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1. Introduction 

The last four decades have witnessed major transformations in the approach to the 

diagnostic work-up and therapeutics in the field of hematology. The identification of the 

Philadelphia chromosome in Chronic Myelogenous Leukemia has served as a prototype for 

diagnosis and subsequent monitoring of response. This discovery has led to the 

understanding of the pathogenesis and subsequent developments in therapeutic targeting 

the pathways. These principles have helped evolve therapeutic strategies aimed at 

molecular pathways in several disorders. Acute leukemias were classified based on 

morphology and cytochemistry supplemented by immunophenotyping, as proposed by the 

French–American–British (FAB) group. Following advances and greater access to 

immunophenotyping techniques and simultaneous refinements in cytogenetic methods, the 

MIC groups proposed the classification of acute leukemias incorporating morphology, 

immunologic typing and cytogenetic analysis. MIC–M classification granted recognition to 

molecular genetic information by formally incorporating it into the classification (Bain BJ, 

1998).  

In 2001, the World Health Organization (WHO), in collaboration with the Society for 
Hematopathology and the European Association of Haematopathology, published a 
Classification of Tumors of the Hematopoietic and Lymphoid Tissues as part of its 3rd 

edition of the series, WHO Classification of Tumors (Jaffe ES et al, 2001). This 
classification system was a worldwide consensus classification system for hematological 
malignancies. It stratified neoplasms according to the lineage. Within each category 
distinct entities are defined based on morphology, immunophenotype, genetic features 
and clinical syndromes. The classification reflected a paradigm shift from previous 
schemes as for the first time, genetic information was incorporated. A revised 
classification was published in 2008 as the 4th edition of the WHO monograph series 
(Swerdlow SH et al, 2008). The revision incorporates new scientific and clinical 
information. Refined diagnostic criteria for previously described neoplasms and newly 
recognized distinct entities have been defined. The new classification defines 108 new 
diagnostic entities in hematopathology, including 50 new or provisional leukemia entries 
and also recognizes provisional entities that have a definite prognostic significance (Arber 
DA, 2010; Betz BL & Hess JL, 2010; Swerdlow SH et al, 2008).  
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2. WHO 2008 recommendations for work-up of AML 

WHO 2008 is one of the most scientifically devised systems to diagnose, prognosticate and also 

accordingly treat the haematological malignancies. The objectives are to work-up a case to 

obtain the information on all variables, which affect the outcome. However, for much of the 

world population where funding options are restricted, stringent diagnostic algorithms are a 

major deterrent in the management of acute leukemias. Resources are spread between 

diagnostic and therapeutic needs. We present here a workable and practical approach to 

address the need for important diagnostic parameters in AML with the focus on identifying 

potentially curable ones in the resource-constrained areas. 

3. Diagnostic work-up 

There is no single “gold standard” protocol for the diagnosis and classification as per the 

WHO 2008 system which broadly categorises AML as follows -  

a. AML with recurrent genetic abnormalities 
b. AML with myelodysplasia-related changes 
c. Therapy related myeloid neoplasms 
d. AML (not otherwise categorized) 
e. Myeloid sarcoma 
f. Myeloid proliferations related to Down syndrome 
g. Blastic plasmacytoid dendritic cell neoplasm (BPDC) 
The categories A, B, C, and F require genetic studies and/or clinical history to classify. 
Morphology is always essential and sometimes it is diagnostic. Common ancillary studies 

relevant to bone marrow diagnosis are: cytogenetics, FISH studies, molecular studies 

(typically PCR or RT-PCR) for antigen receptor gene rearrangements and/or to detect 

specific translocations, immunophenotyping and immunohistochemistry. These tests will 

confirm the diagnosis of AML, subcategorize them, add to prognostication and more 

importantly differentiate from the related malignancies. The latter include acute leukemias 

of ambiguous lineage – acute undifferentiated leukemia (AUL) and mixed phenotypic acute 

leukemia (MPAL); non-Hodgkin lymphomas, round cell tumors and other metastases. Such 

information derived at the time of diagnosis is at the discretion of the treating physician and 

the pathologist subject to availability of expertise and affordability of the patient. 

3.1 Morphology 

The starting point for diagnosis of leukemia is morphologic examination of bone marrow or 

blood to document the presence of at least 20% blasts. Rarely the diagnosis is based on 

trephine biopsy or tissue biopsy. 

3.1.1 Peripheral blood and bone marrow aspirate 

The blasts were earlier categorized as type I and II based on criteria proposed by the FAB 
group (Bain BJ, 2003; Mufti GJ et al, 2008). Type I blasts lack granules and have 
uncondensed chromatin, a high nucleocytoplasmic (N:C) ratio and usually prominent 
nucleoli (Figure 1a). Type II blasts resemble type I blasts except for the presence of a few 
azurophilic granules and a slightly lower N:C ratio (Figure 1b). Goasguen et al defined type 
III blasts, which had more than 20 azurophilic granules, otherwise with typical blast 
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morphology (Goasguen JE et al, 1991; Mufti GJ et al, 2008). The WHO 2001 classification 
lacked specific definition of blasts. However, in the WHO 2008 classification, the blasts are  
 

   
1(a)    1(b) 

   
1(c)    1(d) 

   
1(e)    1(f) 

   
1(g)    1(h) 

Fig. 1. Different types of blasts in AML (1000x; Giemsa) 
(a) Type 1 Blasts with scant agranular cytoplasm (b)Type 2 blasts showing moderate 
granular cytoplasm (c) Type 2 blasts with perinuclear hof, characteristic of t(8;21) , a single 
blast shows Auer rod [arrow] (d) Abnormal promyelocytes with hypergranular cytoplasm 
and convoluted nucleus (e) Abnormal promyelocytes of Microgranular variant type of APL 
(f) Monoblasts with abundant blue-grey cytoplasm (g) Promonocytes with convoluted 
nuclei (h) Megakaryoblasts with characteristic cytoplasmic blebs 
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defined according to the criteria proposed by the International Working Group on 
Morphology of Myelodysplastic Syndrome (Mufti GJ et al, 2008; Swerdlow SH et al, 2008; 
Vardiman JW et al, 2009). 
Myeloblasts were defined as the cells with high N:C ratio, easily visible nucleoli and usually 
fine nuclear chromatin, however, with a variable nuclear shape. Cytoplasmic features are 
variable in terms of basophilia, granules and Auer rods. Golgi zones are not detected except 
in cases of AML with t(8;21), where these are prominent and seen as perinuclear clearing or 
hofs (Figure 1c). The agranular blasts corresponded to FAB type I blasts and the granular 
blasts included both type II blasts of FAB and type III blasts of Goasguen JE et al (Mufti GJ 
et al, 2008; Goasguen JE et al 1991; Swerdlow SH et al, 2008). The promyelocytes of acute 
promyelocytic leukemia (APL) with PML-RARA are the blast equivalents and these are 
morphologically of two types – the classical or hypergranular and the microgranular or 
hypogranular types (Vardiman JW et al, 2002). The hypergranular promyelocytes are 
characterized by kidney-shaped or bilobed nuclei, although the shape may greatly vary 
(Liso V & Bennett J, 2003; Sainty D et al, 2000). The cytoplasm is marked by densely-packed 
granules, sometimes may obscure nuclear margins, and variable presence of Auer rods 
(Figure 1d). Some cells may be characterized by bundles of Auer rods (faggot cells). The 
promyelocytes of microgranular variant have bilobed, multilobed, or reniform nucleus and 
under usual staining are devoid of granules or contain fine azurophilic granules (Figure 1e) 
(Golomb HM et al, 1980; Sainty D et al, 2000). There are few cases of variant RARA 
translocations; of these those associated with ZBTB16 fusion partner at 11q23 have a 
characteristic morphology. These cells have regular nuclei, many granules, usual absence of 
Auer rods, and an increased number of Pelgeroid neutrophils (Corey SJ et al, 1994; Melnick 
A & Licht JD, 1999; Sainty D et al, 2000) . Monoblasts are large cells with abundant 
cytoplasm, which is light grey to deeply blue and may show pseudopod formation (Figure 

1f). The nuclei are round to oval with delicate lacy chromatin and prominent nucleoli. 
Promonocytes are counted as monoblast equivalents (Vardiman JW et al, 2002). These cells 
have a delicate convoluted, folded or grooved nucleus with finely dispersed chromatin, a 
small indistinct or absent nucleolus, and finely granulated cytoplasm (Figure 1g). 
Distinction of promonocytes from abnormal monocytes is essential but very difficult on 
morphological basis as the diagnosis of acute monocytic or acute myelomonocytic leukemia 
versus chronic myelomonocytic leukemia depends on this distinction; therefore, flow 
cytometry and other methods are needed to improve specificity. The abnormal monocytes 
are characterized by more clumped chromatin, variably indented, folded nuclei and grey 
cytoplasm with more abundant lilac colored granules.  
Megakaryoblasts are usually medium to large in size with a round, indented or irregular 
nucleus with finely reticular chromatin and one to three nucleoli. Cytoplasm is basophilic, 
agranular, and may show cytoplasmic blebs (Figure 1h) (Bennett JM, 1985). Small dysplastic 
megakaryocytes and micromegakaryocytes, seen in various myeloid neoplasms, are not 
blasts. Erythroid precursors (erythroblasts) are not counted as blasts, except in cases of pure 
erythroleukemia (a variant of AML-M6), where these are considered as blast equivalents. 
The cells are basically proerythroblasts, which are medium to large-sized, with round 
nuclei, fine chromatin and one or more nucleoli. The cytoplasm is deeply basophilic, 
agranular and frequently contains poorly demarcated vacuoles (Swerdlow SH et al, 2008). 
Acute leukemias with FLT3 mutations have characteristic blasts with nuclear invaginations 
spanning more than 25% of the nuclear diameter or a prominent ‘‘fishmouth’’ nucleus (Chen 
W et al, 2006; Kussick SJ et al, 2004; McCormick et al 2010).  
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2(a)    2(b) 

Fig. 2. AML with myelodysplasia related changes (Giemsa stain,1000x) (a) Erythropoiesis is 
megaloblastoid with multinucleate erythroblasts and blasts in the background (b) 
Dyspoietic dwarf megakaryocytes with megaloblastoid erythropoiesis. 

The blasts are expressed as the percentage of nucleated cells and the count is typically 
based on a 200-cell count in peripheral blood and 500-cell count in the bone marrow. If 
there are more than 50% erythroid precursors, the erythroid progenitors are also excluded 
from the blast count. This is quite important in the diagnosis of acute erythroleukemia, 
where the erythroid precursors are > 50% of the total nucleated cells and the myeloblasts 
are > 20% of the non-erythroid marrow nucleated cells (Swerdlow SH et al, 2008). Pure 
erythroid leukemia consists of precursors committed exclusively to erythroid lineage, 
which are > 80% of marrow nucleated cells without evidence of a significant myeloblast 
component. In rare cases, the diagnosis of acute leukemia can be made with low marrow 
blast count (< 20%) when associated with recurring genetic abnormalities as 
t(8;21)(q22;q22), inv(16)(p13.1q22), or t(16;16)(p13.1;q22) or t(15;17)(q22;q12) (Vardiman 
JW et al, 2002). These entities not only define unique disease with characteristic 
morphology, clinical features and biology but also have a significant prognostic 
implications. In AML with t(8;21), many neoplastic cells have abundant granules that may 
be mistaken as promyelocytes. 
Relevance of non-blast myeloid precursors: The evaluation of other precursors may give 

important information. The presence of immature eosinophilic granules in the promyelocyte 

and myelocyte stages is an important diagnostic feature of cases of AML with 

inv(16)(p13.1q22), or t(16;16)(p13.1;q22). These granules are often larger than those normally 

present in immature eosinophils, purple-violet in color, and in some cases are so dense that 

they obscure the cell morphology. It is important to assess the degree of dysplasia in the 

different lineages. Dysplasia in at least 50% of the cells in 2 or more hematopoietic lineages 

is essential for the morphological diagnosis of AML with myelodysplasia related changes, 

which has adverse prognostic implications (Figures 2a and 2b) (Arber DA et al, 2003; 

Vardiman JW et al, 2009; Weinberg OK et al, 2009; Yanada M et al, 2005). The dysplastic 

features are also seen in cases of therapy-related myeloid neoplasms, AML with 

t(6;9)(p23;q34), and AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) (Swerdlow SH et al, 

2008).  

Bone Marrow Biopsy 

It is done when the aspirate is a dry tap to evaluate for the presence of blasts (Figure 3a), 
especially in AML-M7 and in situations where there are significant stromal changes (Figure 
3b) (Bennett JM, & Orazi A, 2009; Lorand-Metze I et al, 1991).  
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3(a)    3(b) 

Fig. 3. Bone marrow biopsy in AML: (a) Paratrabecular collection of blasts with large 
vesicular nucleus (H&E stain, 400x) (b) Hypoplastic AML with prominence of fat spaces, 
interstitial blast prominence and dyspoietic megakaryocytes in the background (H&E stain, 
100x)  

3.1.3 Myeloid sarcomas 

These may sometimes be preceeding or associated acute leukemias. The differentiation from 
lymphoblastic leukemia and round cell tumors is essential. These can involve almost any 
site of the body (Figure 4). These need to be differentiated from other malignancies – as 
lymphoblastic leukemia, lymphomas, round cell tumor, carcinomas, round cell melanomas, 
etc. Immunohistochemistry is done to resolve these issues. Molecular studies may be 
performed– FISH or PCR to further look for specific genetic abnormalities. These are a 
common occurence in AML with t(8;21). Usually these patients need allogeneic /autologous 
transplantation and have better survival rates as compared to other modalities as high dose 
chemotherapy, radiation or surgery (Pileri SA et al, 2007). 
 

 

Fig. 4. Lymph node section shows sheets of large cells. These have granular cytoplasm and 
large convoluted nuclei. (H&E, 400x) 

3.2 Cytochemistry 

The role of cytochemistry has become redundant in WHO 2008 with the regular use of flow 
cytometry for the lineage determination (Arber DA, 2010; Betz BL & Hess JL, 2010). The 
stains generally used for identifying lineage type are myeloperoxidase (MPO), Sudan black 
B, nonspecific esterases (NSE), chloro-acetate esterase and periodic acid- Schiff. The MPO 
stain is most specific indicator of myeloid differentiation (Figure 5a), however, negativity 
does not rule out myeloblasts. NSE is still used as one of the identifiers for monocytic 
differentiation. The stain that still has a definite role is the Perl’s stain not only to evaluate 
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iron stores, but also for identification of ringed sideroblasts (Figure 5b) (Mufti GJ et al, 
2008). These stains are adjunct to morphology and useful for defining the subtypes of AML-
NOS. There is a need for these stains in places where access to flow cytometry is difficult 
and rational decisions may still be taken through diligent practices (Scott C.S et al, 1993). 
 

