 
challenges nearly all existing scheduling algorithms and heuristics, and almost all 
manufacturing companies are facing a certain level of disturbances, such as unreliable 
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supplies, unexpected operator absence, machine breakdowns, etc. There is still a gap 
between the theoretical research and industrial applications. Industrial applications 
require further understandings and studies of production scheduling and control. This 
draws the following future work. (1) Production planning on the company level should be 
integrated with production scheduling and control on the shop floor level. Production 
planning provides a company the production capacity that is a constraint for adaptive 
production scheduling and control. Meanwhile, the adaptive production scheduling and 
control requires frequent re-planning according to the production progress under 
unexpected disturbances. This is to meet due dates of customer orders or provide better 
estimated lead-times. The synergy and co-optimization between these two levels are 
necessary and should be further researched. (2) Consequently, adaptive production 
scheduling and control for non-deterministic problems is inevitable. Stochastic modeling 
or simulation for non-deterministic production problems is a valuable research topic and 
lucrative. (3) It is critical to integrate material flows on shop floors into a supply chain to 
successfully achieve adaptive production scheduling and control in OKP. This is in fact an 
urgent research topic to be studied.  
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