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1. Introduction 

The pathogenesis of acute and chronic alcohol consumption is complex with diverse 
consequences in different tissues. Alcohol abuse is associated with a continuum of liver 
abnormalities ranging from steatosis or fat deposition, steatohepatitis or fat plus 
inflammation to cirrhosis and hepatocellular carcinoma. The progression of alcohol-induced 
liver damage involves both parenchymal and non-parenchymal cells of the liver. The 
signaling pathways affected by direct or indirect alcohol exposure range from oxidative 
stress mechanims, metabolism related effects, inflammation, and apoptosis. Understanding 
the interactions of inter- and intra-cellular signaling pathways in the liver during alcohol 
exposure will aid in identification of new integrative approaches as it relates to alcoholic 
liver disease and provide potential new directions to develop therapeutic target 
intervention. The goal of this chapter is to review signaling pathways related to oxidative 
stress and inflammatory responses modulated by alcohol in parenchymal and non-
parenchymal cells of the liver important to ALD. Here, we will first review liver cell types 
involved in alcohol-induced oxidative stress and inflammation resulting in hepatic injury 
and then discuss the signaling pathways identified in ALD.  

2. Cell types involved in ALD 

Research done, so far, on the effects of cellular stress pathways and immune cell activation 

during ALD indicates involvement of different liver cell types. Liver cells such as 

hepatocytes, Kupffer cells, endothelial cells, etc., are directly or indirectly affected by 

alcohol. Alcohol-induced oxidative stress in the liver microenvironment affects not only the 

resident liver cells but also circulating immune cells such as dendritic cells, neutrophils, T 

cells and bone-marrow derived stem cells that migrate to the liver, contributing to 

inflammatory responses and thus propagating alcoholic liver injury. 

2.1 Hepatocytes 

Hepatocytes make up 70-80% of the total mass of the liver and are involved in protein 

synthesis, protein storage and transformation of carbohydrates, synthesis of cholesterol, bile 

salts and phospholipids, and detoxification, modification and excretion of exogenous and 
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endogenous substances. Chronic alcohol consumption has long been associated with 

progressive liver disease towards the development of hepatic cirrhosis and subsequent 

increased risk for developing hepatocellular carcinomas. Many of the deleterious effects of 

alcohol can be attributed to its metabolism primarily occurring in hepatocytes (Lu & 

Cederbaum, 2008). 

Acute and chronic alcohol exposure increases the production of reactive oxygen species 
(ROS), lowers cellular antioxidant levels, and enhances oxidative stress in the liver 
(Cederbaum et al., 2009). Ethanol-induced oxidative stress plays a major role in the 
mechanisms by which ethanol sensitizes to liver injury (Cederbaum et al., 2009). In isolated 
hepatocytes, this damaging effect of chronic ethanol is evident in that a greater sensitivity to 
proapoptotic challenges is observed, more specifically, to the cytotoxic actions of tumor 
necrosis factor ┙ (TNF┙) (Hoek & Pastorino, 2004). The presence of alcohol results in an 
oxidative environment and TNF┙ mediated hepatocyte death (Pastorino & Hoek, 2000). 
Ethanol administration also facilitates apoptosis by increasing the amount of Fas protein 
expression on hepatocytes (McVicker et al., 2006). Besides ROS, reactive nitrogen species 
(RNS) generated in response to inducible nitric oxide synthase (iNOS) activation in 
hepatocytes during chronic alcohol exposure also contributes to liver injury (McKim et al., 
2003). iNOS knock-out mice were protected from ALD (McKim et al., 2003). Ethanol 
promotes oxidative stress, not only by increased formation of ROS but also depletion of anti-
oxidative defenses in hepatocytes. For instance, depletion of glutathione from mitochondria 
leads to increased accumulation of ROS (Fernandez-Checa et al., 1997).  

The induction of mitochondrial dysfunction is also linked to the metabolism of alcohol by 
cytochrome P4502E1 (CYP2E1) and increased oxidative stress (Cederbaum et al., 2009). 
Primary hepatocytes and rat hepatoma cells when treated with ethanol led to an increase in 
ROS/RNS and loss of mitochondrial function due to damaged mitochondrial DNA and 
ribosomes and subsequent inhibition of mitochondrial protein synthesis (Mantena et al., 
2007). These studies suggest that alcohol induced oxidative stress pathways in hepatocytes 
set the stage for proinflammatory cytokine induced cell death and alcoholic liver injury. 

2.2 Kupffer cells or liver resident macrophages 

Kupffer cells, non-parenchymal cells of the liver, are specialized macrophages located in the 
liver and their activation plays a central role in early ethanol-induced liver injury. In the 
universally accepted “two-hit” model of alcoholic liver injury, recognition of gut-derived 
endotoxin by the Kupffer cells is the first step leading to induction of pro-inflammatory 
responses (Thurman et al., 1999). Engagement of endotoxin with the Toll-like receptor 4 
(TLR4) and CD14 receptor on Kupffer cells activates the down-stream kinases, interleukin-1 
receptor associated kinase (IRAK) and I-kappa-B kinase (IKK) and transcription factor 
nuclear factor-κB (NFκB) and induction of pro-inflammatory cytokines such as TNF┙ 
(Takeda & Akira, 2005). Kupffer cells produce reactive oxygen species (ROS) in response to 
chronic alcohol exposure as well as endotoxin (Kono et al., 2000). Alcohol-induced 
sensitization to lipopolysaccharide (LPS) has been attributed to ROS production (Thakur et 
al., 2006a). Previous studies from Nagy and colleagues (Nagy, 2003) show that chronic 