      
5(a)       5(b) 

Fig. 5. Cytochemistry in AML: (a)Myeloperoxidase stain shows  golden brown granules in 
myeloblasts (Hematoxylin counterstain, 1000x) (b) Perl’s stain demonstrates ring 
sideroblasts, characteristically showing Prussian blue dots around the nucleus (Eosin 
counterstain, 1000x) 

3.3 Flow cytometry 

Flow cytometry in hematological malignancies is based on the principle that neoplastic cells 

frequently show nonrandom expression of antigens in a manner that deviates from the 

tightly regulated patterns of antigen expression seen in normal maturation (Wood BL, 2007). 

Flow cytometric immunophenotyping (FCI) plays a well-established role in the diagnosis of 

acute leukemia, including AML, principally for blast enumeration, lineage assignment, and 

identification of immunophenotypic abnormalities suitable for post-therapeutic disease 

monitoring (Casasnovas RO et al, 1998; Orfao A et al, 2004; Peters JM & Ansari MQ, 2011; 

Weir EG & Borowitz MJ, 2001; Wood BL, 2007). It is mandatory to perform FCI to diagnose 

AML-M0, AML-M6, AML-M7, and acute leukemias of ambiguous lineage that include acute 

undifferentiated leukemia and mixed phenotypic leukemia. A three- or 4-color flow 

cytometer is good enough for routine diagnostic work-up, although  there are some centers 

using  9- to 10- color flow cytometers (Kussick SJ & Wood BL, 2003; Wood BL, 2006). Various 

panels have been recommended according to the type of flow cytometer, regional 

requirements, available resources, and personal preferences (Bene MC et al, 1995; Gujral S et 

al, 2008; Nguyen D et al, 2003). There is no universal consensus on the panel design. Each 

has its merits and limitations, undoubtedly the panels with more number of antibodies 

yields better results. Either bone marrow aspirate or peripheral blood containing good 

number of blasts can be processed for lineage typing. However, bone marrow aspirate is 

recommended for subtyping. In special situations, when the aspirate is a dry tap, BM core 

scraping suspensions can be utilized for FCI. However, because of lack of preservation of 

architectural features and the potential for artifactual alterations of the relative frequency of 

abnormal cells, the FCI data must always be correlated with histologic sections of the BM 

biopsy.  

Recognizing a Hematopoietic Origin: The blasts express CD45, albeit have a weak 
expression as compared to lymphocytes, thus favoring an immature process and the 
differential diagnosis includes lymphoblasts, or myeloblasts. It is important to note that 
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CD45 negativity does not exclude AL as some cases of B-ALL/B-LBL and all cases of AML 
with erythroid and megakaryocytic lineages are CD45 negative (Nguyen D et al, 2003). This 
feature is of vital importance. 
Markers of Immaturity: CD34 is the most commonly used marker to identify a precursor 
stage (Table 1). CD117 demonstrates a similar expression pattern and is more sensitive than 
CD34 in AML (Rizzatti EG et al, 2002). Flow cytometry should not be taken as an alternative 
to morphology for blast enumeration as blast is a morphological definition. The percentages 
of CD34 positive population equivalent to blasts can vary; may be falsely decreased due to 
hemodilution or falsely increased due to loss of erythroid precursors (the denominator for 
morphologic counts includes nucleated erythroid cells). CD117 strongly favors a myeloid 
blast lineage because it is not seen in B-ALL and is reported only very rarely in T-ALLs 
(<2%) (Paietta E et al, 2005). TdT is expressed in 20% of AML cases, especially those with 
t(8;21) (Porwit-MacDonald A et al, 1996; Wood BL, 2007). CD133 and CD38 are useful 
markers whenever CD34 and CD117 are non-contributory. 
 

Lineage Markers Positive 

Precursor stage CD34, CD117, CD133, HLA-DR, CD38, TdT 

Granulocytic markers  
 

CD13, CD15, CD16, CD33, CD65, cytoplasmic 
myeloperoxidase (cMPO) 

Monocytic markers Nonspecific esterase (NSE), CD11c, CD14, CD64, 
lysozyme, CD4, CD11b, CD36 

Megakaryocytic markers CD41 (glycoprotein IIb/IIIa), CD61 (glycoprotein IIIa), 
CD42 (glycoprotein 1b) 

Erythroid markers CD235a (glycophorin A), CD71 

B-lymphoid markers CD19, CD10, CD22 

T-lymphoid markers cytoplasmic CD3, CD2, CD5, CD7 

NK cell markers CD16, CD56 

Table 1. Usual antigens associated with stage and lineages of blasts 

HLA-DR in AML: HLA-DR is expressed in most AML and is characteristically negative in 
APL and AML-M6 and up to half of AML-M7. HLA-DR negativity once thought to be 
characteristically associated with APL has now been found to be present in a subset of AML 
with cup-shaped nuclei and FLT-3 gene internal tandem duplication (Bain BJ et al, 2002; 
Craig FE & Foon KA, 2008; Kussick SJ et al, 2004; Nguyen D et al, 2003). 
Myeloid lineage Antigens: Myeloblasts are well recognized for demonstrating marked 

immunophenotypic heterogeneity. Thus, multiple lineage-specific antibodies may be 

necessary to confirm the AML classification. CD13 and CD33 are the most sensitive myeloid 

markers. The assigning of myeloid lineage relies on identifying the expression of antigens 

characteristic of early myelomonocytic differentiation, including CD13, CD15, CD33, CD64, 

CD117, and cytoplasmic myeloperoxidase (Bain BJ et al, 2002; Chang CC et al, 2000; Cohen 

PL et al 1998; Craig FE & Foon KA, 2008; Wood BL, 2007). CD64 is expressed in AML 

subtypes M0 to M5 in varying intensities: strong expression characterizes AML M5, whereas 

heterogeneous, dim, or moderate expression is seen in M0 through M4 subtypes. However, 

the pattern of any CD64 expression when associated with strong CD15 expression 

distinguishes AML-M4 or M5, from other AML subtypes (Dunphy CH & Tang W, 2007). 

Promonocytes are characterized by the expression of high CD64, low CD13, intermediate 
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CD15 and CD36, and high HLA-DR without significant CD34, minimal CD117, and, 

importantly, with low to absent CD14 (Wood BL, 2007). These are distinguished from more 

mature monocytes by more uniform high expression of HLA-DR, lower CD13 and CD36, 

higher CD15, and low to absent CD14. This demarcation is important when one objectively 

needs to differentiate AML-M5 from CMML. The current WHO 2008 recommendation is the 

expression of myeloperoxidase for assigning the cells as myeloblasts and presence of at least 

two of the following parameters to assign as monoblasts – NSE, CD11c, CD14, CD64, and 

lysozyme (Swerdlow SH et al, 2008). Erythroid lineage is identified by the expression of 

Glycophorin A, CD71, CD36 with CD117 in absence of CD64. Megakaryocytic lineage is 

characterized by the expression of CD41 and CD61 (Bain BJ et al, 2002; Craig FE & Foon KA, 

2008; Wood BL, 2007).  

Lymphoid Antigens in AML: Aberrant expression of lymphoid antigens, such as CD2, CD5, 
CD7, CD19, and CD56, is common and generally does not indicate bilineal or mixed lineage 
differentiation (Auger MJ et al, 1992; Baer MR et al, 1997; Khalidi HS et al, 1998; Kita K et 
al,1992; Wood BL, 2007). The presence of cytoplasmic or surface CD3 is essential to 
designate blasts as that of T-lineage. For categorizing B-lineage blasts, when these cells 
express strong CD19 with one of the following- CD79a, cytoplasmic CD22 or CD10 and 
when the CD19 is weak, then these should express two of the above antibodies.  

3.3.1 Immunoprofiles in AMLs 

AML, Not otherwise specified: The characteristic immunoprofile of various entities (AML-
M0 to AML-M7) is described above. In acute basophilic leukemia, the blasts usually 
express CD13 and/or CD33 with CD123, CD203c, CD11b, CD9, CD34, and HLA-DR. These 
are usually negative for CD117 and CD25 (Swerdlow SH et al, 2008). 
AML with recurrent genetic abnormalities: There is a strong correlation of certain 
immunophenotypes in AML with specific cytogenetic and molecular abnormalities (Hrusak 
O & Porwit-MacDonald A, 2002; Wood BL, 2007). AML with t(8;21) has a high incidence of  
aberrant expression of CD19, high CD34, CD56, and TdT (Figure 6) (Porwit-MacDonald A et 
al, 1996; Wood BL, 2007). t(15;17) AML demonstrates an immunophenotype typical of 
promyelocytes, including a variable increase in side scatter, lack of  significant CD34, 
expression of variable CD13 and CD117, aberrantly high CD33, and aberrantly low to absent 
CD15 (Orfao A et al, 1999; Wood BL, 2007). AML with inv (16) or t(16;16) generally displays 
myelomonocytic differentiation and sometimes is associated with CD2 expression 
(Adriaansen HJ et al, 1993). 
AML with myelodysplasia-related changes: The immunophenotyping results vary 

according to the cytogenetic abnormality. Those with abnormalities of chromosomes 5 and 7 

show a high incidence of CD34, TdT and CD7 expression. CD56 and / or CD7 are seen 

aberrantly in cases of antecedent MDS. Most noticeable is a decrease in side scatter on 

mature neutrophils, the flow cytometric equivalent of morphologic hypogranularity (Wells 

DA et al, 2003; Wood BL, 2007). However, one has to keep in mind that aged samples also 

give rise to hypogranularity (Wood BL, 2007). 

Myeloid leukemia associated with Down’s syndrome: The blasts usually are of 
megakaryocytic lineage with a phenotype showing positivity for CD117, CD13, CD33, CD7, 
CD4 (dim), CD42, CD36, CD41, CD61, CD71 and negative for MPO, CD15, CD14 and 
glycophorin A (Swerdlow SH et al, 2008; Xavier AC & Taub JW, 2009). CD34 is seen in 50% 
cases only.  
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Fig. 6. Flow cytometry on the peripheral blood showed blasts (painted red) in the blast 
region in the CD45 /side scatter plot. These cells are CD45 dim and express CD13, CD117, 
CD33, CD19, CD38, CD34, and HLA-DR. These were negative for CD10, CD2, CD5, CD14 
and CD7. Normal lymphocytes are painted green. 

Blastic plasmacytoid dendritic cell neoplasm: Earlier known as agranular CD4+/CD56+ 

hematodermic neoplasm or blastic NK cell lymphoma, is characterized by the expression of 

CD4, CD43, CD56 and CD45RA by the blasts (Miwa H et al, 1998). These express CD123 and 

may sometimes express CD68, CD7, and CD33. These are negative for CD34, CD117, MPO, 

T-lineage and other monocytic lineage markers. 

3.3.2 Acute leukemia of ambiguous lineage 

This group includes the acute undifferentiated leukemia (AUL) and mixed phenotypic 

leukemias (MPAL) (Swerdlow SH et al, 2008). AUL is characterized by the absence of T- 

and myeloid lineage specific markers, i.e. cytoplasmic CD3 and MPO as well as cCD22, 

cCD79a or strong CD19. These leukemias lack erythroid, megakaryocytic and 

plasmacytoid dendritic cell lineage markers. These cells may express CD34, HLA-DR, and 

/or TdT. MPAL can show combinations of myeloid with B- or T- lineage specific antigens. 

Sometimes these are associated with specific chromosomal abnormalities as MPAL with 

t(9;22)(q34;q11.2); BCR-ABL1 and MPAL with t(v;11q23); MLL rearranged, where these 

blasts are commonly categorized as B-lymphoblasts with a high frequency of myeloid 

lineage antigen expression. 
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7(a)    7(b) 

Fig. 7. IHC on trephine biopsy section (a) Blasts show strong membranous CD34 positivity 
(Hematoxylin counterstain, 400x) (b) Myeloperoxidase positivity in blasts (Hematoxylin 
counterstain, 400x) 

3.4 Immunohistochemistry (IHC) 

Although various studies have shown that FCI is the preferred method of 

immunophenotyping acute leukemias, certain situations where FCI is unavailable, 

immunohistochemistry (IHC) is an alternate or sometimes adjunct to flow cytometry. In 

situations where an appropriate specimen with adequate cellularity is not available, as in a 

‘‘dry tap’’, the diagnostic cells are low in yield, FCI is usually less informative. FCI may not 

be routinely requested if leukemia is not an initial diagnostic consideration, especially in 

extramedullary or extranodal site biopsies. Similarly, fresh cells may not be consistently 

submitted for consultation cases, and the technology may not be immediately accessible in 

community settings (Olsen RJ, 2008). The main objective of IHC is to confirm a hematologic 

malignancy, differentiating ALs from high grade NHLs, round cell tumors and other non-

hematologic malignancies. These help categorize ALs into B-ALL, T-ALL and AML. To an 

extent these can also subtype AMLs (Dunphy CH, 2004). Comparison of IHC results with 

FCI suggests that there is significant concordance in the results for markers that can be used 

with both techniques, indicating that the sensitivity and specificity of both methods is 

comparable (Manaloor EJ, 2000). 

IHC is useful in confirming the blast lineage and in categorizing the following AML groups 

- AML-NOS, which is subdivided based on the traditional FAB classification, myeloid 

sarcoma and BDPC neoplasm. AML may not be definitively classified with IHC. However, 

differentiation toward myeloid, monocytic, erythroid or megakaryocytic lineages can be 

demonstrated with appropriate staining panels. Certain staining characteristics may guide 

genetic testing such as fluorescence in situ hybridization studies on the paraffin-embedded 

tissue according to the type of blasts present (Olsen RJ, 2008). The commonly available 

antibodies for AML include CD45 (LCA) (marker for hemopoietic origin), CD117, CD34, 

TdT, HLA-DR (markers of precursor stage), MPO (specific myeloid marker), CD68, 

lysozyme, CD163 (markers for monocytic lineage), CD41, CD61, factor VIII (FVIII) (markers 

for megakaryocytic lineage), hemoglobin A1, glycophorin A (markers for erythroid lineage), 

and CD15 (marker for myeloid maturation). . The fact that various antibodies have variable 

reactivity in FC and IHC has to be kept in mind while interpreting the results. Although 

most studies found a better detection of CD34 by flow, some did not find any difference. 

CD15 and CD117 are better detected by FC analysis and MPO is better detected by IHC 
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analysis (Dunphy CH et al, 2001). Some of the antibodies as CD13 and CD33 are not 

available or not standardized well by IHC. 

