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Oral Bioavailability and 
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Yan Li and James W. Paxton 
Department of Pharmacology & Clinical Pharmacology, School of Medical Sciences, 

Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 
New Zealand 

1. Introduction  

Higher plants produce a vast variety of secondary metabolites known as phytochemicals 
(PCs) which appear to protect the plant against a variety of stresses such as UV irradiation, 
pathogenic attacks, and perhaps even consumption by herbivores. Many of these non-
nutrient PCs have been shown to exert a wide range of biological effects, and 
epidemiological and nutritional studies have identified a protective role for PCs in the 
prevention of cancer, diabetes, cardiovascular and neurodegenerative diseases (Kris-
Etherton et al., 2002; Aruoma et al., 2003; Surh, 2003; Balunas & Kinghorn, 2005; Duthie, 
2007; Espin et al., 2007; Russo, 2007; Dembinska-Kiec et al., 2008; Hooper et al., 2008; Khan et 
al., 2008). Unlike some cytotoxic chemicals derived from natural products (e.g., etoposide, 
daunorubicin and paclitaxel), PCs are found in high concentrations in fruits, vegetables, 
nuts, wine and tea, and intake can be up to several hundred milligrams per day (Manach et 
al., 2005). PCs which have been associated with health benefits, include glucosinolates, 
organic isothiocyanates, dibenzocyclooctadienes, sulphur-containing compounds of 
alliaceae, terpenoids (carotenoids, monoterpenes, and phytosterols), flavonoids and 
polyphenols (e.g., anthocyanins, flavones, flavan-3-ols, isoflavones, stilbenoids, and ellagic 
acid) (Balunas & Kinghorn, 2005; Espin et al., 2007). Bioavailability and tissue distribution of 
these PCs in humans are key factors that need to be clearly established in association with 
their biological effects. Recently various drug metabolizing enzymes and drug transporters 
such as the ATP binding cassette (ABC) and the solute carrier (SLC) transporters have been 
cloned and functional analyses suggest that they play significant roles in the absorption and 
disposition of most drugs and PCs (Zhang et al., 1998; Zhang & Benet, 2001; Borst & 
Elferink, 2002; Faber et al., 2003; Sarkadi et al., 2006; Shitara et al., 2006; Hu et al., 2003; Zhou 
et al., 2004; Morris & Zhang, 2006; Zhang et al., 2007; Shukla et al., 2008; Zhang et al., 2009). 
They are present in all tissues and play pivotal roles in the defense of the body against 
amphipathic carcinogens and toxins. Many drug metabolizing enzymes and transporters are 
under tight transcriptional regulation by nuclear receptors, suggesting their functions are 
subject to environmental and dietary influences (Borst & Elferink, 2002; Petri et al., 2003; 
Lancon et al., 2007; Giacomini et al., 2010). In addition, PCs may modulate the expression 
and function of drug metabolizing enzymes and drug transporters which govern xenobiotic 
bioavailability (Wang & Morris, 2007; Kim et al., 2009; Shukla et al., 2009). This review will 
highlight the various barriers to dietary phytochemicals, approaches for assessing these 
interactions, and their implications in pharmacokinetics and potential clinical applications.  
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2. Absorption from gastrointestinal (GI) tract  

To achieve their beneficial effects, other than on the GI tract itself, these PC molecules must 
be delivered to target tissues and organs after overcoming several absorption barriers in the 
GI tract (Figure 1). Firstly, they must dissolve in the fluids of the GI tract and survive the 
different pH environment ranges from extreme low in the stomach to slightly basic in some 
segments of the small intestine. They may also be subjected to degradation and metabolism 
by intestinal enzymes, such as the glycosidases, esterases, oxidases and hydrolases, 
originating both from the host and the myriad of microbiota that inhabit the GI tract (Sousa 
et al., 2008). Actually the large intestine accommodates most of the GI microbiota and the 
rate and extent of metabolism by bacteria will be influenced by the amount of the PC that 
reaches the distal gut. Many plant flavonoids exist in the O-glycoside form within the plant 
and undergo rapid GI hydrolysis to remove the glucose conjugates and form their respective 
aglycons (Crespy et al., 2002; Walle et al., 2005). The latter are more lipophilic and and thus 
are more efficiently absorbed across the GI wall than the parent glycoside, providing they 
are not subject to intestinal transporter-mediated absorption. However, interactions with 
intestinal ABC and SLC transporters may cause unpredictable absorption kinetics of many 
PCs which cannot be simply predicted from their physicochemical properties. Transporter-
related absorption phenomena, such as the limited and nonlinear intestinal permeability 
and absorption of PCs, may lead to extensive variability in their oral bioavailability, 
resulting in low plasma concentrations and lack of pharmacological effect on the one hand, 
or elevated concentrations and toxicity on the other. 