ethanol feeding increases the sensitivity of Kupffer cells to LPS, leading to increased TNF 
expression. This sensitization can be reversed by treatment of primary cultures of alcohol-
exposed Kupffer cells with adiponectin, an anti-inflammatory adipokine (Thakur et al., 
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2006b). Globular adiponectin prevents LPS-stimulated TNF┙ expression in Kupffer cells 
through the activation of the interleukin (IL)-10/STAT3/HO-1 (heme oxygenase-1) pathway 
(Mandal et al., 2010). In vivo pretreatment with diphenyliodonium (DPI), an inhibitor of 
NADPH oxidase, in alcohol-fed rats, normalized ROS production, decreased LPS-induced 

extracellular signal-regulated kinase (ERK1/2) phosphorylation and inhibited TNF 
production in Kupffer cells (Kono et al., 2000; Thakur et al., 2006b). The importance of toll-
like receptors (TLR) particularly TLR4 expressed on Kupffer cells plays a major part in ALD. 
Based on studies so far, it is perceivable that increased sensitization of Kupffer cells to 
endotoxin/LPS resulting in enhanced inflammatory responses contributes to alcoholic liver 
disease.  

2.3 Dendritic cells 

Dendritic cells (DCs) are central mediators of immune regulation, yet little is known about 

liver DCs. Myeloid DCs (mDCs), one of the most potent antigen-presenting cells (APC) in 

vivo, represent a terminally differentiated stage of monocytes (Palucka et al., 1998). Myeloid 

dendritic cells (mDCs) capture antigens in the periphery and then migrate to the lymphoid 

organs to initiate immunity (Steinman & Inaba, 1999). Alcohol-treated mDCs show reduced 

IL-12, increased IL-10 production, and a decrease in expression of the costimulatory 

molecules CD80 and CD86 (Mandrekar et al., 2004). Cytokine profiles of mDCs isolated 

from ethanol-fed mice indicate enhanced interleukin (IL)-1┚ and IL-10 and decreased TNF┙, 

IL-12, interferon gamma (IFN), and IL-6 secretion (Aloman et al., 2007; Eken et al., 2011). 

Altered DC function is one of the major changes induced by long-term alcohol consumption, 

which subsequently impairs the cellular immune response. Chronic alcoholism in the 

absence of liver disease in patients is associated with an increased secretion of inflammatory 

cytokines by peripheral blood dendritic cells (Laso et al., 2007). Hepatic DCs from chronic 

alcohol-fed mice are less affected than splenic DCs, which exhibit impaired functional 

maturation following CpG stimulation (Lau et al., 2006). Thus, alcohol exerts a negative 

influence on innate and adaptive immunity leading to severe immunosupression (Lau et al., 

2009). Inflammatory responses mediated by increased TNF┙ in liver fibrosis were associated 

with altered dendritic cell function (Connolly et al., 2009). Future studies are needed to 

identify signaling mechanisms contributing to DC dysfunction during chronic alcohol 

exposure. 

2.4 Neutrophils 

Neutrophils, the most abundant phagocyte constitutes 50% to 60% of the total circulating 
white blood cells and can secrete products that stimulate monocytes and macrophages. 
Neutrophil secretions increase phagocytosis and the formation of reactive oxygen 
compounds involved in intracellular killing (Soehnlein et al., 2008). In the alcoholic liver, 
damage by neutrophils can contribute to injury in response to the release of endotoxins 
produced by bacteria (Ricevuti, 1997). Neutrophil dysfunction in alcoholic hepatitis is 
associated with endotoxemia, increased expression of TLR2, 4, and 9 as well as energy 
depletion leading to increased incidence of infection (Stadlbauer et al., 2009). Augmentation 
of TLR 2, 4, and 9 did not improve phagocytic function of neutrophils, indicating that TLR 
overexpression may be the result and not the cause of neutrophil activation (Stadlbauer et 
al., 2009). Neutrophil contact with hepatocytes mediates oxidative killing of hepatocytes by 
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initiation of oxidative-stress mediated respiratory burst and neutrophil degranulation 
leading to hepatocellular necrosis (Ramaiah & Jaeschke, 2007). Induction of osteopontin 
(OPN), an important mediator of inflammation regulated by oxidative stress pathways 
(Maziere et al., 2010) is the likely contributing factor for higher neutrophil recruitment to the 
liver in female rats during alcoholic steatohepatitis (Banerjee et al., 2006). Hepatic neutrophil 
infiltration can be largely inhibited in vivo by a neutralizing OPN antibody (Banerjee et al., 
2006).  

2.5 T cells 

In alcoholic liver disease, the number of lymphocytes in the liver increases and the type and 

distribution of these infiltrating cells determines the nature of inflammation. Steatohepatitis 

is associated with a T helper (Th)1 cytokine response characterized by IFN┛ and TNF┙ 

elevation, that reflects involvement of T lymphocytes, in particular CD4+ T cells (Tiegs, 

2007). In the liver, IL-17 secreting cells contribute to inflammatory infiltrates in alcoholic 

cirrhosis, and alcoholic hepatitis foci show many Th17 cells, including T lymphocytes and 

neutrophils (Lemmers et al., 2009). Chronic alcohol consumption significantly induces 

peripheral T cell lymphopenia in female C57BL/6 mice, up-regulates expression of CD43 on 

CD8+ T cells, increases the percentage of interferon--producing T cells; decreases the 

percentage of CD8+CD28+ T cells; and down-regulates the expression of CD28 on CD4+ T 

cells (Gurung et al., 2009; Laso et al., 2000). In vivo bromodeoxyuridine incorporation in the 

same experiments demonstrated that chronic alcohol consumption increases proliferation of 

memory T cells, and accelerates peripheral T cell turnover (Zhang & Meadows, 2005). 