LCA positivity recognizes a hemopoietic malignancy; however, it can be negative in AML-

M6 and M7. CD34 (QBEND10) is less sensitive by IHC than by FC and is detected in only 

50% of cases (Figure 7a) (Manaloor EJ, 2000; Olsen RJ, 2008). CD117 (c-Kit) is a much more 

sensitive marker of immaturity than CD34 and is also a marker for myeloid lineage (Rizzatti 

EG et al, 2002). TdT is expressed in cases of AML with t(8;21). Myeloperoxidase is the most 

specific marker for assigning myeloid lineage (Figure 7b); however, is negative in AML-M0 

and blasts of monocytic, erythroid, and megakaryocytic lineages. Hemoglobin A1 and 

glycophorin A are positive in 90% to 100% of erythroid lineage cells, and FVIII is positive in 

90% of megakaryocytic cells, but rare cases demonstrating inadequate lineage maturation 

(early megakaryoblasts) may be negative (Chuang SS & Li CY, 1997; Manaloor EJ, 2000). 

CD41 and CD61 expression favor megakaryoblastic lineage; however, CD41 expression can 

be sometimes observed in other subtypes of AML. As in FCI, IHC can also demonstrate 

lymphoid lineage reactivity – as with CD2, CD7, CD4 and PAX-5. The expression of PAX-5 

correlates highly with AML showing the t(8;21) abnormality.  

The results of IHC should be evaluated carefully keeping in mind the limitations of the 
technique. Where there is unequivocal demonstration of immaturity, i.e. CD34 and/or CD117 
expression, with MPO staining in the blasts, a diagnosis of AML can be made confidently. 
However, it is a challenge to interpret MPO negative AL cases. In such cases of AL, one has to 
first ensure that the B- and T- lymphoblastic lineages have been ruled out by a negative 
staining for CD79a, PAX-5, CD20, and CD3 (should detect CD3 epsilon chain and not zeta 
chain by a polyclonal antibody, which is non-specific) (Swerdlow SH et al, 2008). Monocytic 
lineage can be established using the CD68 (both KP-1 and PG-M1 epitopes) and lysozyme. 
Possibilities of AML-M6 or AML-M7 should be ruled out; these may be more challenging as 
they may be LCA negative. If the blasts express CD117 and TdT without CD79a, PAX-5, 
CD79a, MPO, and CD3 possibility of AML-minimally differentiated may be suggested. In the 
LCA negative cases, work-up towards other possibilities should be done before making a 
diagnosis of AL. Ancillary techniques should be appropriately used before a final conclusion. 
The role of IHC in the diagnosis of AL of ambiguous lineage is questionable. The possibility 
of AUL can be suggested when the blasts fail to express the immunophenotypic features of 
either lymphoid or myeloid differentiation. It is important to consider non-hemopoietic 
malignancies. BDPC neoplasm is a diagnosis usually based on tissue biopsy, most often a skin 
lesion (Petrella T et al, 1999). Morphologically suspected as leukemia cutis, the primary panel 
is usually inconclusive - weakly positive for LCA/CD45, variably and focally positive for 
CD68. The pattern may be confusing because of the absence of lineage-specific markers. The 
diagnosis should be suspected and a further panel should be done for a conclusive opinion. 
The cells are positive for CD4, CD43, CD56, and CD123 (plasmacytoid dendritic cell marker) 
and the expression of CD2 and CD7 is variable. This pattern may be seen in myeloid sarcoma 
(AML- M4 or M5). These entities are distinguished by the clinical presentation, and more 
importantly by CD13, and CD33 expression, which are readily available by FC. CD13 and 
CD33 are present in AMLs and are usually absent in BDPC (Jacob MC et al, 2003).  

3.5 Cytogenetics 

Conventional cytogenetic analysis is now an integral component of the diagnostic 
evaluation of a patient with suspected acute leukemia. This is done best at the time of 
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diagnosis before initiating therapy. Chromosome abnormalities are detected in 
approximately 55% of adult AML (Döhner H et al, 2010; Grimwade D et al, 1998). There are 
seven recurrent balanced translocations and inversions, and their variants recognized in the 
WHO category – AML with recurrent genetic abnormalities. Several cytogenetic 
abnormalities are considered sufficient to establish the WHO diagnosis of AML with 
myelodysplasia-related features, when 20% or more blood or marrow blasts are present. A 
minimum of 20 metaphase cells analyzed from bone marrow is considered mandatory to 
establish the diagnosis of a normal karyotype, and also to define an abnormal karyotype. 
Abnormal karyotypes may be diagnosed from blood specimens, or the biopsy core 
scrapings, when the marrow aspirate is scanty or insufficient. Leukemic blasts carrying 
AML-associated chromosome aberrations can constitute only a fraction of cells dividing in 
vitro. Moreover, a blood specimen can sometimes be cytogenetically normal when the 
marrow is abnormal. In the CALGB database, this was found in approximately 5% of AML 
patients whose marrow and blood specimens were studied simultaneously (Grimwade D et 
al, 1998; Mrózek K et al, 2001, 2007). 
Acquired genetic alterations, both those detectable microscopically as structural and 

numerical chromosome aberrations, and those detected as submicroscopic gene mutations 

and changes in gene expression, are commonly seen in AML. At present, cytogenetic 

aberrations detected at the time of AML diagnosis constitute the most common basis for 

predicting clinical outcome (Byrd JC et al, 2002; Mrózek K &Bloomfield CD, 2006; Slovak M 

L et al, 2000). Acquired clonal chromosome abnormalities are defined as a structural 

aberration or a trisomy observed in at least 2 and monosomy found in at least 3 metaphase 

cells. These are detected in the pretreatment marrow of 50% to 60% of adults with de novo 

AML. In 10% to 20% of patients, the abnormal karyotype is complex, defined as the presence 

of more than 3 abnormalities in karyotypes not including the abnormalities seen in the 

recurrent genetic abnormalities group, i.e. t(8;21), inv(16), t(16;16), t(15;17) or t(9;11) 

(Swerdlow SH et al, 2008). In around 40% to 50% of patients no cytogenetic abnormality can 

be detected using standard banding methods (Byrd JC et al, 2002; Farag SS et al, 2006; 

Grimwade D et al, 1998; Mrózek K et al, 2001, 2007; Slovak M L et al, 2000). The role of 

cytogenetics is of paramount importance in the diagnosis of AML with recurrent genetic 

abnormalities – those associated with balanced translocations and inversions, and AML 

with myelodysplasia-related changes.  

3.5.1 AML with balanced translocations/ inversions 

This group is composed of ALs with detection of balanced translocations between 

chromosomes and are usually associated with a specific prognosis. All large cytogenetic 

studies of AML have shown that patients with t(15;17)(q22;q12- 21) have an excellent 

outcome and those with t(8;21)(q22;q22) or inv(16)(p13q22)/ t(16;16)(p13;q22) a relatively 

favorable prognosis. Those with inv(3)(q21q26)/ t(3;3)(q21;q26), –7 and a complex karyotype 

have an unfavourable outcome (Mrózek K &Bloomfield CD, 2006) . 

3.5.1.1 Core-Binding Factor (CBF) AML 

CBF-AML is a relatively frequent subtype of adult de novo AML, with t(8;21) being detected 
in 7% and inv(16)/t(16;16) in 8% of patients (Byrd JC et al, 2002; Marcucci G et al, 2005; 
Mrózek K & Bloomfield CD, 2006). As in APL both these leukemias have a characteristic 
morphology based on which these cytogenetic abnormalities are predicted and specifically 
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looked for. Both t(8;21) and inv(16) are related at the molecular level as they disrupt the ǂ 
and ǃ subunits of CBF, respectively.  
AML with t(8;21)(q22;q22); RUNX1-RUNX1T1: This abnormality detected in 20% adult and 

40% children de novo AML cases is associated usually with FAB AML-M2, rarely with other 

subtypes (Figure 8). Over 70% are associated with secondary chromosome aberrations – as loss 

of a sex chromosome (–Y in men and –X in women) and del(9q) with loss of 9q22 being the 

most frequent. Despite good prognosis relapse is a major problem, especially in first 2 years of 

remission (Marcucci G et al, 2005; Mrózek K & Bloomfield CD, 2006; Schlenk RF et al, 2004). 

 

 

Fig. 8. Karyotype showing balanced translocation of 46,XY, t(8;21)(q22;q22) 

AML with inv(16)(p13.1q22) / t(16;16) (p13.1q22); CBFB-MYH11: These are associated with 
characteristic FAB M4Eo morphology, higher WBCs, percentages of PB and BM blasts, more 
often showing extramedullary involvement, lymphadenopathy, splenomegaly, gingival 
hypertrophy and skin/mucosa involvement and characteristic cytogenetic features. 
Approximately two thirds of patients with inv(16)/t(16;16) have this rearrangement as a 
sole chromosome abnormality. Most frequent secondary chromosome aberrations in 
inv(16)/t(16;16)-positive patients are +22, +8, del(7q) and +21. These studies identified 
additional cytogenetic prognostic factors differentiating the two cytogenetic subsets of CBF 
AML. Among patients with inv(16)/t(16;16), those who harbored +22 as a secondary 
abnormality were found to have a significantly lower cumulative incidence of relapse 
compared with patients with inv(16)/t(16;16) as a sole abnormality in the CALGB study and 
longer relapse free survival than patients without +22 in the German Acute Myeloid 
Leukemia Intergroup study(Marcucci G et al, 2005; Mrózek K & Bloomfield CD, 2006; 
Schlenk RF et al, 2004). 

3.5.1.2 AML associated with RARA translocation including variant translocations 

APL constitutes 5-8% of AML (Swerdlow SH et al, 2008). In 1977 Rowley and colleagues 
identified the t(15;17) balanced reciprocal chromosomal translocation as the karyotypic 
hallmark of the disease (Rowley J et al, 1997 as cited in Sirulnik A et al, 2003). In the early 
1990s it was discovered that in classical APL this reciprocal translocation involves a fusion 
between the RARA gene on chromosome 17 and a previously unknown locus named 
promyelocytic leukemia (PML) on chromosome 15 (Kakizuka A et al, 1991 as cited in 
Sirulnik A et al, 2003). Other additional chromosomal abnormalities can be found in 30 to 
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40% of patients with APL in addition to t(15;17). The most common of these are trisomy 8 
and isochromosome 17. Additional chromosomal abnormalities do not have a negative 
effect on the overall prognosis (Johannson B et al, 1994; Schoch C et al. 1996; Slack JL, 1997). 
However, there have been cases morphologically reported as APL without a detectable 
t(15;17) on a conventional karyotype. Some of these have a cryptic PML/RARA 
translocation, i.e. these are submicroscopic and not detected by conventional method and 
require ancillary techniques as the FISH or PCR for a confirmation. Others have 
translocations not involving the t(15;17) (Goyal M et al, 2010; Grimwade DF et al, 1997).  
AML with Variant RARA translocations: The current WHO categorizes morphologically 
diagnosed cases of APL into those associated with t(15;17)(q22;q21)/ PML-RARA 
rearrangement, and those lacking PML/RARA rearrangements based on the cytogenetic 
and molecular studies (Swerdlow SH et al, 2008). The latter group is separately categorized 
as variant RARA translocations due to refractory / variable response to ATRA. Instead of 
PML the partner genes in this group could be ZBTB16/ PLZF at 11q23, NUMA1 at 11q13, 
NPM1 at 5q35 and STAT5B at17q11.2.  

3.5.1.3 AML with t(9;11)(p22;q23); MLLT3-MLL and variant MLL translocations in AL  

The MLL gene on chromosome 11 band q23 is frequently involved in chromosome 
translocations in acute lymphoblastic leukemia and acute myeloid leukemia. The MLL gene 
located at 11q23 has been described as a ‘promiscuous’ gene due its involvement with a 
large number of genetic partners (Moorman AV et al, 1998). More than 80 different partner 
chromosome regions have been described till date. The translocation results in the formation 
of a fusion gene on the derivative 11 chromosome consisting of the 5’ part of the MLL gene 
and the 3’ part of another gene. MLL gene rearrangements generally correlate with a poor 
prognosis; however AML with t(9;11)(p22;q23) is associated with intermediate prognosis. 
Therefore, the presence of 11q23 aberration has direct implications for treatment 
stratification, making early and rapid detection of utmost importance (van der Burg et al, 
1999). AML with t(9;11) are associated with acute monocytic and myelomonocytic leukemias 
(Baer MR et al, 1998; Sorensen PHB et al, 1994; Swansbury GJ et al, 1998). This entity 
involves MLLT3 (AF9), which is the most common MLL translocation in AML. Secondary 
chromosomal abnormalities as +8 are commonly seen, however, these do not affect the 
prognosis.  
AML with variant MLL translocations: Various other partner chromosomes are known to 

be associated with the MLL gene (Moorman AV et al, 1998). 19p13.1 is involved almost only 

with AML, others can be seen both in ALL and AML, and all have been categorized in 

variant MLL translocations in acute leukemia. The WHO 2001 encompassed all MLL related 

translocations into the category of AML with 11q abnormalities. However, the WHO 2008 

now separates AML with t(9;11) from other MLL related translocations, which are placed in 

the category variant MLL translocations in acute leukemia. It is imperative to mention the 

specific abnormality associated with MLL to place in the latter category. Cases of AML with 

specific MLL translocations as t(11;16)(q23;p13.3) and t(2;11)(p21;q23) if not associated with 

cytotoxic chemotherapy should be considered as AML with myelodysplasia-related changes 

and not variant translocation of 11q23 (Swerdlow SH et al, 2008). 

3.5.1.4 AML with t(6;9)(p23;q34); DEK-NUP214 

Morphologically these are AML with or without monocytic features, usually associated with 
basophilia and multilineage dysplasia. The t(6;9)(p23;q34) results in fusion of DEK on 
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chromosome 6 with NUP214 on chromosome 9. Usually it is an isolated abnormality. Very 
occasional reports of complex karyotype are known (Chi Y et al, 2008; Slovak ML et al, 
2006). These are frequently associated with FLT3-ITD mutations and a poor prognosis. 

3.5.1.5 AML with inv(3)(q21q26.2) or t(3;3)(q21q26.2); RPN1-EVI1 

These are morphologically AML with multilineage dysplasia and characterized by the 
translocation involving EVI1 or MDS-1EVI1 located at 3q26.2 and RPN1 at 3q21 
respectively. Other abnormalities involving the 3q26.2, seen in therapy related AML are not 
included in this category. This group is frequently associated with secondary karyotypic 
abnormalities – monosomy 7, 5q deletions, and complex karyotypes. AML with 
inv(3)(q21q26.2) or t(3;3)(q21q26.2) is an aggressive disease with a short survival (Lugthart S 
et al, 2008). 
 