 

 

Fig. 1. Absorption and disposition of phytochemicals in humans. 
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The human family of ABC transporters contains 49 members with 7 subfamilies including 
several important xenobiotic transporters, such as P-glycoprotein (P-gp, ABCB1), multidrug 
resistance protein 1-9 (MRP 1-9, ABCC1-6 and ABCC10-12, respectively) and breast cancer 
resistance protein (BCRP, ABCG2) (Borst & Elferink, 2002). They actively transport 
chemically diverse substrates including amino acids, lipids, inorganic ions, peptides, 
saccharides, metals, xenobiotics, and proteins out of cells. In most examples of primary 
active transport that have been observed, transport of the substrates against their 
concentration and chemical potential gradients was driven by the hydrolysis of ATP 
(Higgins, 1992). To date, important SLC transporters involved in xenobiotic absorption and 
disposition mainly include organic cation transporter (OCT) and organic anion transporter 
(OAT); and organic anion transporting polypeptide (OATP) families. 

Many ABC and SLC transporters have been identified in the GI tract including OATPs, P-
gp, MRPs and BCRP on the apical membrane and OCT1 and MRP 3, 4, 5 on the basolateral 
(blood) side (Figure 2). PCs can act as substrates for ABC transporters (Table 1), which can 
severely limit their bioavailability. The expression of BCRP transcripts in human jejunum 
are higher than that of P-gp (Taipalensuu et al., 2001; Maliepaard et al., 2001), suggesting 
that BCRP may play an important role in limiting the intestinal absorption of its substrates. 
Knocking out mouse Bcrp led to significant increases in the oral bioavailability of daidzen 
(3.7-fold) and genistein (1.8-fold) compared to wild type mice (Enokizono et al., 2007). 
Several flavonoids such as quercetin, kaempferol, and diverse anthocyanins and 
anthocyanidins commonly found in grapes and berries, malvidin, petunidin, malvidin-3-
galactoside, malvidin-3,5-diglucoside, cyanidin-3-galactoside, peonidin-3-glucoside and 
cyanidin-3-glucoside have also been identified as BCRP substrates (Dreiseitel et al., 2009; An 
et al., 2010). Thus BCRP may limit the absorption of these PCs, but to date, human 
pharmacokinetic data are not available to confirm this.  

Accumulating evidence, mainly from in vitro studies has indicated that many flavonoid 
aglycones and anthocyanins and anthocyanidins are P-gp and BCRP inhibitors, including 
genistein, biochanin A, quercetin, morin, phloretin, silymarin (a mixture of silibinins, 

 

 

Fig. 2. Localization of ABC and SLC transporters in human small intestine. 
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Name Symbol Tissue 
location 

PC  
substrates 

PC  
inhibitors 

References 

P-gp ABCB1 
MDR1 

Liver, intestine, 
brain 

Quercetin, EGCG, 
Biochanin A 

Genistein, naringenin, 
hesperetin, acacetin, 
apigenin, chrysin. 

(Jodoin et al., 2002; 
Wang et al., 2002; 
Zhang & Morris, 
2003; de Castro et 
al., 2007; Taur & 
Rodriguez-
Proteau, 2008) 

MRP1 ABCC1 All major tissues (-)-Epicatechin-3-
gallate 

Quercetin, Naringenin, 
Kaempferol, Apigenin, 
Genistein Schisandrin 
A and B, Schisandrol A 
and B   

(Versantvoort et 
al., 1993; 
Versantvoort et al., 
1994; Versantvoort 
et al., 1996) 

MRP2 ABCC2,  Liver, kidney, 
intestine, brain 

(-)-Epicatechin-3-
gallate, 
4-O-methyl-EGCG 

Myricetin, robinetin (Borst et al., 1999; 
Zhou et al., 2008) 

MRP3 ABCC3 Small intestine, 
pancreas, colon, 
placenta, adrenal 
gland 

Baicalein-7-
glucuronide, 
 

 
? 