Patients with advanced ALD show a high prevalence of circulating IgG and T-lymphocytes 

towards epitopes derived from protein modification by hydroxyethyl free radicals (HER) 

and end-products of lipid peroxidation. In both chronic alcohol-fed rats and heavy drinkers 

the elevation of IgG against lipid peroxidation-derived antigens is associated with an 

increased production of pro-inflammatory cytokines/chemokines and severity of 

histological signs of liver inflammation (Albano & Vidali, 2009).  

2.6 Natural killer (NK) and natural killer T (NKT) cells 

Although a variety of cell populations infiltrate the liver during inflammation, it is generally 

assumed that CD8+ T lymphocytes promote while natural killer (NK) cells inhibit liver 

fibrosis (Park et al., 2009). NK cells inhibited liver fibrosis by directly killing activated 

hepatic stellate cells and production of gamma-interferon (IFN) (Jeong & Gao, 2008). In a 

chronic alcohol exposure model, poly I:C activation of NK cell cytotoxicity against hepatic 

stellate cells was attenuated in ethanol-fed mice compared with pair-fed mice, which was 

due to reduced natural killer group 2 member D (NKG2D), tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL), and IFN expression on NK cells from ethanol-fed mice 

(Jeong et al., 2008). 

On the other hand, natural killer T cells (NKT) are an important subset of T lymphocytes 

and are unique in their ability to produce both Th1 and Th2 associated cytokines, thus being 

capable of steering the immune system into either inflammation or tolerance. Disruption of 

NKT cell numbers or function results in severe deficits in immune surveillance against 

pathogens and tumor cells. Experimental evidence suggests that hepatosteatosis may 

www.intechopen.com



 
Cellular Signaling Pathways in Alcoholic Liver Disease 

 

95 

increase resident hepatic as well as peripheral NKT cells. The change in NKT cell numbers 

in animal models of alcohol-related hepatosteatosis are associated with a disruption of 

cytokine homeostasis, resulting in a more pronounced release of proinflammatory cytokines 

which renders the steatotic liver highly susceptible to secondary insults (Minagawa et al., 

2004). In alcohol-fed animals, liver NKT cells increase, and further activation by alpha-

galactosylceramide causes lethal liver injury (Minagawa et al., 2004). This can be explained 

by alcohol-induced hepatocyte sensitization to cell-mediated lysis, which develops 

concomitant to increased cytolytic activity of natural killer T cells. Alcohol-fed natural killer 

T cell-deficient mice exhibit a delay in alcohol-induced liver injury (Minagawa et al., 2004). 

In general, based on the tissue microenvironment, NK and NKT cells can accelerate early 

liver injury by producing proinflammatory cytokines and killing hepatocytes in an oxidative 

milieu.  

2.7 Bone-marrow derived stem cells (BMSCs) 

While maturation, activation, and proliferation of lymphoid cells occurs in secondary 

lymphoid organs (spleen, thymus, and lymph nodes), generation of these cells occurs from 

progenitor cells termed as bone marrow derived stem cells. Bone marrow derived stem cells 

were originally thought to contribute to liver repair based on the environmental insult but 

recent evidence suggests these cells may contribute to liver injury and fibrosis (Dalakas et 

al., 2010). Alcoholic hepatitis patients show increased CD34+ cell counts in liver tissue and 

in blood as compared with matched controls. Alcohol induced liver injury mobilizes CD34+ 

stem cells into circulation and recruits them into the liver. These bone marrow derived stem 

cells contribute to the hepatic myofibroblast population but not to parenchymal lineages 

and do not promote hepatocyte repair (Dalakas et al., 2010). Bone marrow stem cells 

generally reside in a hypoxic environment and increased reactive oxygen species (ROS) 

modulates their cell cycle allowing them to escape the bone marrow and affecting their self-

renewal (Iwasaki & Suda, 2009). Recent studies show that acute alcohol exposure affects the 

hematopoeitic stem cell response to bacterial infections by inhibiting differentiation and 

impairing host defense in alcohol abusers (Raasch et al., 2010). Further Inokuchi et. al. 

(Inokuchi et al., 2011) indicate the importance of bone marrow derived cells in alcohol 

induced liver injury. Whether the effect of alcohol on stem cells links to alteration in 

immune and hepatocyte injury during ALD is unclear. 

3. Signaling pathways and inflammation 

3.1 Toll like receptors in ALD 

Toll-like receptors (TLRs) are membrane-associated or endosomal and recognize distinct 

microbial components activating different signaling pathways by selective utilization of 

adaptor molecules (Takeda & Akira, 2005). TLRs mediate responses to a number of danger 

signals including extracellular pathogens and intracellular mediators such as ROS, high 

mobility group protein (HMGB)1, fibrinogen and heat shock proteins (hsps) (Lotze et al., 

2007). The role of toll-like receptors (TLRs) and particularly TLR4 has been investigated in 

alcoholic tissue injury (Hritz et al., 2008; Uesugi et al., 2001; Inokuchi et al., 2011). Increasing 

evidence suggests that various TLRs, signaling components activated by TLRs play an 

important role in the pathogenesis of ALD. Figure 1 shows signaling adapters and kinases 
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down-stream of TLRs, some of which have been directly or indirectly altered by alcohol 

exposure and implicated in liver injury. The cross-talk of stress regulated intracellular 

molecules with TLRs, intracellular kinases and transcription factors resulting in alterations 

in cytokines/chemokines in ALD are of great importance and need further investigation.  