Karyotypic 
abnormalities 

AML with myelodysplasia 
related changes 

Therapy related AML  
(t-AML) 

Complex karyotype   Complex karyotype  

Unbalanced 
abnormalities 
 

-7 /del(7q); -5/ del(5q); i(17q)/ 
t(17p);-13/ del(13q);  del(11q); 
del(12p)/t(12p); del(9q); idic 
(X)(q13) 

-7 /del(7q); -5/ del(5q); del(13q); 
del (20q); del(11q);  del(3p);  
-17; -18; -21; +8 

Balanced 
abnormalities 

t(11;16)(q23:p13.3); 
t(3;21)(q26.2;q22.1); 
t(1;3)(p36.3;q21.1); 
t(2;11)(p21;q23); t(5;12)(q33;p12); 
t(5;7)(q33;q11.2); t(5;17)(q33;p13); 
t(5:10)(q33;q21);  
t(3;5)(q25;q34) 

t(11;16)(q23:p13.3); 
t(3;21)(q26.2;q22.1); 
t(2;11)(p21;q23); 
t(9;11)(p22;q23);  t(11;19)(q23;p13); 
t(8;21)(q22;q22);  t(15;17); 
t(3;21)(q26.2;q22.1)); 
inv(16)(p13q22) 

Table 2. Types of cytogenetic abnormalities defining AML with myelodysplasia related 
changes and Therapy related AML (t-AML) 

 

 

Fig. 9. Case of a t-AML, post treatment for carcinoma breast showing a complex karyotype: 
44,XX,del(5q),del(7q),der(9)add(9p),der(15)add(15p),-16,-20 
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3.5.1.6 AML with t(1;22)(p13;q13); RBM15-MKL1 

These are morphologically acute megakaryoblastic leukemia associated with a very poor 
prognosis. Usually t(1;22)(p13;q13) is the sole abnormality. However, cytogenetics may not 
always be successful to depict this abnormality due to poor bone marrow aspirate yield and 
one may need to resort to molecular analysis as well. When a morphological diagnosis of 
AML-M7 is suspected, this chromosomal/ molecular abnormality should be looked for 
(Swerdlow SH et al, 2008). 

3.5.2 AML with myelodysplasia related changes and therapy related AML 

The chromosomal abnormalities are similar to those found in MDS and often involve gain or 

loss of major segments of certain chromosomes with complex chromosomal abnormalities. 

Various balanced and unbalanced abnormalities are known to occur (Table 2). Some 

abnormalities as t(11;16)(q23;p13.3) and t(3;21)(q26.2;q22.1) seen in AML with 

myelodysplasia-related changes, also occur commonly in t-AML and clinical details should 

be evaluated to differentiate between the two (Secker-Walker LM et al, 1998). Trisomy 8, del 

20q and loss of Y are common in MDS, however, are not considered disease-specific. Hence, 

their isolated presence is not sufficient to consider a case as AML with myelodysplasia-

related changes. Cases of AML with myelodysplastic changes in bone marrow may show 

t(6;9)(p23;q34), inv(3)(q21q26.2) or t(3;3)(q21q26.2) on a karyotype and should be 

categorized as such and not in AML with myelodysplasia-related changes. In t-AML 

unbalanced chromosomal aberrations are seen in 70% cases (Figure 9). These are associated 

with longer latent period, myelodysplastic changes and alkylating agent and/ or radiation 

therapy. Balanced translocations seen in 20-30% are associated with shorter latency, absence 

of myelodysplasia and prior therapy with topoisomerase inhibitors. The prognosis for t-

AML is dependent on the karyotype – is generally poor, except in cases associated with 

balanced translocations as t(15;17) and inv(16)(p13q22), which is also poorer as compared to 

de novo cases (Swerdlow SH et al, 2008). 

3.5.3 AML- not otherwise specified  

There are no specific chromosomal abnormalities associated with different subtypes. 

However, higher frequency of few abnormalities is seen in certain subtypes. Cuneo A et al, 

1995 compared cases of AML-M0 and AML-M1 and showed that abnormal karyotypes, 

complex karyotypes, unbalanced chromosome changes (-5/5q- and/or -7/7q- and +l3) were 

more frequent in AML-M0 than in AML-M1. However, many cases were regrouped in the 

AML with myelodysplasia-related changes. Trisomy 8 may be seen in acute 

myelomonocytic leukemia and t(8;16)(p11.2;p13.3) may be seen in acute monocytic or 

myelomonocytic leukemia. Cases of AML-M7 associated with mediastinal germ cell tumors 

have shown several cytogenetic abnormalities of which i(12p) is the most characteristic. 

There are no specific abnormalities documented in other subtypes. 

3.5.4 Down’s syndrome related AML  

In addition to trisomy 21, trisomy 8 is a common cytogenetic abnormality seen in DS-
AML (13-44%). More importantly the focus should be on detecting GATA1 mutations, 
which are commonly seen in children below 5 years (Swerdlow SH et al, 2008; Xavier AC 
& Taub JW, 2009). 
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3.5.5 Blastic Plasmacytoid Dendritic Cell neoplasm 

Chromosomal abnormalities are found in two-thirds of BPDC patients, although a specific 
karyotype is lacking. Complex karyotypes are common and six major recurrent 
chromosomal abnormalities are found: 5q21 or 5q34, 12p13, 13q13-21, 6q23-qter, 15q and -9.  

3.5.6 Cytogenetically normal AML (CN-AML) 

The proportion of adults with de novo CN-AML has varied between 40% and 49% in the 

largest cytogenetic studies (Byrd JC et al, 2002; Grimwade D et al, 2001; Mrózek K et al, 2007; 

Slovak ML et al, 2000). A patient is defined karyotypically normal when full analysis of at least 

20 metaphase cells originating from a marrow sample cultured in vitro for 24 to 48 hours is 

performed (Mrózek K et al, 2007). There are patients who, despite having a normal karyotype 

on standard cytogenetic investigation, carry 1 of the fusion genes identical to those generated 

by recurrent translocations (eg, PML-RARA/t(15;17), RUNX1-RUNX1T1 (AML1-ETO)/ t(8;21)) 

or inversions (CBFB-MYH11/inv(16)) and categorized in AML with recurrent genetic 

abnormalities. In most instances, these fusion genes are created by cryptic insertions of very 

small chromosome segments that do not alter the chromosome morphology (Grimwade D et 

al, 2000; Mrózek K et al, 2007; Rowe D et al, 2000). Both RT-PCR and FISH can be used to 

detect the presence of the aforementioned hidden rearrangements. Such testing is definitely 

warranted in CN-AML patients with FAB M2, M3, M3v, and M4Eo marrow morphology but 

is otherwise not routinely recommended outside of a clinical trial (Mrózek K et al, 2007; 

National Comprehensive Cancer Network (NCCN), 2006). 

3.5.7 Prognosis associated with chromosomal abnormalities 

The risk stratification with regards to cytogenetics is based on studies performed on patients 
below 60 years of age (Byrd JC et al, 2002; Grimwade D et al, 1998; Mrózek K & Bloomfield 
CD, 2006; Slovak ML et al, 2000). The favourable risk group have only balanced 
translocations – include t(15;17)(q22;q12-21), t(8;21)(q22;q22) and with inv(16)(p13.1q22) / 
t(16;16) (p13.1q22) (Table 3). The CN-AML is included in the intermediate-risk group. The 
unfavourable risk group includes complex karyotype, various balanced translocations, 
unbalanced translocations and numerical abnormalities. An MRC study found the outcome  
 

Karyotypic 
abnormality 

 Favourable  Intermediate  Poor 

 CN-AML Complex karyotype 

Balanced 
Structural 
Rearrangements 

t(15;17)(q22;q12-21) 
t(8:21)(q22;q22) 
inv(16)(p13q22)/ 
t(16;16)(p13;q22) 
 

t(9;11)(p22;q23) 
 

inv(3)(q21q26)/ 
t(3;3)(q21;q26) 
t(6;9)(p23;q34) 
t(6;11)(q27;q23) 
t(11;19)(q23;p13.1) 

Unbalanced 
Structural 
Rearrangements  

None del(7q) 
del(9q) 
del(11q) 
del(20q) 

Del (5q) 
 

Numerical 
aberrations: 

None -Y ; +8 ; +11; +13; 
+21 

-5 
-7 

Table 3. Known cytogenetic abnormalities with associated favourable, intermediate and 
unfavourable prognosis. 
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of patients above 60 years with fewer than 5 abnormalities, regardless of the presence of 
abnormalities involving chromosomes 5, 7 and 3q, to be comparable to the intermediate-risk 
category. They included only those patients with a complex karyotype with 5 or more 
aberrations in the adverse risk category (Grimwade D et al, 2001). A CALGB study 
confirmed that older AML patients with a complex karyotype with 5 or more aberrations 
have particularly poor disease free survival (DFS) and overall survival (OS), with no patient 
surviving 5 years after diagnosis (Farag SS et al, 2006). 

3.6 Fluorescent-In-Situ Hybridisation (FISH) 

FISH is an improvisation of cytogenetic technique used to detect and localize the presence or 
absence of specific DNA sequences on chromosomes. Karyotype analysis has an advantage 
that the entire genome can be analyzed however, is applicable to actively dividing cells, and 
the resolution is limited to chromosomal rearrangements that are >3Mb in size. In addition 
technical aspects of sample collection, storage, transport, and culture may lead to 
suboptimal results. Poorly spread or contracted metaphases, low mitotic index and highly 
complex cytogenetic abnormalities may also lead to faulty results. This technique is labour-
intensive and time-consuming. FISH is capable of detecting aberrations of sizes between 
10kb to 5Mb. These are accurate, rapid, however, targeted analysis of the genomes. FISH 
provides increased resolution, thus elucidating submicroscopic deletions, cryptic or subtle 
duplications and translocations, complex rearrangements, involving many chromosomes 
and marker chromosomes. Interphase FISH has advantages of screening more number of 
cells, and also that both proliferating and not proliferating cells can be analyzed. The test 
can be performed on fixed bone marrow suspensions, paraffin-embedded tissue sections, 
bone marrow or blood smears, and touch preparations of cells from tissues. The test can be 
reliably used for routine diagnostic screening and whenever the patient’s material is not 
sufficient or suitable for cytogenetic/RT-PCR analysis.  
Role of FISH in AML: The main applications in AML are detection of recurrent cytogenetic 
abnormalities, whenever the cytogenetic analysis fails or in a CN-AML case, where 
morphology is suggestive of AML with recurring cytogenetic abnormalities. Dual color 
dual- fusion probes specific for the abnormality are used when a reciprocal translocations 
are suspected, e.g. t(8;21), t(15;17), etc (Figure 10). The presence of a translocation is  
 

 

Fig. 10. Interphase FISH analysis showing 1red– 1green– 1yellow fusion signal pattern; as 
compared to the normal cells which show a pattern of 0red– 0green– 2yellow (not shown). 
The splitting of yellow signal into 1red and 1green indicates translocation involving 
chromosome 16 in the region of CBFB (DAPI counterstain, ×1000) 
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detected by the formation of a red-green or yellow fusion signal. MLL gene is involved in 
more than 80 different translocations. To detect AL with MLL gene involvement break-apart 
probes complimentary to MLL gene are useful. This approach has an advantage that it 
detects all types of MLL gene translocations, independent of the partner gene (van der Burg 
et al, 1999). However, for detecting specific abnormality, dual color dual-fusion specific 
probes are used to detect the balanced translocations. In cases of AML with myelodysplasia 
associated changes, where numerical aberrations are more common CEPs are used to detect 
+8, -5, -7, etc. 

3.7 PML nuclear bodies immunofluorescence test 

An immunofluorescence based test is developed for rapid diagnosis of APL, using 
antibodies directed against the amino terminal portion of the human PML gene product, 
PG-M3 monoclonal antibody (Falini B et al, 1997). The wild type PML produces a 
characteristic nuclear speckled pattern that is due to localization of the protein into discrete 
dots (5 to 20 per nucleus), named PML nuclear bodies. The architecture of PML nuclear 
bodies appears to be disrupted in APL cells that bear the t(15; 17), thus resulting in 
abnormal (micropunctate) pattern of the PML/RARA fusion protein (usually ≥50 small 
granules/per nucleus). These are characteristically seen in APL with PML/RARA 
translocation and not in PLZF/RARA APL and other AMLs. Immunocytochemical labeling 
with PG-M3 represents a rapid, sensitive, and highly-specific test for the diagnosis of APL 
that bears the t(15; 17) and allows an easy and correct diagnosis of this subtype of acute 
leukemia to any laboratory provided with a minimal equipment for immunocytochemistry 
work.  

3.8 Polymerase chain reaction 

Nucleic acid amplification studies have become an integral part of diagnostic and 
prognostic work-up in the field of hematology. These include detection of DNA or the RNA 
by a process known as polymerase chain reaction (PCR). A marrow or peripheral blood 
specimen is routinely taken for molecular diagnostics. Ideally, DNA and RNA should be 
extracted and viable cells stored; if sample quantity is limited, RNA extraction should be a 
priority, because RNA is suitable for molecular screening for fusion genes and leukemia-
associated mutations.  

3.8.1 PCR in the diagnosis of recurrent genetic abnormalities 

Molecular diagnosis by RT-PCR for the recurring gene fusions, such as RUNX1-RUNX1T1, 

CBFB-MYH11, MLLT3-MLL, DEK-NUP214, can be useful in certain circumstances. RT-PCR 

is an option to detect these rearrangements, if chromosome morphology is of poor quality, 

or if there is typical marrow morphology but the suspected cytogenetic abnormality is not 

present and for a rapid diagnosis (Mrózek K et al, 2001). The standardized protocols are 

published by the BIOMED-1 group (van Dongen JJM et al, 1999). 