(Borst et al., 1999; 
Zhou et al., 2008) 

MRP4 ABCC4 Kidney ? Quercetin, silymarin (Borst et al., 1999; 
Zhou et al., 2008b 
;Wu, 2005) 

MRP5 ABCC5 Most tissues ? Quercetin, silymarin (Borst et al., 1999; 
Zhou et al., 2008b 
;Wu, 2005) 

BCRP ABCG2 Placenta, liver, 
the small 
intestine, colon, 
lung, kidney 

Quercetin, genistein, 
resveratrol, malvidin, 
petunidin, malvidin-3-
galactoside, malvidin-
3,5-diglucoside, 
cyanidin-3-galactoside, 
peonidin-3-glucoside 
and cyanidin-3-
glucoside 

Genistein, naringenin, 
hesperetin, acacetin, 
apigenin, chrysin, 
diosmetin, luteolin, 
galangin, kaempferide, 
kaempferol, cyanidin, 
peonidin, cyaniding-
3,5-diglucoside, 
malvidin, 
pelargonidin, 
delphinidin, petunidin, 
delphinidin-3-
glucoside, cyaniding-3-
rutinoside, malvidin-3-
glucoside, 
pelargonidin-3,5-
diglucoside, malvidin-
3-galactoside, 
cannabinoids 

(Litman et al., 
2001; Holland et 
al., 2007; de Wolf 
et al., 2008; 
Dreiseitel et al., 
2009) 

Table 1. An overview of tissue distribution, substrates and inhibitors of P-gp, MRPs and 
BCRP. 
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isosilyin A and B, silychristin A and B, and silydianin), chrysin, hesperetin, naringenin, and 
the green tea polyphenols, epicatechin gallate, catechin gallate and epigallocatechin gallate 
(Table 1) (Castro & Altenberg, 1997; Jodoin et al., 2002; Wang et al., 2002; Zhang & Morris, 
2003; de Castro et al., 2007; Taur & Rodriguez-Proteau, 2008; Dreiseitel et al., 2009). It has 
been suggested that such inhibitory PCs could be used to reverse the ABC transporter-based 
constraints on the GI absorption of other substrate PCs and that this may represent a useful 
strategy for improving their bioavailability. For example, the oral bioavailability of 
biochanin A was increased approximately 2-fold when coadministered with the BCRP 
inhibitors quercetin and epigallocatechin-3-gallate (EGCG) in rats (Moon & Morris, 2007). 
However this effect may at least partially be due to inhibition of metabolizing enzymes, as 
there is evidence that both quercetin and the green tea polyphenols may inhibit both Phase 1 
and 2 metabolism (Cermak & Wolffram, 2006). Kaempferol has also been reported to 
increase quercetin permeability across MDCKII-Bcrp monolayers by inhibition of Bcrp-
mediated quercetin efflux (An et al., 2010). Recently it has also been suggested that intestinal 
ABC transporters may function as barriers to absorption of PCs (e.g., resveratrol, green tea 
catechins and flavonoids) by cooperating with intestinal Phase 2 metabolizing enzymes 
(Zhang et al., 2004; Ebert et al., 2005; Zhang et al., 2007; Juan et al., 2010), implying a joint 
role in limiting oral absortption of PCs. In an in situ intestine perfusion model in Mrp2-
deficient rats, Bcrp was shown to limit net intestinal absorption of quercetin by pumping 
quercetin glucuronides back into the lumen (Sesink et al., 2005).  

Several uptake transporters, such as organic anion transporting polypeptide (OATP) and 

organic cation transporter (OCT) from the SLC transporter superfamily are also functionally 

expressed on human intestine tissues (Figure 2) (Hagenbuch & Meier, 2003; Giacomini et al., 

2010), and have recently been associated with the oral absorption of some PCs. For example, 

quercetin was absorbed by passive diffusion and a pH-dependent mechanism mediated by 

OATP in a Caco-2 cell monolayer model (Nait Chabane et al., 2009). As quercetin is also a 

substrate for the efflux transporters P-gp and BCRP, a balance between these counteracting 

transporters may allow a more precise control of the cellular accumulation of such substrate 

compounds, but the actual biological implication of this fine-tuning mechanism remains 

unclear at the moment. This transport process may be further complicated in that many PCs 

present in plants are linked to sugar moieties, which may have an impact on their oral 

absorption. For example, there is in vitro and in silico evidence that the human glucose 

transporter 1 (SLC2A1) and rat glucose transporter 4 (slc2a4) transports quercetin (Strobel et 

al., 2005; Cunningham et al., 2006). In addition, the pig but not human sodium-dependent 

glucose transporter-1 (SGLT1) appeared to be involved in the intestinal uptake of quercetin 

glucosides (Cermak et al., 2004; Kottra & Daniel, 2007).  