 

Fig. 1. Innate immune signaling in ALD. Toll like receptors particularly TLR4, in ALD, 
activate down-stream signaling adaptors, kinases and transcription factors to induce pro-
inflammatory cytokines and chemokines. All signaling molecules that have been studied in 
ALD are identified by black color font whereas molecules not studied in ALD yet are seen in 
white color font.  

Pattern recognition receptors (PRRs) are expressed on liver non-parenchymal and 
parenchymal cells and function as sensors of microbial danger signals enabling the 
vertebrate host to initiate an immune response. The complexity of cellular expression of 
PRRs in the liver provides unique aspects to pathogen recognition and tissue damage in the 
liver (Szabo et al., 2006). It is now well accepted that the innate immune system recognizes 
both damage (or danger)- and pathogen-associated molecular patterns (DAMPs and PAMPs, 
respectively) through pattern recognition receptors, such as Toll-like receptors (TLRs) 
and/or Nod-like receptors (NLRs). TLRs such as TLR4 and TLR2 that detect PAMPs for 
instance LPS and lipoproteins are located on the cell surface whereas TLRs such as TLR3, 
TLR7 and TLR9 that detect viral RNA and DNA are located in the endosome (Takeda & 
Akira, 2005). Engagement of LPS and activation of the CD14/TLR4 complex activates down-
stream signaling molecules such as IRAK1/4, TRAF6 leading to activation of MAP kinases  
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and NFκB in the liver (Mandrekar & Szabo, 2009). Recent studies by (Hritz et al., 2008; 
Inokuchi et al., 2011) indicate the requirement for TLR4 in alcohol induced steatosis.  
Oxidative stress also contributes to TLR4 signaling in macrophages and various other cell 
types in the liver via NADPH oxidase (Park et al., 2004). A pivotal role for NADPH oxidase 
in TLR4 mediated alcoholic liver injury has been recently shown (Hritz et al., 2008; Thakur 
et al., 2006a). Gustot et. al. (Gustot et al., 2006) also showed that oxidative stress regulates 
TLR 2, 4, 6 and 9 mRNA induction in alcoholic liver injury. In vivo alcohol exposure 
activates oxidative stress pathways and increases sensitization to TLR ligands, particularly 
TLR4, in alcoholic liver disease (Hritz et al., 2008; Gustot et al., 2006). TLR2 deficiency did 
not seem to have a significant effect on alcoholic liver injury (Hritz et. al., 2008).  

The role of DAMPs in chronic liver diseases has been reported previously. Amongst the well 
characterized DAMPs, HMGB1, S100 proteins, hyaluronan and heat shock protein 60 
(hsp60) are known to be recognized by TLR2 and TLR4 (Lotze et al., 2007) . In addition, 
necrotic or apoptotic cells are also recognized as DAMPs by TLRs (Sloane et al., 2010). In 
alcoholic liver injury, apoptotic bodies generated due to alcohol-induced oxidative stress 
could be recognized by DAMPs (McVicker et al., 2007) and thus play an important role in 
inflammatory responses in the liver. 

3.2 IKK and MAPK signaling 

Activation of TLR4 recruits IRAK-1 to the TLR4 complex via interaction with MyD88 and 
IRAK-4 (Takeda & Akira, 2005). The role of MyD88, the common TLR4 adaptor molecule 
was recently evaluated in a mouse model of alcoholic liver injury (Hritz et al., 2008). These 
studies showed that MyD88 knock-out mice were highly susceptible to alcohol-induced 
fatty liver (Hritz et al., 2008). While alcohol feeding in TLR4 deficient mice prevented liver 
injury, alcohol-fed MyD88 deficient mice showed increased oxidative stress and liver injury 
(Hritz et al., 2008). TLR4-induced MyD88-dependent and independent pathways lead to 
IKK kinase activation resulting in pro-inflammatory cytokine production (Takeda & Akira, 
2005). Chronic alcohol exposure induces LPS-mediated IRAK-1 kinase activation in murine 
macrophages (Mandrekar et al., 2009).  

Members of the mitogen-activated protein kinase (MAPK) family including extracellular 
receptor activated kinases 1/2 (ERK1/2), p38 and c-jun-N-terminal kinase (JNK) are 
activated down-stream of TLRs resulting in pro-inflammatory cytokine TNF┙ production 
(Weinstein et al., 1992). Chronic alcohol increases LPS-induced ERK1/2 activation and 
subsequent transcription of Egr-1, an immediate early gene transcription factor, contributing 
to expression of TNF in murine hepatic macrophages (Kishore et al., 2002; Shi et al., 2002). 
LPS stimulation of Kupffer cells in vitro exposed to chronic alcohol in vivo exhibited 
increased p38 activity and decreased JNK activity (Kishore et al., 2001). Inhibition of p38 

activation completely abrogated alcohol-mediated stabilization of TNF mRNA likely via 
interaction with tristetraprolin (TTP) (Mahtani et al., 2001). Conversely, ERK1/2 inhibition 
did not alter TNF┙ mRNA stability but affected mRNA transcription in chronic alcohol 
exposed macrophages (Kishore et al., 2002).  