Acute Promyelocytic Leukemia with PML/RARA translocation: Five different chromosomal 
translocation partners have been identified in patients with APL, and all involve the RARA 
gene on chromosome 17q21 fused to one of the partners, PML on chromosome 15q22 being the 
most common. This results in fusion PML/RARA, mRNA transcription and a chimeric 
protein. RT- PCR amplification of the PML/RARA fusion transcript is now widely used for 
both diagnostic and monitoring studies (Sirulnik A et al, 2003).  
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Fig. 11. The upper left panel shows a schematic representation of possible break-points in 
the PML and RARA genes, thus generating the isoforms – bcr1, bcr2 or bcr3 of PML-RARA 
fusion transcript. (Idea adapted from van Dongen JJM et al, 1998). The bcr1 and bcr2 
breakpoint regions are juxtaposed in intron 6 and exon 6, respectively. The upper right 
panel shows presence of bcr1 form of PML-RARA transcript (red arrow) with an internal 
control (black arrow). The lower panel gives a reference chart for the location of various 
PML-RARA transcripts and their relative sizes based on the number of base pairs 

The exact type of breakpoint on the PML gene can be determined. RT-PCR allows the 

detection of minimal residual disease at high sensitivity levels. Some pitfalls include poor 

RNA yield and stability, as well as the low expression of the hybrid PML/RARA gene. The 

chromosome 17 breakpoints are localized within a 15 kb DNA fragment of the RARA intron 

2. The PML gene spans 35 kb of genomic DNA and contains nine exons (Chen Z & Chen SJ, 

1992; Sirulnik A et al, 2003). Three regions of the PML locus are involved in the translocation 

breakpoints: intron 6 (bcr1; 55% of cases), exon 6 (bcr2; 5%), and intron 3 (bcr3; 40%). Bcr1 

and bcr2 are considered as long (L) forms and bcr3 is considered as short (S) form (Figure 

11). Because bcr2 (also referred to as ‘variant’ or V form) and bcr1 are located in PML exon 6 

and intron 6, respectively, sequencing of all L transcript cases would be needed to clearly 

distinguish these two isoforms. There is no difference in the clinical features of various 
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isoforms (Lo-Coco F et al, 1999, 2003; van Dongen JJM et al, 1999). Recognition of the 

infrequent PLZF/RARA subtype is clinically relevant in the light of its presumed 

unresponsiveness to ATRA and other agents such as arsenic trioxide (Lo-Coco F et al, 2003). 

Acute myeloid leukemia with RUNX1-RUNX1T1 or AML-ETO: The t(8;21) fuses the 
RUNX1 or AML1 or CBFA2 gene on chromosome 21 to the RUNX1T1 or ETO gene on 
chromosome 8. RUNX1-RUNX1T1/ AML1-ETO fusion transcripts are found by RT-PCR in 
virtually all cases of t(8;21)-positive AML, including those with complex translocations and 
also in a significant proportion of t(8;21)-negative AML (van Dongen JJM et al, 1999). 
Transcripts of this fusion gene can be specifically and sensitively detected by RT-PCR. They 
generate predominant PCR products of a constant size, corresponding to an in-frame fusion 
of AML1 exon 5 to ETO exon 2 (Downing JR et al, 1993; Liu Yin JA, 2002).  
Acute myeloid leukemia with CBFB-MYH11:  This translocation involves fusion of CBFB 
gene located on16q22 with MYH11 gene located on 16p13. There is marked heterogeneity in 
the fusion transcripts, arising from variable genomic breakpoints in both CBFB and MYH11 
genes and alternative splicing. Ten different CBFB-MYH11 fusion transcripts have been 
reported and have been designated as types A to J (Liu Yin JA, 2002; van Dongen JJM et al, 
1999). More than 85% of the positive patients have type A transcript; two other transcripts 
(D and E) represent nearly 5% each, whereas all others represent unique cases (Liu PP et al, 
1995; Liu Yin JA, 2002).  
Other cytogenetic abnormalities: There are primers directed to diagnose other recurring 

genetic abnormalities, especially those involving MLL gene, the partners being MLLT3 

/AF9, AF6, AF10, ENL, etc. In addition PCR can be used to diagnose DEK-CAN related to 

t(6;9)(q23;q34), EVI-1 associated with inv 3(q21;q26)/ t(3;3) (q21;q26), AML1-EVI-1, 

t(3;21)(q26;q22) and rarely the BCR-ABL1, i.e. t(9;22)(q24;q11) (Swerdlow SH et al, 2008; 

Vardiman JW et al, 2009). Although BCR-ABL1–positive AML has been reported, criteria for 

its distinction from CML initially manifesting in a blast phase are not entirely convincing, 

and for this reason, BCR-ABL1–positive AML is not recognized in this classification. Many 

cases of BCR-ABL1– related AL will meet the criteria for ALL or MPAL, provided that a 

blast phase of a previously unrecognized CML can be excluded (Vardiman JW et al, 2009). 

GATA 1 mutations are detected in children less than 5 years in cases of AML associated 

with Down’s syndrome. (Swerdlow SH et al, 2008; Xavier AC & Taub JW, 2009) 

3.8.2 Cytogenetically Normal AML 

According to the various cytogenetic classifications mentioned above around 50% to 70% of 
AML patients are considered to be a part of an intermediate-risk group. Most of these 
patients have a normal karyotype (40-50% of all AML patients), but the heterogeneity is 
most pronounced in this group (Schlenk RF et al, 2008). Somatically acquired mutations 
have been identified in several genes, the notable ones are the NPM 1, CEBPA, and FLT3, 
which have been proven to have prognostic implications. AML with mutations in NPM1 or 
CEBPA have been incorporated in the WHO classification as provisional entities. The FLT3 
internal tandem duplication (ITD) mutation was detected and found to be the most common 
gene mutation in AML. Subsequent research shows that mutations of the NPM1 gene can 
occur in up to 60% of patients with AML and are most common in patients with a normal 
karyotype. The European Leukemia Net panel recommends that mutations of NPM1, 
CEBPA and FLT3 be analyzed at least in patients with CN-AML who will receive treatment 
other than low-dose chemotherapy or best supportive care (Döhner H et al, 2010; Döhner K 
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& Döhner H, 2008). There are few more as MLL, BAALC, WT1, etc which have also an 
impact on the prognosis.  
 
                                       1                2              Reference 

         

Fig. 12. A patient showing FLT3 – ITD in lane 2 (arrow) as a distinct band from the wild type 
of FLT-3. Lane 1 shows 100bp markers. The reference gel on the right panel shows the 
various locations of the wild and mutant products. 

Mutations of the nucleophosmin, member 1 (NPM1) gene: Mutations of NPM1 gene, 
which codes for a nuclear/cytoplasmic shuttling protein, are found in 50–60% of CN-AML 
cases (Schiffer CA, 2008). Heterozygous mutations in exon 12 of the NPM1 gene, results in 
abnormal cytoplasmic expression of its protein product, nucleophosmin. The presence of 
NPM1 mutations has been associated with pretreatment features as female sex, increased 
bone marrow blast percentages, LDH levels, WBC and platelet counts, and low or absent 
CD34 expression. In many studies, the presence of NPM1 mutation in CN-AML has been 
associated with good prognosis. 40% of patients with NPM1 mutations also harbor FLT3- 
ITDs (Döhner K et al, 2005; Falini B et al, 2006; Schnittger S et al, 2005; Thiede C et al, 2006). 
Mutations of the CCAAT/enhancer-binding protein alpha (CEBPA) gene: CEBPA protein 
is critical for normal hematopoietic differentiation and loss of activity either by mutation or 
epigenetic silencing can result in a block in normal differentiation. The incidence varies 
between 7% and 20% in various studies (Schiffer CA, 2008). Those with CEBPA mutations 
present with higher percentages of peripheral blood blasts, lower platelet counts, less 
lymphadenopathy and extramedullary involvement, and are less likely to also carry FLT3-
ITD, FLT3-TKD and MLL-PTD. CEBPA mutations confer favorable prognosis. CEBPA 
mutations are best studied by DNA sequencing, and hence are not available on a routine 
basis. 
FLT 3 mutations: FLT3 is a transmembrane tyrosine kinase receptor with important roles in 

hematopoietic stem/progenitor cell survival and proliferation. FLT3 is the most frequently 

mutated gene in AML. Different mutations of the gene exist. Most common are the internal 

tandem duplications (ITDs) in the juxta membrane domain (JMD) and found in 23% of AML 

patients (Figure 12). FLT3-ITD can be detected in all subtypes of AML but contradictory 

results have been published concerning its relationship with FAB type (Bacher U et al, 2008; 

Boissel N et al, 2006; Cairoli R et al, 2006; Frohling S et al, 2002; Gale RE et al, 2008; 

Kottaridis PD et al, 2001; Schnittger S et al, 2002). Its incidence is associated with 

hyperleukocytosis and age (Cairoli R et al, 2006). The frequency is higher in elderly patients 
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and lower in children. FLT3 is highly expressed in infant MLL gene re-arranged ALL and 

offers an interesting target for this high-risk group of patients (Döhner H et al, 2010). In 

addition to FTL3-ITD, point mutations in the FLT3 gene involving aspartic acid 835 of the 

kinase domain (KD), may also lead to constitutive activation of the receptor. FLT3-KD point 

mutations in other sites are found less frequently. FLT3-KD point mutations are seen in 8-

12% of AML patients. Both types of mutation constitutively activate FLT3. Many studies in 

AML have shown that the presence of ITD mutations portends a poor prognosis. Thiede et 

al showed that the outcome of AML patients is dependent on the ratio of mutant and wild-

type FLT3 (Thiede C et al, 2002). In most studies the KD point mutants do not seem to have 

the same unfavorable prognostic effect. FLT3 mutations can also be detected in other types 

of AML including those with t (6;9) and APL (Schiffer CA. 2008). Testing for FLT3 mutations 

in younger patients, i.e. less than 60 years of age, with de novo AML is now recommended 

by the NCCN Practice Guidelines in Oncology. Testing for FLT3-ITD and for the other 

molecular markers is available mostly at only the large university centers and is performed 

as part of clinical trials (NCCN, 2006). 

Overexpression of WT1 (Wilm’s Tumor 1) gene: The levels of WT1 were found to be 102 – 

103 times higher in AML than in normal bone marrow, where it is either undetectable or 

expressed at very low levels. WT1 is over-expressed in approximately 90% of AML patients, 

except in FAB AML-M5, where its expression is lower (Gaidzik VI et al, 2009; Inoue K et al, 

1994; King-Underwood L et al, 1996; Liu Yin JA, 2002; Paschka P et al, 2008). Many studies 

show that levels of WT1 transcript are prognostically valuable and can predict early relapse 

in AML.  

Miscellaneous 

Partial tandem duplication (PTD) of the MLL (mixed lineage leukemia) gene was the first 
molecular alteration shown to impact on clinical outcome of CN-AML patients. It is detected 
in approximately 5% to 10% of these patients. Patients with MLL-PTD have a poorer 
prognosis than patients without the MLL-PTD (Mrózek K, & Bloomfield CD, 2006). 
Overexpression of the BAALC gene in PB at diagnosis was detected in adults under the age 
of 60 years. These are associated with lower WBC, less frequent diagnosis of FAB M5 AML 
and an unfavourable prognosis (Mrózek K, & Bloomfield CD, 2006). ERG overexpression is 
a recently identified molecular marker predicting adverse outcome (Mrózek K, & 
Bloomfield CD, 2006). Mutations of the C- KIT proto-oncogene, a tyrosine kinase receptor, 
result in a constitutive proliferative signal, have been described in patients with CBF- AML, 
with data suggesting a poorer outcome in patients with this additional mutation (Mrózek K, 
& Bloomfield CD, 2006; Schiffer CA, 2008). 

3.9 Electron microscopy 

The role of electron microscopy has diminished ever since the introduction of flow 
cytometry in the diagnostic work-up. Currently the WHO recognizes its role in the 
diagnosis of acute basophilic leukemia, which is characterized by the presence of granules 
containing structures characteristic of basophil precursors. These structures are electron 
dense particulate substance, are internally bisected, or contain crystalline material arranged 
in pattern of scrolls or lamellae (Swerdlow SH et al, 2008). The demonstration of 
metachromatic granules with toluidine blue stain and flow cytometry are enough to make 
the diagnosis. 
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3.10 Role of clinical history 

The role of clinical evaluation cannot be undermined for any diagnosis and evaluation of 

etiology and other prognostic factors. However, in the diagnostic algorithm of AML, clinical 

history is a vital component. A past history of receiving chemotherapy or radiation is of 

paramount importance to categorize therapy related AML. Similarly past history of 

myelodysplasia is important for the diagnosis of AML with myelodysplasia related changes. 

In a known scenario of Down’s syndrome AML should be separately grouped. Usually all 

these entities require cytogenetics supplementation. 

 

Factors Good Poor 

Clinical Parameters ECOG < 1 
No CNS  or extramedullary 
tumors  

Age < 2 and > 60 years 
ECOG > 1 
AML with prior 
chemotherapy or MDS  
CNS involvement 
Extramedullary tumors 

Laboratory 
Parameters 

TLC < 25000/ cu.mm TLC  > 100,000/ cu.mm 
Elevated LDH 

Morphology FAB AML-M3, M2, M4Eo FAB AML-M0, M6, M7 

Immunophenotype CD19, CD2 expression CD56, CD7 expression 

Cytogenetics t(15;17);  t(8;21) 
inv(16)/ t(16;16) 

Complex karyotype 
inv (3) or t (3;3), t(6;9), t(6;11), 
t(11;19), monosomy 5, or 7 

Molecular Presence of fusion 
PML/RARA; RUNX1-
RUNX1T1; CBFB-MYH11; 
Presence of NPM-1 mutation 
without FLT3-ITD; CEBPA 
mutations 

FLT3-Internal tandem 
duplication; MLL-Partial 
tandem duplication; BAALC, 
WT-1, ERG-2 over-
expression; mutations of C-
KIT;  

Response to treatment MRD negative MRD positive 

Table 4. Factors that influence prognosis 

4. Prognostic work-up 

There is a marked heterogeneity in the behavior of AML patients in terms of their response 
to the treatment and their survival rates. Various factors were found to have an effect on the 
prognosis in AML (Table 4) (Frohling S et al, 2006; Reinhardt D et al, 2000; Saxena A et 
al,1998). Several groups have published studies using cytogenetics to stratify patients into 
different risk groups (Byrd JC et al, 2002; Slovak ML et al, 2000). AML cytogenetic 
subgroups can be identified using molecular profiling with the potential for further 
subdividing patients to begin to explain the heterogeneity in outcome among patients of the 
same cytogenetic type. Cytogenetics and molecular studies are very important in the 
prognostication of acute leukemias. In cytogenetically favorable CBF-AML, the presence of a 
KIT mutation has been shown to have an unfavorable influence on outcome in retrospective 
studies (Boissel N et al, 2006; Cairoli R et al, 2006; Schnittger S et al, 2006). Numerous 
molecular markers are known to have impact on prognosis (Preudhomme C et al, 2002; 
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Renneville A et al, 2009; Wouters BJ et al, 2009b). However, one needs to remember that it is 
the interaction of these factors, which are responsible for the ultimate prognosis, including 
the post-therapy remission status (Preisler H, 1993). 