3. Metabolism (enterocytes & hepatocytes) 

Possibly of greater importance as a defensive barrier against these invading foreign 
molecules is the battery of both Phase 1 and Phase 2 enzymes present in the enterocytes 
(Figure 3). The Phase 1 reactions include oxidation, reduction and hydrolysis, which 
primarily serve to increase the hydrophilicity of the molecule, and expose or add a 
functional group (such as a hydroxyl group) to facilitate Phase 2 conjugation reactions. 
Oxidation is the most predominant reaction involved in the Phase 1 metabolism of 
xenobiotics, and is principally carried out by a family of closely related isozymes known as 
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the cytochrome P450-dependent mixed-function oxidases (CYPs). In humans, CYP1A, 
CYP2C, CYP2D and CYP3A are responsible for metabolising the bulk of xenobiotics that 
enter the body via the oral route (Lewis & Ito, 2008). CYP3A4/5 with its broad substrate 
specificity is particularly important in xenobiotic metabolism, making up 70 and 30% of total 
CYPs in the intestines and liver, respectively (Zhang & Benet, 2001).  

The parent PCs (or their Phase 1 metabolites) that contain suitable functional groups (e.g., a 
hydroxyl group) often undergo conjugation reactions with endogenous compounds to yield 
more polar and water soluble compounds. The latter are usually ideal substrates for active 
transport out of the cell, and eventually excretion from the body. The principal conjugation 
reaction is the formation of β-glucuronides catalysed by a family of enzymes known as the 
uridine diphosphoglucuronosyl transferases (UGTs), but conjugation with a sulpho moiety 
(SO3-) or glutathione also occurs, catalysed by various sulphotransferases (SULTs) and 
glutathione-S-transferases (GSTs), respectively. Less polar conjugates may also be formed by 
methylation, catalysed by catechol-O-methyl transferase (COMT). These Phase 2 
conjugation reactions are particularly important for PCs such as epi-gallocatechin-3-gallate 
(EGCG), which is the most abundant catechin in green tea. EGCG has numerous hydroxyl 
groups and undergoes extensive Phase 2 metabolism, including glucuronidation, 
sulphation, and methylation (Lambert et al., 2007; Yang et al., 2007). Several recent studies 
using liquid chromatography-tandem mass spectrometry (LC-MS/MS) have demonstrated  

 

 

Fig. 3. Metabolism and disposition of phytochemicals (PC) and their metabolites in 
enterocytes and hepatocytes. PC-Gly, glycoside phytochemical; PC-Glu, glucuronide 
conjugate; PC-X, phytochemical metabolite 
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that after ingestion of some flavonoids, Phase 2 conjugates of the aglycon such as 
glucuronides, sulphates and methylated metabolites predominate in the blood circulation, 
rather than the original plant glycoside or aglycon (Janisch et al., 2004; Zhang et al., 2007). 
The extent to which these metabolites contribute to the overall beneficial effects of PCs in the 
body is largely unknown, and needs further investigation. Most evidence for drugs has 
indicated that their Phase 2 conjugates have little pharmacological activity but exceptions 
certainly exist, such as morphine-6-glucuronide and ezetimibe-glucuronide which appear to 
have greater pharmacological activity than their parent compound (Lotsch & Geisslinger, 
2001; Kosoglou et al., 2005). In studies with green tea polyphenols, the metabolites mostly 
had reduced biological activity, but in some systems the metabolites had the equivalent or 
greater activity than the parent PC (Lambert et al., 2007). Other in vitro studies have shown 
that phloridzin-glucuronide is significantly more potent at protecting human SH-SY5Y 
neuroblastoma cells from hydrogen peroxide-mediated cell death than the parent molecule 
phloridzin (Stevenson et al., 2008), and that quercetin-3-glucuronide was significantly more 
potent than quercetin in a model of inflammation using human neutrophils (Suri et al., 
2008). There is also evidence that the position of the glucuronide conjugate on the flavonoid 
can influence its biological activity (Day et al., 2000; O'Leary et al., 2003). Certainly these 
conjugated metabolic products are ideal substrates for various active transmembrane 
transport processes, in particular the excretory processes of the liver and kidney.  

Although the Phase 1 and 2 metabolic enzymes are found in the epithelial cells of the gut wall, 
by far the greatest concentrations are found in the liver (Figure 3), where they form a major 
barrier to the further distribution of the parent PC to other organs, such as of the heart, kidney, 
lungs and brain. The liver’s location and the portal venous blood supply from the intestines 
make it well suited for the protection of the body from possible toxic xenobiotics contained in 
our diet. During this first passage through the liver, many PCs will undergo substantial 
extraction and metabolism (known as first-pass metabolism). The resulting metabolic products 
are then exported back out of the liver into the blood stream and carried to the kidney where 
they may be excreted in the urine. Alternatively, metabolites such as glucuronide conjugates 
may be exported in the bile and released into the gut lumen. Thereafter, the metabolite 
conjugate may be excreted in the faeces, or alternatively it may be further metabolised by gut 
microbial enzymes, such as β-glucuronidase, which has the ability to cleave off the 
glucuronide and reform the less-polar aglycon, which may then be reabsorbed. This cycle is 
known as enterohepatic recirculation and may result in a longer exposure of the body to the 
PC. Evidence for such enterohepatic recirculation has been obtained for the flavonoid baicalein 
7-O-glucuronide with a rat model (Xing et al., 2005), but whether a similar process occurs for 
some PCs in humans is not known. 