3.3 Transcription factors and alcohol 

TLR4-induced MyD88-independent signaling leads to activation of NFκB and/or interferon 
regulatory factor 3 (IRF3) resulting in induction of pro-inflammatory cytokines or Type I 
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IFN (Fig 1) (Kawai et al., 2001; Fitzgerald et al., 2003). Studies so far have shown that chronic 
alcohol exposure induces LPS/TLR4 mediated NFκB activation in human monocytes and 
macrophages contributing to production of pro-inflammatory cytokine, TNF┙ (Mandrekar 
et al., 2009). Other investigators found that activated IRF3 binds to the TNF┙ promoter in 
macrophages after chronic alcohol administration (Zhao et al., 2008) and induces TNF┙ 
production. While IRF3 in myeloid cells contributes to alcoholic liver injury, IRF3 and Type I 
interferons in parenchymal cells appears to be protective (Petrasek et. al., 2010). Whether 
NFκB and IRF3 in myeloid cells act in concert with each other to increase pro-inflammatory 
cytokines and liver injury is not yet clear. LPS stimulation of JNK leads to phosphorylation 

of c-jun and subsequent binding of c-jun to CRE/activator protein (AP)-1 site in the TNF 
promoter (Diaz & Lopez-Berestein, 2000). Although chronic alcohol feeding decreased JNK 

activity without any effect on TNF mRNA, short-term alcohol exposure increased JNK 
phosphorylation as well as AP-1 binding in the presence of combined TLR4 plus TLR2 
stimulation (Oak et al., 2006) in human monocytes. Recent studies indicate a role for AP-1 in 
RANTES expression during alcohol mediated inflammation (Yeligar et al., 2009). 

Alcoholic steatosis is associated with increased expression of genes regulating fatty acid 
synthesis and suppression of genes involved in fatty acid oxidation (Crabb & 
Liangpunsakul, 2006). Transcription factors like sterol regulatory element binding protein 

(SREBP) and peroxisome proliferator activated receptor (PPAR) play a pivotal role in early 
alcoholic liver injury and rodent models as well as in vitro treatment with alcohol show 

downregulation of PPAR mRNA (Wan et al., 1995). Further, DNA binding activity of 

PPAR is significantly reduced resulting in decreased target gene expression after alcohol 

exposure (Galli et al., 2001). Decreased PPAR activity was accompanied by increased 
oxidative stress in the liver resulting in increased sensitization of TNF┙ induced liver injury 
(Crabb & Liangpunsakul, 2006). Further studies are needed to establish a direct relationship 
between oxidative stress, cytokines and hepatic fatty acid metabolism in alcoholic liver 
disease.  

The role of STAT3, another transcription factor in alcoholic liver injury has been 
investigated (Gao, 2005). Compared with wild-type mice, Kupffer cells from alcohol-fed 
hepatocyte-specific STAT3KO mice produced similar amounts of ROS and hepatic 
proinflammatory cytokines compared to control mice. On the other hand, Kupffer cells from 
M/N-STAT3KO mice produced higher ROS and TNF┙ compared with wild-type controls. 
These results suggest that STAT3 in hepatocytes promotes ROS production and 
inflammation whereas myeloid cell STAT3 reduces ROS and hepatic inflammation during 
alcoholic liver injury (Horiguchi et al., 2008). Endothelial STAT3 seems to play an important 
dual role of attenuating hepatic inflammation and sinusoidal endothelial cell death during 
alcoholic liver injury (Miller et al., 2010). Thus, STAT3 may regulate liver injury during 
alcohol exposure in a cell-type dependent manner. 

3.4 Anti-inflammatory pathways in ALD 

Diminution of inflammatory gene expression to curb the inflammatory response during 
ALD is pivotal to development of injury. Various anti-inflammatory mediators such as IL-
10, prostaglandins, transforming growth factor (TGF)-┚ (Schmidt-Weber & Blaser, 2004; 
Asadullah et al., 2003) have been identified to control the inflammatory response. In 
addition, intracellular signaling molecules such as IRAK-M, ST2, phosphoinositide (PI)3-
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kinase (K), suppressor of cytokine signaling (SOCS) 1, A20 and single immunoglobulin IL-
1R-related molecule (SIGIRR) (Han & Ulevitch, 2005) also contribute to the anti-
inflammatory pathway. While chronic alcohol did not significantly affect IL-10 during 
alcohol exposure in wild-type mice (Hill et al., 2002), IL-10 deficient mice showed greater 
susceptibility to alcoholic liver injury due to increase in pro-inflammatory cytokines (Hill et 
al., 2002). These results suggest that anti-inflammatory cytokine IL-10 is unable to counter-
regulate the sustained pro-inflammatory activation in the chronic alcoholic liver. Recent 
studies show that IL-10 was decreased in alcohol exposed Type-I IFN receptor deficient 
mice, indicating a role for Type I IFNs in induction of anti-inflammatory responses during 
ALD (Petrasek et al., 2011). Other immunoinhibitory molecules such as SOCS1 and SOCS3 
and adiponectin appear to induce anti-inflammatory responses during ALD. Adiponectin is 
decreased after chronic alcohol feeding and treatment of mice with adiponectin (Thakur et 
al., 2006b) prevents alcohol-induced liver injury. This protective effect of adiponectin has 
been attributed to decreased LPS-induced ERK1/2 signaling resulting in normalization of 
TNF┙ production by Kupffer cells after chronic alcohol exposure (Thakur et al., 2006b). 
Additional studies to understand anti-inflammatory mechanisms will provide a better 
understanding of the contribution of these molecules in alcohol-induced liver injury.  