5. Assessing the status of the therapeutic targets 

Ever since the introduction of all-trans retinoic acid and the Arsenic trioxide in the 
treatment of APL, imatinib in CML and rituximab in non-Hodgkin lymphomas of mature 
B-cell type, focus has been on developing specific drugs that would target those molecules 
and proteins that are specific to the leukemic cells and not affecting the normal 
hemopoietic cells. The various targets identified and worked upon in cases of AML are 
CD33, FLT3-ITD, enzymes as farnesyl transferase, histone deacetylase, P-glycoprotein, 
bcl-2 protein, and vascular endothelial growth factor (Stone RM, 2007). Of these the most 
widely are evaluated are CD33 and FLT3-ITD and its downstream pathway. Gemtuzumab 
ozogamicin (Mylotarg, CMA 676) is a monoclonal humanized anti-CD33 antibody 
chemically linked to the cytotoxic agent calicheamicin that inhibits DNA synthesis and 
induces apoptosis (Döhner H et al, 2010). It has shown significant activity in patients with 
relapsed acute myeloid leukemia, in elimination of minimal residual disease and in 
patients with APL who had evidence of disease only at the molecular level. Several FLT3-
selective tyrosine kinase inhibitors (e.g., midostaurin, lestaurtinib, sunitinib) have in vitro 
cytotoxicity to leukemia cells. A number of FLT3 inhibitors have reached clinical trials as 
monotherapy in relapsed or refractory AML patients, some or all of whom had FLT3 
mutations (Döhner H et al, 2010; Small D, 2006). Keeping these facts in mind assessment 
of the potential targets should be undertaken before starting these drugs, best at the time 
of diagnosis. 

6. Evaluation of the baseline parameters useful during follow-up 

Post-treatment assessment of residual disease is an important prognostic marker. 

Conventional morphology, karyotyping and FISH have not proven to be of any practical 

utility. Currently the best parameters at the time of diagnosis which can be used as follow-

up markers of disease are molecular transcripts and antigenic profile of the blasts. The 

practical guidelines are that: for patients with t(15;17), t(8;21) and inv(16), which are about 

30% of AML cases, it is recommended to quantify MRD by real-time RT-PCR (Liu Yin JA, 

2002; Lo-Coco F et al, 1999, 2003). For patients without a molecular marker, the options are 

multiparameter flow-cytometry or assessment of the WT1, whichever is appropriate for a 

particular patient (Inoue K et al, 1994; Wood BL, 2007). 

7. Parameters to assess baseline general health and detect comorbidities 

The general health and comorbidities should be assessed at the time of diagnosis before the 
patient undertakes the treatment. These will be baseline results based on which the 
complications will be monitored during the treatment. The following tests should be 
performed - complete blood counts, biochemical analysis, coagulation tests (especially in 
APL), urine analysis, serum pregnancy test in women with child bearing potential, 
screening for Hepatitis A, B, C virus and HIV-1 and 2, chest radiograph and 12-lead EKG, 
ECHO cardiography and lumbar puncture, whenever indicated. 
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8. Planning for future 

Although not recommended on a routine basis, however, these tests should be planned in 

advance to avoid subsequent confounding results. If the patient is an ideal subject for 

allogeneic stem cell transplant, HLA typing and cross-matching of the patient and potential 

donors should be performed at the outset and the results be sent to the Bone marrow 

transplant registry. The patients’ pretreatment leukemic marrow and blood should be stored 

within a biobank.  

Genome-wide studies - The Probable Future: In recent years, DNA microarrays 

(complementary DNA (cDNA) and oligonucleotide), together with the availability of the 

complete nucleotide sequence of the human genome, have spurred the search for 

abnormalities in cancer, including AML (Wouters BJ et al, 2009a). There is enough data to 

support the fact that there is heterogeneity within established AML subtypes. The studies 

pertaining to the CBF-AMLs, each could be split into subgroups merely based on the GEP 

data (Wouters BJ et al, 2009a). Further validation of the generated data is necessary for 

assessing biologic significance. 

9. Approach in an ideal set-up 

The ideal work-up contains all elements described above with the aim of planning for 

future. The focus is to adopt whatever is clinically significant and proven in terms of 

diagnosis, prognosis, therapy, and disease monitoring at that point of time. It also involves 

archiving the necessary samples for future research and the data obtained thereafter may be 

available to incorporate newer information into clinical practice. The algorithms for this may 

be as illustrated in Figures 13, 14 & 15. 

Approach in resource limited areas 

WHO 2008 is the most appropriate classification in terms of prognostication and 

pathogenesis. This is however, a resource intensive process and liable to deviations in large 

parts of the world. The constraints on men, machine and material required to adhere to the 

current WHO classification are very real. It becomes necessary to devise methods that 

simplify the steps of diagnosis, prognosis, and monitoring treatment response. We find in 

our experience that it is possible to provide meaningful laboratory support for our under-

resourced patient population. Morphology combined with cytochemistry forms the basis of 

identifying entities that are potentially curable [ALL, APL, AML with t(8;21) and AML with 

inv(16)] and those which are less likely to yield good response to treatment (AML-M0, AML 

with dyspoiesis, AML-NOS ). With this objective work-up is planned. If treatment is a 

definite choice, baseline markers for monitoring response are necessary. The lack of 

resources including finances, infrastructure, expertise and socio-cultural factors that hinder 

treatment options are considerable. In such a situation diagnosing acute leukemia and 

recognizing AML in itself is an important step in patient management. Hence, the approach 

needs to be tailored to individual patient. The work-up designed in these circumstances may 

not always be in accordance with WHO 2008 guidelines. However, the information derived 

from this classification has improved our approach. The important end-points in this 

approach are to distinguish AML from ALL, identify the good-prognostic categories among 

AML. The algorithm for the same is proposed here (Figure 16). 
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Abbreviations used (in alphabetical order) :AL-Acute leukemia; AML-Acute myeloid leukemia; AML-
MDRC- AML with myelodysplasia related changes; ; AML-NOS- AML-Not otherwise Specified;AML-
RGA- AML with recurrent cytogenetic abnormalities; AUL-Acute undifferentiated leukemia;  B-ALL- B-
Acute Lymphoblastic Leukemia; BPDC-Blastic plasmacytoid dendritic cell; CG- Cytogenetics; CN-
AML-Cytogenetically normal AML; DS-AML- Down’s Syndrome related AML; FAB-French-American-
British; FCI-Flow cytometry Immunophenotyping; FISH-Fluorescent-in-situ hybridisation; IHC-
Immunohistochemistry;MDS-RAEB-Myelodysplastic syndrome-Refractory anemia with excess blasts; 
MPAL- Mixed Phenotypic acute leukemia; RT-PCR-Reverse Transcriptase Polymerase chain reaction; T-
ALL- T-Acute Lymphoblastic Leukemia; t-AML-therapy related AML 

Fig. 13. Algorithm for establishing the diagnosis of AML. The important testing points are 
highlighted in “Beige”. The end-points related to AML are highlighted in blue and the 
differential diagnoses are highlighted in pink. 
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Abbreviations used (in alphabetical order) :AL-Acute leukemia; AML-Acute myeloid leukemia; AML-
MDRC- AML with myelodysplasia related changes; AML-RGA- AML with recurrent cytogenetic 
abnormalities; BPDC-Blastic plasmacytoid dendritic cell; CG- Cytogenetics; CN-AML-Cytogenetically 
normal AML; DS-AML- Down’s Syndrome related AML; FCI-Flow cytometry Immunophenotyping; 
FISH-Fluorescent-in-situ hybridisation;  IHC-Immunohistochemistry; MDS-Myelodysplastic syndrome; 
RGA- Recurrent Genetic Abnormalities; RT-PCR-Reverse Transcriptase Polymerase chain reaction; t-
AML-therapy related AML 

Fig. 14. Algorithm for Molecular Characterization of AML. The important testing points are 
highlighted in “Beige”. The end-points related to AML are highlighted in blue. 
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Abbreviations used (in alphabetical order) : AML-Acute myeloid leukemia; CG- Cytogenetics; FCI-Flow 
cytometry Immunophenotyping; RGA- Recurrent Genetic Abnormalities; RT-PCR-Reverse 
Transcriptase Polymerase chain reaction 

Fig. 15. Algorithm for Identification of Therapeutic Targets, Markers for Disease Monitoring 
and Planning for future: The important interventions are highlighted in “Beige”. 
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Abbreviations used (in alphabetical order) :AL-Acute leukemia; AML-Acute myeloid leukemia; AML-
MDRC- AML with myelodysplasia related changes; AML-NOS- AML-Not otherwise Specified; AUL-
Acute undifferentiated leukemia;  B-ALL- B-Acute Lymphoblastic Leukemia; BPDC-Blastic 
plasmacytoid dendritic cell; CG- Cytogenetics; FAB-French-American-British; FCI-Flow cytometry 
Immunophenotyping; FISH-Fluorescent-in-situ hybridisation; IHC-Immunohistochemistry; MDS-
RAEB-Myelodysplastic syndrome-Refractory anemia with excess blasts; MPAL- Mixed Phenotypic 
acute leukemia; RT-PCR-Reverse Transcriptase Polymerase chain reaction; T-ALL- T-Acute 
Lymphoblastic Leukemia; t-AML-therapy related AML 

Fig. 16. Diagnostic algorithm in resource constrained situations. The important testing 
points are highlighted in “Beige”. The end-points related to AML are highlighted in blue 
and the differential diagnoses are highlighted in pink. 

www.intechopen.com



 
Myeloid Leukemia – Clinical Diagnosis and Treatment 

 

188 

10. Acknowledgement 

We hereby are thankful to Dr. R.Tapadia for constant support and the staff of Lifeline 
Tapadia Diagnostic Services for the quality of technical work they deliver constantly. We 
also thank Ms.Archana for retrieving a lot of references. We thank Prof. KS Ratnakar, Global 
Hospital, Dr. KT Vijaya and Dr. Bhavana, Care Hospital, for facilitating photography. We 
profusely thank Dr.Salil, Gene Lab for the technical feedback for cytogenetics and other 
molecular testing and also for the images of cytogenetics, FISH and PCR. We are grateful to 
Dr.Reddy’s laboratories, Hyderabad, India for sponsoring this chapter. 

11. References 

Adriaansen HJ, te Boekhorst PA, Hagemeijer AM, et al. (1993). Acute Myeloid Leukemia M4 
With Bone Marrow Eosinophilia (M4Eo) and inv(16)(p13q22) Exhibits a Specific 
Immunophenotype with CD2 Expression. Blood, Vol. 81, No. 11, pp. (3043-3051) 

Arber DA, Stein AS, Carter NH, et al. (2003). Prognostic impact of acute myeloid leukemia 
classification. Importance of detection of recurring cytogenetic abnormalities and 
multilineage dysplasia on survival. Am J Clin Pathol, Vol. 119, pp. (672-680) 

Arber DA. (2010). Algorithmic approach to the classification of acute leukemia: United 
States & Canadian Academy of Pathology (USCAP) Web site.  

 http://www.uscap.org/site,/98th/pdf/companion21h02.pdf. Accessed June 4 
2010 

Auger M J, Ross JA, Ross FM, et al. (1992). CD7 Positive Acute Myeloblastic Leukaemia: An 
Heterogeneous Leukaemic Subtype. Leuk Lymphoma, Vol. 6, No. 6, pp. (487- 491) 

Bacher U, Haferlach C, Kern W, et al. (2008). Prognostic relevance of FLT3-TKD mutations in 
AML: the combination matters-an analysis of 3082 patients. Blood, Vol. 111, No.5, 
pp. (2527-2536)  

Baer MR, Stewart CC, Lawrence D, et al. (1997). Expression of the Neural Cell Adhesion 
Molecule CD56 Is Associated With Short Remission Duration and Survival in Acute 
Myeloid Leukemia With t(8; 21)(q22; q22). Blood, Vol. 90, No. 4, pp. (1643-1648) 

Baer MR, Stewart CC, Lawrence D, et al. (1998). Acute myeloid leukemia with 11q23 
translocations: myelomonocytic immunophenotype by multiparameter flow 
cytometry. Leukemia, Vol. 12, No. 3, pp. (317-325)  

Bain BJ. (1998). Classification of acute leukaemia: the need to incorporate cytogenetic and 
molecular genetic information. J Clin Pathol, Vol. 51, pp. (420-423)  

Bain BJ, Barnett D, Linch D, et al. (2002). Revised guideline on immunophenotyping in acute 
leukaemias and chronic lymphoproliferative disorders. Clin Lab Haematol, Vol. 24, 
No. 1, pp. (1-13) 

Bain BJ. (2003). Leukaemia Diagnosis. (3rd edition) Blackwell Science, ISBN 1-4051-0661-1, 
Oxford.  