4. Distribution 

Presumably, if the PC overcomes the defence mechanisms of the gut and the liver, it will 

enter the systemic circulation and be distributed in the bloodstream to the other major 

organs of the body and possible site(s) of action. In pharmacology, the term bioavailability is 

used to indicate the relative amount of the ingested parent xenobiotic that reaches the main 

cardiovascular circulation. Bioavailability is usually measured by taking peripheral blood 

samples over a period of time after ingestion and analysing for xenobiotic concentration. It 

is assumed that this blood concentration is an acceptable index for the concentration or 
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exposure at the site of action. Most PCs can pass with ease through the pores of the 

capillaries of organs such as the heart and lungs, but not some pharmacological sanctuaries, 

such as the brain, testis, fetus and stem cells. The tissue distribution of xenobiotics is 

significantly influenced by ABC transporters as the latter contribute to the maintenance of 

these pharmacological sanctuaries (Borst & Elferink, 2002; Huls et al., 2009; Mruk et al., 

2011). For many PCs present in the bloodstream either as parent compound or metabolite, 

active efflux by ABC transporters may represent a major rate-limiting factor in their 

distribution or access to these sanctuaries. Phytochemical interactions with these efflux 

transporters could result in either: a further decrease in substrate PC distribution to the site, 

if the transporters were stimulated or induced; or accumulation of substrate, if the 

transporters were inhibited. The brain capillaries are surrounded with a protective cellular 

sheath of glial cells (the so-called blood brain barrier, BBB) resulting in permeability 

characteristics more closely resembling those of tightly bound tissue cell walls (Pardridge, 

1993). To gain access to the brain, a PC must be highly lipid-soluble, or subject to uptake 

transport processes. MDR1, BCRP, MRP1, MRP3, MRP4 and MRP5 genes were shown by 

qRT-PCR to be expressed in the BBB (Dauchy et al., 2009). P-gp, BCRP and MRP1 have been 

located at the apical membrane of brain endothelial cells (Figure 4) (Kubota et al., 2006; 

Dauchy et al., 2009), and there is evidence that P-gp limits the penetration of various drugs 

across the BBB (Linnet & Ejsing, 2008). However the effects of several potent PC inhibitors of 

P-gp on passage across the BBB appeared to be minor (Tsai et al., 2001). Similarly, the 

uptake of the BCRP substrates, mitoxantrone and dehydroepiandrosterone sulfate, into the 

brain did not vary significantly between wild type and Bcrp knockout mice (Lee et al., 2005). 

In contrast, significant increases in the brain concentrations of various phytoestrogens 

including genistein (9.2-fold), daidzen (5.6-fold) and coumestrol (3.9-fold) were reported in 

Bcrp knockout mice compared to wild type (Enokizono et al., 2007). Similar results were 

also observed in the testis, suggesting that Bcrp may play a protective role reducing the 

accumulation of such compounds in both the brain and the testis. Likewise in a rat  
 

 

Fig. 4. Localization of ABC and SLC transporters in human BBB. GLUT1, glucose transporter 1; 
MCT1, monocarboxylate transporter 1; SERT, serotonin transporter 
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hemisphere perfusion study, the brain accumulation of quercetin was dramatically 
increased by pretreatment with GF120918 (a P-gp and BCRP inhibitor), but not with PSC833 
(a P-gp inhibitor) (Youdim et al., 2004). A recent study using the ex vivo rat BBB model 
indicated that curcumin inhibited BCRP activity at nanomolar concentrations and 
significantly increased the penetration of sulfasalazine across the BBB (Shukla et al., 2009). 
However, due to the low oral bioavailability of curcumin, such concentrations are rarely 
achieved with low to sub nanomolar concentrations typically being observed in plasma, 
even after oral dosing at 8 g/day for 18 months (Dhillon et al., 2008). BCRP is most 
abundantly expressed in the apical membrane of placental syncytiotrophoblasts, suggesting 
that it may play a role in protecting the fetus by impeding xenobiotic penetration across the 
placental barrier (Jonker et al., 2000; Evseenko et al., 2006). It has been shown that genistein 
accumulates in Bcrp knockout mice fetuses when genistein was included in the diet of 
pregnant mice during gestation (Enokizono et al., 2007), implying the involvement of Bcrp 
in genistein efflux in mouse placenta. However, a recent study shows that genistein at low, 
environmentally relevant concentration (10 ng/mL) can transfer across the human placenta 
at term at a extent similar to antipyrine (a well-known passive diffusion marker) in a 
placenta perfusion system (Balakrishnan et al., 2010), which suggests human BCRP may 
play a minor role in limiting the fetal exposure to genistein. These discrepancies may be due 
to species differences or differences between in vivo and ex vivo experimental systems. Since 
fetal exposure to genistein may have adverse consequences with regard to the development 
of the fetus (North & Golding, 2000), the regulatory role of BCRP in genistein transfer in 
term placenta needs further studies. As many flavanoids present in diet are potent 
modulators of BCRP and dietary flavonoids are in greater use, their influence on fetal 
exposure to various PC substrates of BCRP may also require further studies. 