4. Signaling pathways and hepatocyte injury 

Alcohol-induced liver disease is linked to a state of “oxidative stress” and induction of cell 

death. Alcohol exposure, whether acute or chronic increases production of ROS, lowers the 

anti-oxidant systems, and results in enhancement of oxidative stress. The consequences of 

ROS generation in the alcoholic liver are widespread. Some ROS related effects of alcohol 

include oxidative stress induced by metabolizing enzymes such as CYP2E1, formation of 

adducts, stress at the level of the endoplasmic reticulum, stress-induced heat shock proteins, 

regulation of nuclear receptors, all leading to sensitization of hepatocytes to cellular injury 

and death. 

4.1 Alcohol metabolism and oxidative stress  

The classical pathway of alcohol metabolism involves enzymatic breakdown of alcohol by 
the enzyme, alcohol dehydrogenase and its subsequent conversion to acetaldehyde and 
formation of free radicals. In addition, the microsomal electron transport system also 
oxidizes ethanol via catalysis by the cytochrome P450 enzymes. The 2E1 isoform of the 
cytochrome P450 system is induced during chronic alcohol consumption and results in 
formation of ROS and increased generation of hydroxyl radicals (Cederbaum, 2001). The 
role of CYP2E1 in hepatocyte injury has been elucidated using HEPG2 cells expressing 
CYP2E1 (Wu & Cederbaum, 1996). Increased oxidative stress from induction of CYP2E1 in 
vivo sensitizes hepatocytes to LPS and TNF toxicity (Wu & Cederbaum, 1996). Oxidants, 
such as peroxynitrite, activation of p38 and JNK MAP kinases and mitochondrial 
dysfunction are downstream mediators of the CYP2E1-LPS/TNF potentiated hepatotoxicity 
(Lu & Cederbaum, 2009). Further, studies indicate that oral alcohol feeding of CYP2E1 
knock-out mice prevents alcoholic liver injury and this may be due to inhibition of oxidative 

stress and up-regulation of PPAR (Lu et al., 2008). Oxidation of ethanol by alcohol 
dehydrogenase and subsequent metabolism of acetaldehyde results in increased 
NADH/NAD+ ratio in the cytoplasm and mitochondria. The increase in NADH results in 
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inhibition of mitochondrial -oxidation and accumulation of intracellular lipids leading to 
steatosis (Polavarapu et al., 1998; Wu & Cederbaum, 2003). Future studies on pathways 
activated by alcohol metabolism in various cell types of the liver would provide additional 
information to identify strategies to alleviate alcoholic liver injury. 

4.2 Alcohol and protein adducts 

Alcohol metabolism and oxidative stress results in the formation of reactive aldehydes such 

as acetaldehyde, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) that can bind to 

proteins to form adducts. In vivo models of chronic alcohol consumption have shown that 

acetaldehyde, MDA and HNE adduct formation is increased in various organs including the 

liver. Acetaldehyde and MDA react with proteins synergistically to form hybrid protein 

adducts called malondialdehyde- acetaldehyde (MAA) adducts (Niemela et al., 1994). 

Recognition of MAA-adducts by Kupffer cells, endothelial and stellate cells via the 

scavenger receptor leads to upregulation of cytokine and chemokine production, and 

increased expression of adhesion molecules (Thiele et al., 2004; Duryee et al., 2005). 

Circulating antibodies to MAA-adducts were detected in patients with alcoholic hepatitis 

and cirrhosis and correlated with the severity of liver injury (Rolla, 2000). Although 

evidence suggests the existence of protein adducts during chronic alcohol consumption, 

their identification in animal models has been challenging and limits their role in 

pathogenesis of ALD.   

4.3 ER stress and ALD 

The unfolded protein response (UPR) that is a protective response of the cell is referred to as 

the ER stress response during pathological conditions. In alcoholic liver disease increased 

expression of GRP78, GRP94, CHOP and caspase-12 indicated a UPR/ER stress response 

(Kaplowitz & Ji, 2006). Up-regulation of ER-localized transcription factors and activation 

such as SREBP-1c and SREBP-2 was associated with increased lipid accumulation and 

induction of fatty liver during chronic alcohol (Ji et al., 2006). Another important inducer of 

ER stress, homocysteine, was increased in alcoholic human subjects leading to 

hyperhomocystenemia, also observed in alcohol feeding models (Ji & Kaplowitz, 2003). The 

role of ER stress in triglyceride accumulation and fatty liver comes from studies showing 

that betaine increases an enzyme, betaine homocysteine methyltransferase (BHMT) and 

reduces homocysteine levels to inhibit lipid accumulation (Ji & Kaplowitz, 2003). Although 

several studies suggests a pivotal role for ER stress in alcoholic liver disease, the alcohol-

mediated mechanisms that trigger ER stress are not fully understood.  