Bene MC, Castoldi G, Knapp W, et al. (1995). Proposals for the immunological classification 
of acute leukemias. European Group for the Immunological Characterization of 
Leukemias (EGIL). Leukemia, Vol. 10, pp. (1783-1786)  

Bennett JM, Catovsky D, Daniel M-T, et al. (1985). Criteria for the diagnosis of acute 
leukemia of megakaryocytic lineage (M7): a report of the French-American-British 
cooperative group. Ann Intern Med, Vol. 103, pp. (460–462)  

www.intechopen.com



 
Diagnostic Approach in Acute Myeloid Leukemias in Line with WHO 2008 Classification 

 

189 

Bennett JM, Orazi A. (2009). Diagnostic criteria to distinguish hypocellular acute myeloid 
leukemia from hypocellular myelodysplastic syndromes and aplastic anemia: 
recommendations for a standardized approach. Haematologica, Vol. 94, pp. (264-268)  

Betz BL, and Hess JL. (2010). Acute myeloid leukemia diagnosis in the 21st century. Arch 
Pathol Lab Med, Vol. 34, No. 10, pp. (1427-1433) 

Boissel N, Leroy H, Brethon B, et al. (2006). Incidence and prognostic impact of c-Kit, FLT3, 
and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). 
Leukemia, Vol. 20, pp. (965–970) 

Byrd JC, Mrózek K, Dodge RK, et al. (2002). Pretreatment cytogenetic abnormalities are 
predictive of induction success, cumulative incidence of relapse, and overall 
survival in adult patients with de novo acute myeloid leukemia: results from 
Cancer and Leukemia Group B (CALGB 8461). Blood, Vol. 100, pp. (4325-4336)  

Cairoli R, Beghini A, Grillo G, et al. (2006). Prognostic impact of c-KIT mutations in core 
binding factor leukemias: an Italian retrospective study. Blood, Vol. 107, pp. (3463-
3468) 

Casasnovas RO, Campos L, Mugneret F, et al. (1998). Immunophenotypic patterns and 
cytogenetic anomalies in acute non-lymphoblastic leukemia subtypes: a prospective 
study of 432 patients. Leukemia, Vol. 12, pp. (34–43)  

Chang CC, Eshoa C, Kampalath B, et al. (2000). Immunophenotypic profile of myeloid cells 
in granulocytic sarcoma by immunohistochemistry: correlation with blast 
differentiation in bone marrow. Am J Clin Pathol, Vol. 114, pp. (807–811)  

Chen W, Rassidakis GZ, Li J, et al. (2006). High frequency of NPM1 gene mutations in acute 
myeloid leukemia with prominent nuclear invaginations (‘‘cuplike’’ nuclei). Blood, 
Vol. 108, No. 5, pp. (1783–1784)  

Chen Z and Chen SJ. (1992). RARA and PML Genes in Acute promyelocytic Leukemia. Leuk 
Lymphoma, Vol. 8, No. 4, pp. (253-260)  

Chi Y, Lindgren V, Quigley S, et al. (2008). Acute Myelogenous Leukemia With 
t(6;9)(p23;q34) and Marrow Basophilia-An Overview. Arch Pathol Lab Med, Vol. 132, 
pp. (1835-1837)  

Chuang SS, Li CY. (1997). Useful panel of antibodies for the classification of acute leukemia 
by immunohistochemical methods in bone marrow trephine biopsy specimens. Am 
J Clin Pathol, Vol. 107, pp. (410–418)  

Cohen PL, Hoyer JD, Kurtin PJ, et al. (1998). Acute myeloid leukemia with minimal 
differentiation: a multiple parameter study. Am J Clin Pathol, Vol. 109, pp. (32–38) 

Corey SJ, Locker J, Oliveri DR, et al. (1994). A non-classical translocation involving 17q12 
(retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with 
atypical features. Leukemia, Vol. 8, No. 8, pp. (1350-1353)  

Craig FE and Foon KA. (2008). Flow cytometric immunophenotyping for hematologic 
neoplasms. Blood, Vol.111, No. 8, pp. (3941-3967) 

Cuneo A, Ferrant A, Michaux JL, et al. (1995). Cytogenetic Profile of Minimally 
Differentiated (FAB MO) Acute Myeloid Leukemia: Correlation with 
Clinicobiologic Findings. Blood, Vol. 85, No. 12, pp. (3688-3694)  

Döhner H, Estey EH, Amadori S, et al. (2010). Diagnosis and management of acute myeloid 
leukemia in adults: recommendations from an international expert panel, on behalf 
of the European LeukemiaNet. Blood, Vol. 115, pp. (453-474)  

www.intechopen.com



 
Myeloid Leukemia – Clinical Diagnosis and Treatment 

 

190 

Döhner K, Schlenk R F, Habdank M, et al. (2005). Mutant nucleophosmin (NPM1) predicts 
favorable prognosis in younger adults with acute myeloid leukemia and normal 
cytogenetics: interaction with other gene mutations. Blood, Vol. 106, pp. (3740-3746) 

Döhner K and Döhner H. (2008). Molecular characterization of acute myeloid leukemia. 
Haematologica, Vol. 93, No. 7, pp. (976-982)  

Downing JR, Head DR, Curcio-Brint AM, et al. (1993). An AML1/ETO fusion transcript is 
consistently detected by RNA-based polymerase chain reaction in acute 
myelogenous leukemia containing the (8;21)(q22;q22) translocation. Blood, Vol. 81, 
No. 11, pp. (2860-2865)  

Dunphy CH, Polski JM, Evans HL, et al. (2001). Evaluation of Bone Marrow Specimens With 
Acute Myelogenous Leukemia for CD34, CD15, CD117, and Myeloperoxidase. Arch 
Pathol Lab Med, Vol. 125, pp. (1063–1069)  

Dunphy CH. (2004). Applications of Flow Cytometry and Immunohistochemistry to 
Diagnostic Hematopathology. Arch Pathol Lab Med, Vol. 128, pp. (1004–1022) 

Dunphy CH, Tang W. (2007). The Value of CD64 Expression in Distinguishing Acute 
Myeloid Leukemia with Monocytic Differentiation From Other Subtypes of Acute 
Myeloid Leukemia A Flow Cytometric Analysis of 64 Cases. Arch Pathol Lab Med, 
Vol. 131, pp. (748–754)  

Falini B, Flenghi L, Fagioli M, et al. (1997). Immunocytochemical Diagnosis of Acute 
Promyelocytic Leukemia (M3) With the Monoclonal Antibody PG-M3 (Anti-PML). 
Blood, Vol. 90, No. 10, pp. (4046-4053)  

Falini B, Martelli M P, Bolli N, et al. (2006). Immunohistochemistry predicts nucleophosmin 
(NPM) mutations in acute myeloid leukemia. Blood, Vol.108, pp. (1999-2005) 

Farag SS, Archer KJ, Mrozek K, et al. (2006). Pretreatment cytogenetics add to other 
prognostic factors predicting complete remission and long-term outcome in 
patients 60 years of age or older with acute myeloid leukemia: results from Cancer 
and Leukemia Group B 8461. Blood, Vol.108, pp. (63-73)  

Frohling S, Schlenk R F, Breitruck J, et al. (2002). Prognostic significance of activating FLT3 
mutations in younger adults (16 to 60 years) with acute myeloid leukemia and 
normal cytogenetics: a study of the AML Study Group Ulm. Blood, Vol.100, pp. 
(4372-4380)  

Frohling S, Schlenk R F, Kayse S, et al. (2006). Cytogenetics and age are major determinants 
of outcome in intensively treated acute myeloid leukemia patients older than 60 
years: results from AMLSG trial AMLHD98-B. Blood, Vol. 108, pp. (3280-3288) 

Gaidzik VI, Schlenk RF, Moschny S, et al. (2009). Prognostic impact of WT1 mutations in 
cytogenetically normal acute myeloid leukemia: a study of the German-Austrian 
AML Study Group. Blood, Vol. 113, pp. (4505-4511) 

Gale RE, Green C, Allen C, et al. (2008). The impact of FLT3 internal tandem duplication 
mutant level, number, size, and interaction with NPM1 mutations in a large cohort 
of young adult patients with acute myeloid leukemia. Blood, Vol. 111, pp. (2776-
2784) 

Goasguen JE, Bennett J, Cox C, et al. (1991). Prognostic implication and characterization of 
the blast cell population in the myelodysplastic syndrome. Leuk Res, Vol. 15, pp. 
(1159-1165) 

www.intechopen.com



 
Diagnostic Approach in Acute Myeloid Leukemias in Line with WHO 2008 Classification 

 

191 

Golomb HM, Rowley J, Vardiman JW, et al. (1980). “Microgranular” acute promyelocytic 
leukemia: a distinct clinical, ultrastructural and cytogenetic entity. Blood, Vol. 55, 
pp. (253-259) 

Goyal M, Dattatreya PS, Goud I, et al. (2010). Cryptic PML-RARV positive acute 
promyelocytic leukemia with unusual morphology and cytogenetics. Indian J Pathol 
Microbiol, Vol. 53, pp. (817-819) 

Grimwade DF, Gorman P, Duprez E, et al. (1997). Characterization of cryptic 
rearrangements and variant translocations in acute promyelocytic leukemia. Blood, 
Vol. 90, pp. (4876-4885) 

Grimwade D, Walker H, Oliver F, et al. (1998). The Importance of Diagnostic Cytogenetics 
on Outcome in AML: Analysis of 1,612 Patients Entered Into the MRC AML 10 
Trial. Blood, Vol. 92, pp. (2322-2333) 

Grimwade D, Biondi A, Mozziconacci M-J, et al. (2000). Characterization of acute 
promyelocytic leukemia cases lacking the classic t(15;17): results of the European 
Working Party. Blood, Vol. 96, pp. (1297–1308) 

Grimwade D, Walker H, Harrison G, et al. (2001). The predictive value of hierarchical 
cytogenetic classification in older adults with acute myeloid leukemia (AML): 
analysis of 1065 patients entered into the United Kingdom Medical Research 
Council AML11 trial. Blood, Vol. 98, pp. (1312–1320) 

Gujral S, Subramanyam PG, Patkar N, et al. (2008). Report of proceedings of the national 
meeting on "Guidelines for Immunophenotyping of Hematolymphoid Neoplasms 
by Flow Cytometry". Indian J Pathol Microbiol, Vol. 51, No. 2, pp. (161-166) 

Hrusak O, Porwit-MacDonald A. (2002). Antigen expression patterns reflecting genotype of 
acute leukemias. Leukemia, Vol. 16, No. 7, pp. (1233–1258) 

Inoue K, Sugiyama H, Ogawa H, et al. (1994). WT1 as a new prognostic factor and a new 
marker for the detection of minimal residual disease in acute leukemia. Blood, Vol. 
84, pp. (3071-3079) 

Jacob MC, Chaperot L, Mossuz P, et al. (2003). CD4 (+) CD56 (+) lineage negative 
malignancies: a new entity developed from malignant early plasmacytoid dendritic 
cells. Haematologica, Vol. 88, pp. (941–955) 

Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. (2001). World Health Organization 
Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and 
Lymphoid Tissues. (3rd edition), IARC, Lyon, France. 

Johannson B, Mertens F, Mitelman F, et al. (1994). Secondary chromosomal abnormalities in 
acute leukemias. Leukemia, Vol. 8, pp. (953-962) 

Khalidi HS, Medeiros LJ, Chang KL, et al. (1998). The immunophenotype of adult acute 
myeloid leukemia: high frequency of lymphoid antigen expression and comparison 
of immunophenotype, French-American-British classification, and karyotypic 
abnormalities. Am J Clin Pathol, Vol.109, No. 2, pp. (211–220) 

King-Underwood L, Renshaw J and Jones KP. (1996). Mutations in the Wilms’ Tumor Gene 
WT1 in Leukemias. Blood, Vol. 87, pp. (2171-2179) 

Kita K, Nakase K, Miwa H, et al. (1992). Phenotypical Characteristics of Acute Myelocytic 
Leukemia Associated With the t (8;21) (q22;q22) Chromosomal Abnormality 
Frequent Expression of Immature B-Cell Antigen CD19 Together With Stem Cell 
Antigen CD34. Blood, Vol. 80, pp. (470-477) 

www.intechopen.com



 
Myeloid Leukemia – Clinical Diagnosis and Treatment 

 

192 

Kottaridis PD, Gale RE, Frew ME, et al. (2001).The presence of a FLT3 internal tandem 
duplication in patients with acute myeloid leukemia (AML) adds important 
prognostic information to cytogenetic risk group and response to the first cycle of 
chemotherapy: analysis of 854 patients from the United Kingdom Medical Research 
CouncilAML10 and 12 trials. Blood, Vol. 98, pp. (1752-1759) 

Kussick SJ, Wood BL. (2003). Using 4-Color Flow Cytometry to Identify Abnormal Myeloid 
Populations. Arch Pathol Lab Med, Vol. 127, pp. (1140–1147) 

Kussick SJ, Stirewalt DL, Yi HS, et al. (2004). A distinctive nuclear morphology in acute 
myeloid leukemia is strongly associated with loss of HLA-DR expression and FLT3 
internal tandem duplication. Leukemia, Vol. 18, No. 10, pp. (1591–1598) 

Liso V, Bennett J. (2003). Morphological and cytochemical characteristics of leukaemic 
promyelocytes. Best Pract Res Clin Haematol, Vol. 16, No. 3, pp. (349-355) 

Liu PP, Hajra A, Wijmenga C, et al. (1995). Molecular pathogenesis of the chromosome 16 
inversion in the M4Eo subtype of acute myeloid leukemia. Blood, Vol. 85, pp. (2289-
2302) 

Liu Yin JA (2002). Minimal residual disease in acute myeloid Leukaemia. Best Pract Res Clin 
Haematol, Vol. 15, No. 12, pp. (119-135) 

Lo-Coco F, Diverio D, Falini B, et al. (1999). Genetic diagnosis and molecular monitoring in 
the management of acute promyelocytic leukemia. Blood, Vol. 94, pp. (12–22) 

Lo-Coco F, Breccia M, Diverio D, et al. (2003).The importance of molecular monitoring in 
acute promyelocytic leukaemia. Best Pract Res Clin Haematol, Vol. 16, No. 3, pp. 
(503-520) 

Lorand-Metze I, Vassallo I, Aoki RY, et al. (1991). Acute Megakaryoblastic Leukemia: 
Importance of Bone Marrow Biopsy in Diagnosis. Leuk Lymphoma, Vol. 4, No. 1, pp. 
(75—79) 

Lugthart S, Drunen EV, Norden YV, et al. (2008). High EVI1 levels predict adverse outcome 
in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 
3q26 abnormalities underestimated. Blood, Vol. 111, pp. (4329-4337) 

Manaloor EJ, Neiman RS, Heilman DK, et al. (2000). Immunohistochemistry Can Be Used to 
Subtype Acute Myeloid Leukemia in Routinely Processed Bone Marrow Biopsy 
Specimens-Comparison With Flow Cytometry. Am J Clin Pathol, Vol. 113, pp. (814-
822) 

Marcucci G, Mrózek K, Ruppert AS, et al. (2005).Prognostic Factors and Outcome of Core 
Binding Factor Acute Myeloid Leukemia Patients With t(8;21) Differ From Those of 
Patients With inv(16): A Cancer and Leukemia Group B Study. J Clin Oncol, Vol. 23, 
pp. (5705-5717) 

McCormick SR, McCormick MJ, Grutkoski PS, et al. (2010). FLT3 Mutations at Diagnosis 
and Relapse in Acute Myeloid Leukemia Cytogenetic and Pathologic Correlations, 
Including Cuplike Blast Morphology. Arch Pathol Lab Med, Vol. 134, pp. (1143–1151) 

Melnick A, and Licht JD. (1999). Deconstructing a disease: RAR alpha, its fusion partners, 
and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, Vol. 93, 
No. 10, pp. (3167-3215) 

Miwa H, Mizutani M, Mahmud N, et al. (1998). Biphasic expression of CD4 in acute 
myelocytic leukemia (AML) cells: AML of monocyte origin and hematopoietic 
precursor cell origin. Leukemia, Vol. 12, pp. (44–51) 

www.intechopen.com



 
Diagnostic Approach in Acute Myeloid Leukemias in Line with WHO 2008 Classification 

 

193 

Moorman AV, Hagemeijer A, Charrin C, et al. (1998).The translocations, t(11;19)(q23;p13.1) 
and t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients. European 
11q23 Workshop participants. Leukemia, Vol. 12, No. 5, pp. (805-810) 

Mrózek K, Prior TW, Edwards C, et al. (2001). Comparison of Cytogenetic and Molecular 
Genetic Detection of t(8;21) and inv(16) in a Prospective Series of Adults With De 
Novo Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin 
Oncol, Vol. 19, pp. (2482-2492) 