5. Excretion 

The ABC and SLC transporters are abundantly expressed in the liver and kidney and 
regulate the excretion of many compounds, including PCs and their metabolites. In the liver, 
OAT2, OCT1 and OATPs are located in the sinusoid membrane to extract xenobiotics from 
blood; while BCRP, P-gp and MRP2 are found in the hepatocyte canalicular membrane 
effluxing compounds into the bile (Hooivelda & van Montfoorta, 2000). The inhibition of 
these transporters in hepatocytes can increase the concentrations of PC substrates in the 
bloodstream and/or decrease their biliary excretion and prolong their stay in the body. For 
example, biliary excretion of glucuronide and sulfate conjugates of silymarin flavonolignans 
was reduced by approximately 96 and 78%, respectively, in Mrp2-deficient Wistar rats, 
compared to wildtype (Miranda et al., 2008). Since biliary excretion of glucuronide and 
sulfate conjugates is the major route for silymarin's elimination in humans and rodents 
(Miranda et al., 2008), the pharmacokinetics of silymarin may be susceptible to MRP2 
inhibition/induction or to pathological conditions where MRP2 may be deficient, such as in 
cholestatic liver disease or in Dubin-Johnson Syndrome (Keitel et al., 2000; Borst & Elferink, 
2002). In contrast, MRP1 and 3 are found at the sinusoid membrane effluxing substrates 
back into the bloodstream, but are expressed at low levels under normal conditions (Ros et 
al., 2003). However in situations where MRP2 may be deficient, MRP3 may be upregulated, 
apparently to compensate for the diminished ability to excrete organic acids into bile (Keitel 
et al., 2000). Chronic administration of PCs however, may result in the upregulation of 
transporters via activation of the pregnane X receptor (PXR) or the aryl hydrocarbon 
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receptor (AhR) in hepatocytes, lessening the effects of inhibition (Lim & Lim, 2006; Zhang et 
al., 2007; Zhang et al., 2009).  

In the kidneys, P-gp, MRP2, MRP4 and BCRP are expressed in the apical membranes and 

OCT2, OATs and OATP4C1 in the basolateral side of the cells lining the proximal tubules, 

transporting xenobiotics out of the blood into the urine (Ichikawa et al., 1991; van Aubel et 

al., 2002; Leslie et al., 2005; Huls et al., 2008; Giacomini et al., 2010). MRP2, 4 and BCRP 

efflux anionic or conjugated compounds (e.g., Phase 2 metabolites of some flavanoids), 

while more hydrophobic compounds are extruded by P-gp. As many PCs are excreted as 

conjugated metabolites by the kidney, there exists the possibility of competitive inhibition of 

these transport processes with drugs whose major route of elimination is by the kidney. It 

would appear cautionary to monitor plasma concentrations for drugs with a narrow 

therapeutic index in patients who are also consuming large amounts of PCs, perhaps as 

herbal medications or health supplements.  