4.4 Alcohol and heat shock proteins 

Stress or heat shock proteins (hsps) are ubiquitious, highly conserved proteins and 

originally identified for their cytoprotective function and assistance in the correct folding of 

nascent and stress-accumulated misfolded proteins. Oxidative stress induces heat shock 

proteins via activation of the heat shock transcription factor (HSF) (Finkel & Holbrook, 

2000). Earlier studies on the effects of ethanol on the heat shock proteins in neuronal cells 

(Miles et al., 1991) showed that chronic alcohol increases Hsc 70 mRNA transcription and 

this may be important in neuronal adaptation and development of tolerance and 
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dependence in alcoholics. Male Wistar rats fed with acute as well as chronic ethanol feeding 

(for 12 weeks) showed induction of hsp70 in the various regions of the brain and the liver 

(Calabrese et al., 1996; Calabrese et al., 1998). Hsp90 levels were also increased in cultured 

rat hepatocytes exposed to acute alcohol (Ikeyama et al., 2001). Studies have also shown that 

acute and chronic alcohol induces HSF activation and differentially induces hsp70 and 

hsp90 to affect inflammatory cytokine production in macrophages (Mandrekar et al., 2008). 

Comprehensive studies on the role of heat shock proteins and their chaperone function in 

the liver will provide further information to develop therapeutic strategies in ALD.  

4.5 Alcohol and nuclear receptors 

Nuclear receptors are a class of unique intracellular transcription factors that are activated 
by their ligands and can directly bind to DNA to regulate transcription of target genes that 
play key roles in development and cellular homeostasis (Wang & Wan, 2008). Three groups 
of nuclear receptors exist: the first is the classic steroid or thyroid hormone receptors such as 
glucocorticoid reeptor (GR) and thyroid receptor (TR), the second is the nuclear orphan 
receptors such as the nuclear receptor related-1 (Nurr-1) and neuron derived orphan 
receptor-1 (NOR1), the third class receptors that include the retinoid X receptor (RXR), 
peroxisome proliferators activated receptors (PPARs) and liver X receptor (LXR). It is the 
third class of nuclear receptors, particularly PPARs that are implicated in hepatic lipid 
metabolism and inflammatory processes and have been the main area of interest in alcohol-

induced steatosis. Among various PPARs, the importance of PPAR in lipid metabolism 

and PPAR in inflammatory processes is being investigated in alcoholic liver disease (Crabb 

& Liangpunsakul, 2006). PPAR dimerizes with another nuclear receptor, RXR to control 
transcription of target genes involved in free fatty acid transport and oxidation (Issemann & 

Green, 1990; Bocos et al., 1995). Whereas PPAR is an essential regulator for adipocyte 
differentiation and lipid storage in mature adipocytes (Rosen & Spiegelman, 2001; Tsai & 

Maeda, 2005), both PPAR and PPAR exert anti-inflammatory effects (Wang & Wan, 2008). 
Ethanol feeding of mice induced fatty liver injury and was accompanied by inhibition of 

transcriptional and DNA binding activity of PPAR, resulting in decreased expression of 
target genes such as carnitine palmitoyl transferase-1 (CPT-1) (Galli et al., 2001; Nakajima et 

al., 2004). Ethanol seemed to down-regulate RXR expression and PPAR levels to influence 

PPRE binding (Wan et al., 1995; Beigneux et al., 2000). Like hepatocyte-specific RXR 

deficient mice, PPAR-null mice are more susceptible to alcohol-induced liver injury 

(Nakajima et al., 2004; Gyamfi et al., 2008). Treatment with PPAR agonists WY14643 
resulted in increased expression of genes related to fatty acid oxidation and hence 
amelioration of alcoholic liver disease (Fischer et al., 2003). Thus, it appears that impaired 

activation of PPAR during ethanol consumption contributes to alcoholic fatty liver 
induction. Recent studies show that PPAR┙ and ┛ agonists can reduce severity of chronic 
alcohol induced liver injury even in the context of continued alcohol consumption (de la 
Monte et al., 2011). Thus, nuclear localization of PPARs and their DNA binding partners, 
RXRs seem to play an important role in alcohol induced fatty liver injury.  

4.6 Death receptor pathways: intrinsic and extrinsic 

Chronic alcohol-induced hepatocyte apoptosis is a multifactorial process and involves 
interactions of oxidative stress and cytokines that activate death receptors and 
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mitochondrial death pathways (Fig 2). Studies show that chronic alcohol-induced 

hepatocyte apoptosis occurs via the receptor-mediated pathway: TNF and Fas receptors, 
and the intrinsic pathway: mitochondrial apoptotic pathway (Hoek & Pastorino, 2002). 

Activation of the death receptor pathways, Fas/FasL and TNF/TNFR1 is strongly 

implicated in alcoholic liver disease (Hoek & Pastorino, 2002). Increased TNF and TNF-R1 
levels in animal models and humans with alcohol steatohepatitis have suggested an 

involvement of the TNF/TNF-R1 pathway in hepatocyte killing (Pastorino et al., 2003; 
Pianko et al., 2000). Increased oxidative stress in chronic alcohol exposed rats promotes 
hepatocyte apoptosis and necrosis and is implicated in the alcohol-induced sensitization to 

the pro-apoptotic action of TNF (Pastorino et al., 2003; Pastorino & Hoek, 2000). 
Additionally, TNFR1 knock-out mice, but not TNFR2 knock-out mice, were resistant to 

alcoholic liver injury (Yin et al., 2008) further strengthening a role for the TNF/TNFR1  

 

Fig. 2. Apoptotic signaling pathways in ALD. Two major apoptotic pathways are illustrated: 
one activated via death receptor activation ('extrinsic') and the other by stress-inducing 
stimuli ('intrinsic'). Triggering of cell surface death receptors of the tumour necrosis factor 
(TNF) receptor superfamily, including CD95 (Fas) and TNF-related apoptosis-inducing 
ligand (TRAIL)-R results in rapid activation of the initiator caspase 8 through the adaptor 
molecule Fas-associated death domain protein (FADD). In the intrinsic pathway, stress-
induced apoptosis results in perturbation of mitochondria, release of cytochrome c and cell 
death. All signaling molecules that have been studied in ALD are identified by black color 
font whereas molecules not studied in ALD yet are seen in white color font.  
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pathway in alcoholic liver disease. Besides TNF, FasL and Fas receptor expression were 
increased in livers of alcohol-fed mice (Deaciuc et al., 1999) leading to Fas-mediated cell 
killing, suggesting a significant role for the Fas/FasL pathway. Expression of Fas receptor 
also increased in human hepatocytes during alcoholic liver disease (Taieb et al., 1998). 