Mrózek K, and Bloomfield CD. (2006). Chromosome Aberrations, Gene Mutations and 
Expression Changes, and Prognosis in Adult Acute Myeloid Leukemia. Hematology 
Am Soc Hematol Educ Program, Vol. 2006, No. 1, pp. (169-177) 

Mrozek K, Marcucci G, Paschka P, et al. (2007). Clinical relevance of mutations and gene 
expression changes in adult acute myeloid leukemia with normal cytogenetics: are 
we ready for a prognostically prioritized molecular classification? Blood, Vol. 109, 
pp. (431-448) 

Mufti GJ, Bennett JM, Goasguen J, et al. (2008). Diagnosis and classification of 
myelodysplastic syndrome: International Working Group on Morphology of 
myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition 
and enumeration of myeloblasts and ring sideroblasts. Haematologica, Vol. 93, 
pp.(1712-1717) 

National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology–
v.1.2006: Acute Myeloid Leukemia.  

 http://www.nccn.org/professionals/physician_gls/PDF/aml.pdf. Accessed July 
29, 2006  

Nguyen D, Diamond LW, Braylan RC, et al. (2003). Flow Cytometry in Hematopathology: A 
Visual Approach to Data Analysis and Interpretation. Humana Press, Totowa, New 
Jersey 

Olsen RJ, Chang C, Herrick JL, et al. (2008). Acute Leukemia Immunohistochemistry – A 
Systematic Diagnostic Approach. Arch Pathol Lab Med, Vol. 132, pp. (462–475) 

Orfao A, Chillon MC, Bortoluci AM, et al. (1999). The flow cytometric pattern of CD34, 
CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic 
of the presence of PML-RAR alpha gene rearrangements. Haematologica, Vol. 84, 
No. 5, pp. (405–412)  

Orfao A, Ortuno F, de Santiago M, et al. (2004). Immunophenotyping of acute leukemias 
and myelodysplastic syndromes. Cytometry A, Vol. 58, No. 1, pp. (62–71)  

Paietta E, Ferrando AA, Neuberg D, et al. (2005). Activating FLT3 mutations in 
CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood, Vol. 106, pp. (4414–
4415)  

Paschka P, Marcucci G, Ruppert AS, et al. (2008). Wilms’ Tumor 1 Gene Mutations 
Independently Predict Poor Outcome in Adults With Cytogenetically Normal 
Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol, 
Vol. 26, pp. (4595-4602) 

Peters JM, Ansari MQ. (2011). Multiparameter Flow Cytometry in the Diagnosis and 
Management of Acute Leukemia. Arch Pathol Lab Med, Vol. 135, pp. (44–54) 

Petrella T, Dalac S, Maynadie M, et al. (1999). Groupe Francaise d’Etude des Lymphomes 
Cutane´s (GFELC). CD4+, CD56+ cutaneous neoplasms: a distinct hematological 
entity? Am J Surg Pathol, Vol. 23, pp. (137–146) 

www.intechopen.com



 
Myeloid Leukemia – Clinical Diagnosis and Treatment 

 

194 

Pileri SA, Ascani S, Cox MC, et al (2007). Myeloid sarcoma: clinico-pathologic, phenotypic 
and cytogenetic analysis of 92 adult patients. Leukemia, Vol. 21, pp. (340–350) 

Porwit-MacDonald A, Janossy G, Ivory K, et al. (1996). Leukemia-associated changes 
identified by quantitative flow cytometry. IV. CD34 overexpression in acute 
myelogenous leukemia M2 with t(8;21). Blood, Vol. 87, No. 3, pp. (1162–1169) 

Preisler H. (1993). Poor Prognosis Acute Myelogenous Leukemia. Leuk Lymphoma, Vol. 9, 
No. 4, pp. (273-283) 

Preudhomme C, Sagot C, Boissel N, et al. (2002). Favorable prognostic significance of 
CEBPA mutations in patients with de novo acute myeloid leukemia: a study from 
the Acute Leukemia French Association (ALFA). Blood, Vol. 100, pp. (2717-2723) 

Reinhardt D, Pekrun A, Lakomek M, et al. (2000). Primary myelosarcomas are associated 
with a high rate of relapse: report on 34 children from the acute myeloid 
leukaemia-Berlin-Frankfurt-Muenster studies. Br J Haematol, Vol. 110, pp. (863-866) 

Renneville A, Boissel N, Gachard N, et al. (2009). The favorable impact of CEBPA mutations 
in patients with acute myeloid leukemia is only observed in the absence of 
associated cytogenetic abnormalities and FLT3 internal duplication. Blood, Vol. 113, 
pp. (5090-5093) 

Rizzatti EG, Garcia AB, Portieres FL, et al. (2002). Expression of CD117 and CD11b in bone 
marrow can differentiate acute promyelocytic leukemia from recovering benign 
myeloid proliferation. Am J Clin Pathol, Vol. 118, pp. (31–37) 

Rowe D, Cotterill SJ, Ross FM, et al. (2000). Cytogenetically cryptic AML1-ETO and 
CBFbeta-MYH11 gene rearrangements: incidence in 412 cases of acute myeloid 
leukaemia. Br J Haematol, Vol. 111, pp. (1051–1056) 

Sainty D, Liso V, Cantu` -Rajnold Ai, et al. (2000). A new morphologic classification system 
for acute promyelocytic leukemia distinguishes cases with underlying 
PLZF/RARA gene rearrangements. Blood, Vol. 96, pp. (1287-1296) 

Saxena A, Sheridan DP, Card RT, et al. (1998).Biologic and clinical significance of CD7 
expression in acute myeloid leukemia. Am J Hematol, Vol. 58, No. 4, pp. (278-284) 

Schiffer CA. (2008). Molecular characterization of AML: a significant advance or just another 
prognostic factor? Best Pract Res Clin Haematol, Vol. 21, No. 4, pp.(621-628) 

Schlenk RF, Benner A, Krauter J, et al. (2004). Individual patient data-based meta-analysis of 
patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a 
survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol, Vol. 22, 
pp. (3741-3750) 

Schlenk RF, Döhner K, Krauter J, et al. (2008). Mutations and Treatment Outcome in 
Cytogenetically Normal Acute Myeloid Leukemia. N Engl J Med, Vol. 358, pp. 
(1909-1918) 

Schnittger S, Schoch C, Dugas M, et al. (2002). Analysis of FLT3 length mutations in 1003 
patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, 
and prognosis in the AMLCG study and usefulness as a marker for the detection of 
minimal residual disease. Blood, Vol. 100, pp. (59-66) 

Schnittger S, Schoch C, Kern W, et al. (2005). Nucleophosmin gene mutations are predictors 
of favorable prognosis in acute myelogenous leukemia with a normal karyotype. 
Blood, Vol. 106, pp. (3733-3739) 

www.intechopen.com



 
Diagnostic Approach in Acute Myeloid Leukemias in Line with WHO 2008 Classification 

 

195 

Schoch C, Haase D, Haferlach T, et al. (1996). Incidence and implication of additional 
chromosome aberrations in acute promyelocytic leukemias with t (15;17)(q22;q21): 
A report on 50 patients. Br J Hematol, Vol. 94, pp. (493-500) 

Scott CS, Ottolander GJD, Swirsky D, et al. (1993). Recommended Procedures for the 
Classification of Acute Leukaemias. Leuk Lymphoma, Vol.11, No.1, pp. (37-50) 

Secker-Walker LM, Moorman AV , Bain BJ, et al. (1998).Secondary acute leukemia and 
myelodysplastic syndrome with 11q23 abnormalities. Leukemia, Vol. 12, pp. (840–
844) 

Sirulnik A, Melnick A, Zelent A, et al. (2003). Molecular pathogenesis of acute promyelocytic 
leukaemia and APL variants. Best Pract Res Clin Haematol, Vol. 16, No. 3, pp. (387-
408) 

Slack JL, Arthur DC, Lawrence D, et al. (1997) Secondary cytogenetic changes in acute 
promyelocytic leukemia: Prognostic importance in patients treated with 
chemotherapy alone and association with intron 3 breakpoint of the PML gene: A 
Cancer and Leukemia Group B study. J Clin Oncol, Vol. 15, pp.(1786-1795) 

Slovak ML, Kopecky KJ, Cassileth PA, et al. (2000). Karyotypic analysis predicts outcome of 
preremission and postremission therapy in adult acute myeloid leukemia: a 
Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood, 
Vol. 96, pp. (4075-4083) 

Slovak ML, Gundacker H, Bloomfield CD, et al. (2006). A retrospective study of 69 patients 
with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter 
initiative for rare poor prognosis’ myeloid malignancies. Leukemia, Vol. 20, pp. 
(1295-97) 

Small D. (2006). FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ 
Program, Vol. 2006, No.1, pp. (178-184) 

Sorensen PHB, Chen C, Smith FO, et al. (1994). Molecular Rearrangements of the MLL Gene 
Are Present in Most Cases of Infant Acute Myeloid Leukemia and Are Strongly 
Correlated with Monocytic or Myelomonocytic, Phenotypes. J Clin Invest, Vol. 93, 
pp. (429-437) 

Stone RM. (2007). Targeted agents in AML: much more to do. Best Pract Res Clin Haematol, 
Vol. 20, No. 1, pp. (39-48) 

Swansbury GJ, Slater R, Bain BJ, et al. (1998). Hematological malignancies with t(9;11)(p21-
22;q23): a laboratory and clinical study of 125 cases – European 11q23 Workshop 
participants. Leukemia, Vol. 12, pp. (792–800) 

Swerdlow SH, Campo E, Harris NL, et al. (2008). WHO Classification of Tumours of 
Haematopoietic and Lymphoid Tissues (ed 4th),  IARC, Lyon, France. 

Thiede C, Steudel C, Mohr B, et al. (2002). Analysis of FLT3-activating mutations in 979 
patients with acute myelogenous leukemia: association with FAB subtypes and 
identification of subgroups with poor prognosis. Blood, Vol. 99, pp. (4326-4335) 

Thiede C, Koch S, Creutzig E, et al. (2006).Prevalence and prognostic impact of NPM1 
mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood, Vol. 
107, pp. (4011-4020) 

van der Burg, Beverloo HB, Langerak AW, et al. (1999). Rapid and sensitive detection of all 
types of MLL gene translocations with a single FISH probe set. Leukemia, Vol. 13, 
pp. (2107–2113) 

www.intechopen.com



 
Myeloid Leukemia – Clinical Diagnosis and Treatment 

 

196 

van Dongen JJM, Macintyre EA, Gabert JA, et al. (1999). Standardized RT-PCR analysis of 
fusion gene transcripts from chromosome aberrations in acute leukemia for 
detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: 
investigation of minimal residual disease in acute leukemia. Leukemia, Vol. 13, 
No.12, pp. (1901- 1928) 

Vardiman JW, Harris NL, and Brunning RD. (2002).TheWorld Health Organization (WHO) 
classification of the myeloid neoplasms. Blood, Vol. 100, pp. (2292-2302) 

Vardiman JW, Thiele J, Arber DA, et al. (2009).The 2008 revision of the World Health 
Organization (WHO) classification of myeloid neoplasms and acute leukemia: 
rationale and important changes. Blood, Vol. 114, pp. (937-951) 

Weinberg OK, Seetharam M, Ren L, et al. (2009).Clinical characterization of acute myeloid 
leukemia with myelodysplasia-related changes as defined by the 2008 WHO 
classification system. Blood, Vol. 113, No. 9, pp. (1906–1908) 

Weir EG, Borowitz MJ. (2001). Flow cytometry in the diagnosis of acute leukemia. Semin 
Hematol, Vol. 38, No.2, pp. (124–138) 

Wells DA, Benesch M, Loken MR, et al. (2003). Myeloid and monocytic dyspoiesis as 
determined by flow cytometric scoring in myelodysplastic syndrome correlates 
with the IPSS and with outcome after hematopoietic stem cell transplantation. 
Blood, Vol. 102, No.1, pp. (394–403) 

Wood BL. (2006). 9-Color and 10-Color Flow Cytometry in the Clinical Laboratory. Arch 
Pathol Lab Med, Vol. 130, pp. (680–690) 

Wood BL. (2007). Myeloid Malignancies: Myelodysplastic Syndromes, Myeloproliferative 
Disorders, and Acute Myeloid Leukemia. Clin Lab Med, Vol. 27, pp. (551–575) 

Wouters BJ, Lowenberg B and Delwel R. (2009a). A decade of genome-wide gene expression 
profiling in acute myeloid leukemia: flashback and prospects. Blood, Vol. 113, pp. 
(291-298) 

Wouters BJ, Lowenberg B, Erpelinck-Verschueren CAJ, et al. (2009b). Double CEBPA 
mutations, but not single CEBPA mutations, define a subgroup of acute myeloid 
leukemia with a distinctive gene expression profile that is uniquely associated with 
a favorable outcome. Blood, Vol. 113, pp. (3088-3091) 

Xavier AC and Taub JW. (2009).Down Syndrome and Malignancies: A Unique Clinical 
Relationship. J Mol Diagn, Vol. 11, No. 5, pp. (371-380) 

Yanada M, Suzuki M, Kawashima K, et al. (2005). Long term outcomes for unselected 
patients with acute myeloid leukemia categorized according to the World Health 
Organization classification: a single center experience. Eur J Haematol, Vol. 74, pp. 
(418-423) 

www.intechopen.com



Myeloid Leukemia - Clinical Diagnosis and Treatment

Edited by Dr Steffen Koschmieder

ISBN 978-953-307-886-1

Hard cover, 296 pages

Publisher InTech

Published online 05, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book comprises a series of chapters from experts in the field of diagnosis and treatment of myeloid

leukemias from all over the world, including America, Europe, Africa and Asia. It contains both reviews on

clinical aspects of acute (AML) and chronic myeloid leukemias (CML) and original publications covering

specific clinical aspects of these important diseases. Covering the specifics of myeloid leukemia epidemiology,

diagnosis, risk stratification and management by authors from different parts of the world, this book will be of

interest to experienced hematologists as well as physicians in training and students from all around the globe.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Manu Goyal and K. Gayathri (2012). Diagnostic Approach in Acute Myeloid Leukemias in Line with WHO 2008

Classification, Myeloid Leukemia - Clinical Diagnosis and Treatment, Dr Steffen Koschmieder (Ed.), ISBN: 978-

953-307-886-1, InTech, Available from: http://www.intechopen.com/books/myeloid-leukemia-clinical-diagnosis-

and-treatment/diagnostic-approach-in-acute-myeloid-leukemias-in-line-with-who-2008-classification



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