6. Modulation of bioavailability by PCs 

There is accumulating evidence that PCs are able to modulate the activity of some ABC and 
SLC transporters by numerous mechanisms, resulting in significant changes in the oral 
bioavailability of substrate xenobiotics. For example, 1-hour pretreatment of mice with oral 
curcumin (400 mg/kg) resulted in a 13-fold increase in the bioavailability (as measured by 
the area under the plasma concentration-time curve (AUC)) of the Bcrp substrate 
sulfasalazine (anti-inflammatory drug) (Shukla et al., 2009). Although inhibition of 
sulfasalazine’s metabolism could not be ruled out, it was believed that direct competitive 
inhibition of Bcrp was the major mechanism involved. In contrast, more prolonged 
treatment of rats with a lower dose of oral curcumin (60 mg/kg for 4 days) produced a 
down regulation in P-gp concentrations (> 50% reduction) in the gut, leading to a 1.6-fold 
increase in the AUC of the β-blocking drug, celiprolol (Zhang et al., 2007). The latter does 
not undergo metabolism and is a P-gp substrate, and thus the reduction in P-gp in the gut 
was deemed responsible for the increased bioavailability of celiprolol. It was also intriguing 
to note that the effect of curcumin was tissue specific, resulting in a greater than 2-fold P-gp 
increase in the liver but no effect in the kidney. Most studies of PC-transporter interactions 
have been undertaken using in vitro systems (Table 2) or in vivo animal studies and the 
difficulty in extrapolating to humans is apparent. Recently Molnar et al. (2006) have 
demonstarated that a wide range of lipophilic PCs (diterpenes, triterpines and carotenoids) 
were able to inhibit human P-gp in vitro at the low µg/ml range, whereas other 
combinations had positive synergistic activity (Molnar et al., 2006). Using purified PCs on P-
gp over-expressing cells in vitro, Patel et al. (2004) showed that quercetin, hypericin and 
kaempferol were able to increase the cellular uptake of ritonavir by 5- to 8-fold (Patel et al., 
2004). It is also interesting to note that in vitro assays or short-term exposure to these 
polyphenols in vivo appears to inhibit the action of efflux pumps and increase substrate 
bioavailability, whilst chronic exposure in healthy volunteers actually increases the 
expression of P-gp. For example, extracts from St John’s Wort (SJW) have been shown to up-
regulate the expression of intestinal P-gp (Durr et al., 2000; Hennessy et al., 2002), that may 
subsequently reduce the bioavailability of substrates, such as the antiviral drugs indinavir 
and saquinavir that are used in the treatment of acquired immune deficiency syndrome 
(AIDS) (Perloff et al., 2001). Treatment with SJW is able to reduce plasma concentrations of 
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these drugs by up to 57% in healthy human volunteers, potentially leading to sub-
therapeutic levels (Piscitelli et al., 2000). Hyperforin has been identified as the most likely 
candidate causing this inducing effect by binding and subsequent activation of PXR leading 
to increased expression not only of P-gp but also various Phase 1 and 2 metabolizing 
enzymes (Moore et al., 2000). In fact, the induction of CYPs and UGTs is probably the more 
important mechanism causing the majority of the many clinically significant drug 
interactions with SJW that have been reported (Hennessy et al., 2002).  

Quercetin has been identified as a P-gp substrate and inhibitor, and has been reported to 
cause a 55 % increase in oral bioavailability of fexofenadine in healthy volunteers (Kim et al., 
2009). Fexofenadine is non-sedating antihistamine which is a P-gp substrate that undergoes 
negligible metabolism in humans. Interestingly the oral bioavailability of fexofenadine is 
significantly decreased when taken with grapefruit juice (GFJ) or one of its major PC 
components, naringin (Bailey et al., 2007). The mechanism responsible is thought to be 
 

 P-gp BCRP MRP1 MRP2 MRP4 MRP5 References 

Phytochemicals        

Apigenin ? I I I ? ? 
(Versantvoort et al., 1994; 
Imai et al., 2004) 

Biochanin A Ica Ica Ica ? ? ? 
(Versantvoort et al., 1993; 
Zhang & Morris, 2003; Zhang 
et al., 2004) 

Curcumin I I I ? ? I 
(Anuchapreeda et al., 2002; 
Chearwae et al., 2006; Shukla 
et al., 2009; Li et al., 2010) 

Cyanidin 
 

I I ? ? ? ? (Dreiseitel et al., 2009) 

Daidzein ? Ica I ? ? ? 
(Versantvoort et al., 1994; 
Imai et al., 2004) 

EGCG × ? S S ? ? 
(Jodoin et al., 2002; Hong et 
al., 2003) 

Epicatechin ? ? S S ? ? (Hong et al., 2003) 

Genistein Ica Sca, Ica I S ? ? (Imai et al., 2004) 

Narigenin S, I I I S ? I (Imai et al., 2004) 

Naringin Ica I ? ? ? ? (Imai et al., 2004) 

Puerarin ? ? ? ? ? ? (Imai et al., 2004) 

Quercetin S, I I I S, I I I (Wu et al., 2005) 

Resveratrol I I I ? I × 
(Nabekura et al., 2005; Wu et 
al., 2005; Breedveld et al., 
2007) 