Studies have shown that alcohol induced ROS generation leads to alteration in 
mitochondrial membrane permeability and membrane potential that in turn initiates the 
release of proapoptotic factors such as cytochrome c (Hoek & Pastorino, 2002; Hoek, 2002). 
Transition of mitochondrial permeability then results in increased caspase-3 activation in 
hepatocytes and this depends on p38 MAPK activation but is independent of caspase-8 
(Pastorino et al., 2003; Pastorino & Hoek, 2000). Studies also implicate a role for MAP kinase, 
JNK2, independent of caspase-8, in TNF-induced mitochondrial death pathways 
(Schattenberg et al., 2006). The exposure of hepatocytes to ethanol induces ROS-mediated 
JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-
caspase 3 cleavage (Cabrales-Romero Mdel et al., 2006). Whether alcohol affects JNK2 
activation is not clear. But recent studies indicate a role for JNK1, but not JNK2, in CYP2E1 
and TNF┙ mediated hepatoxicity (Wang et al., 2011). Chronic ethanol feeding also decreases 
ATP concentration associated with decreased viability in hepatocytes isolated from rats fed 
either high- or low-fat, ethanol-containing diets (Bailey & Cunningham, 1999). Various 
studies now show that decreased ATP synthesis accompanied by reduced mitochondrial 
protein synthesis, inhibition of the oxidative phosphorylation system (OxPhos) and damage 
to mitochondrial DNA leads to dysfunctional mitochondria in alcoholic liver disease (Bailey 
& Cunningham, 2002). Detailed studies of death receptors and mitochondrial sensitization 
mechanisms leading to hepatocyte death by alcohol will improve our understanding of 
ALD. 

5. Therapeutic targets in ALD 

While mechanistic studies have pointed to various therapeutic targets, abstinence from 

alcohol appears to be most effective in resolution of ALD. However, motivating patients to 

maintain sobriety, follow their compliance and prevent relapse are major obstacles in 

treatment of ALD. Pharmacotherapy using naltrexone and disulfuram assist in reducing or 

eliminating alcohol intake (Bouza et al., 2004; Williams, 2005). Nutritional therapy with 

supplementation of minerals like Zn (Kang & Zhou, 2005) and vitamins have been used to 

improve and attenuate alcoholic hepatitis. While multiple clinical trials have supported the 

use of glucocorticosteroids in patients with alcoholic hepatitis (McCullogh & O’Connor, 

1998), their benefit still remains in question (Christensen, 2002). Considering the 

dysregulated inflammatory response in alcoholic hepatitis, various studies used specific 

anti-TNF┙ antibody therapy (Tilg et al., 2003) with little or no success. Complete 

neutralization of TNF┙ led to increased complications such as tuberculosis infections 

limiting its clinical utility. Future therapeutic interventions will thus have to be focused on 

partial attenuation of TNF┙ with lower infectious complications. Recent studies show that 

treatment with IL-22 ameliorates alcoholic liver injury in a mouse model of ALD (Ki et al., 

2010). Based on induction of oxidative stress by alcohol, a combined regimen of anti-oxidant 

therapies including N-acetylsysteine and vitamins has been tested without significant 

differences in improvement rates of ALD (Stewart et al., 2007). Other alternative therapies 

using silymarin, S-adenosylmethionine and betaine have been suggested for future clinical 
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trials (Frazier et al., 2011). While liver transplantation offers the most effective treatment, 

limited organ availability and post-transplant drinking dampen long-term outcomes. Future 

research combining biologics and anti-oxidant therapies may offer lasting therapeutic 

efficacies in ALD patients.   

6. Conclusions and future directions 

Alcoholic liver disease is a very complex and multifactorial disorder. Alcohol exerts its 
effects at many levels; individual signaling molecules, cells and finally the entire organ. 
Integrative approaches providing a comprehensive picture of how alcohol affects 
intracellular signaling pathways in tissues at different levels (Guo & Zhakari, 2008) is 
needed. A multidimensional analysis of inflammation and death signaling pathways in 
immune and non-immune cells of the liver to identify molecular targets in the host leading 
to systemic and organ inflammation will enhance our understanding of the pathogenesis of 
alcoholic liver disease. Until now various key signaling cascades triggered in the innate 
immune response such as toll-like receptor, interferon, NFκB and stress pathways such as 
ROS mediated activation of transcription factors, heat shock proteins or chaperones, 
mitochondrial damage and ER stress, have been viewed as separate entities rather than an 
integrated network of molecular interactions in alcoholic liver injury. A pathway diagram 
map which attempts to integrate these pathways will present a powerful aid for interpreting 
pathway interactions and highlight the valuable contributions of molecular interactions 
contributing to initiation and perpetuation of ALD. Future approaches to enable 
comprehensive analysis of these interactions could offer a powerful tool to understand 
diagnosis, prognosis, and treatment of ALD.  
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