Silymarin Ica I I ? I I 
(Zhang & Morris, 2003; 
Cooray et al., 2004; Wu et al., 
2005) 

Table 2. Phytochemical substrates and inhibitors of P-gp, MRPs and BCRP. I, inhibitor; S, 
Substrate; Ca, Experiments carried only in cancer cells; ×, not a substrate or inhibitor; ? Not 
determined.  

www.intechopen.com



 
Phytochemicals – Bioactivities and Impact on Health 128 

inbition of OATP1A2 which is involved in intestinal uptake of fexofenadine, and naringin (and 

hesperidin, also found in GFJ) have been identified as potent inhibitors of this transporter. This 

is an uncharacteristic interaction with GFJ as most reported interactions have involved 

markedly increased drug bioavailability, often resulting in significant toxicity (Bailey et al., 

1991). Further studies have indicated that the main mechanism was inhibition of intestinal 

CYP3A4 by the furanocoumarins in GFJ, including bergamottin and 6’,7’-hydroxybergamottin 

(Dahan & Altman, 2004). However these may not be the sole contributors, as other PCs found 

in GFJ, such as quercetin and kaempferol have also been shown to cause inhibition of the CYPs 

in vitro (Zhou et al., 2003; Dahan & Altman, 2004; Rodeiro et al., 2008). These studies serve to 

illustrate the potential complexity of the interactions between multiple PCs acting by different 

mechanisms dependent on the period of exposure to modulate uptake and efflux transporters 

and metabolizing enzymes in both enterocytes and hepatocytes.  

7. Improving the bioavailability of PCs 

Although many PCs have postulated health benefits, most appear to suffer from poor oral 
bioavailability which makes their utility as such agents rather tenuous. The biological 
activity of many of these PCs have been amply demonstrated in vitro but the effects in vivo 
are much more limited, probably due to the sub-micromolar concentrations achieved in 
plasma after ingestion (Baur & Sinclair, 2006; Moon & Morris, 2007; Zhang et al., 2007) 
(Anand et al., 2007). Apart from modulating ABC transporter function, PCs can also act as 
substrates for these efflux pumps, which can severely limit their bioavailability. For 
example, quercetin has very limited bioavailability through gut epithelia and regardless of 
the amount consumed orally, plasma concentrations of quercetin rarely exceed 1 µM. 
Although not specifically proven, this is likely to be at least in part due to BCRP expression 
in gut epithelia (see (Murakami & Takano, 2008) for review). Curcumin has well 
demonstrated antitumour activity in vitro and is currently in clinical trials for the treatment 
of various cancers but with limited success (Dhillon et al., 2008; Hatcher et al., 2008). 
However, the poor absorption and rapid first-pass metabolism resulting in poor oral 
bioavailability and low systemic concentrations, continue to be a major problem with 
curcumin’s use in the clinic and appear to be responsible for the disconnect between 
curcumin’s in vitro vs in vivo biological activity (Anand et al., 2007). To overcome this, the 
development of liposomal and nanoparticle formulations of curcumin has been investigated 
with reports of significant increases in its bioavailability (Bisht et al., 2007; Chen et al., 2009; 
Cui et al., 2009). Such strategies are also being employed to increase the oral bioavailability 
of resveratrol to improve its therapeutic potential (Santos et al., 2011). However, P-gp 
substrates (e.g., paclitaxel), delivered to P-gp overexpressing cells by nanoparticles, are 
susceptible to efflux by P-gp (Chavanpatil et al., 2006). It has also been shown that 
conjugation of negatively charged nanoparticles to glutathione led to nanoparticle efflux 
from the cell via MRP-transporters (Zhang et al., 2007; Holpuch et al., 2011). Some excipients 
are also potent ABC transporter inhibitors (Yamagata et al., 2007) and may be used in novel 
formulations to further improve PC bioavailability and targeted tissue distribution. 

8. Conclusions 

In conclusion, it is now apparent that the physicochemical properties of phytochemicals are 
not the only factors determining their oral bioavailability, and that there is a complex 
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interplay between these properties and the processes of metabolism and active transport in 
absorption, distribution and excretion, which determine the extent of exposure to their 
bioactive site(s) in the body. There is still much to be learned about the application of 
phytochemicals to the improvement of human health as these compounds have multiple 
complex effects on the body apart from their interactions with drug metabolizing enzymes 
and transporters. Despite limited data from human studies, the sheer amount and diversity 
of available phytochemicals continues to encourage researchers to look for new candidates 
with therapeutic potential and to improve their bioavailability and consequently their 
efficacy by developing new delivery systems.  
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