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1. Introduction 

A system of hydrodynamic equations for a viscous, heat conducting fluid is usually derived 

on the basis of the mass, the momentum and the energy conservation laws (Landau & 

Lifshitz, 1986). Certain assumptions about the form of the viscous stress tensor and the 

energy density flow vector are made to derive such a system of equations for the dissipative 

viscous, heat conductive fluid. The system of equations based on the mass, the momentum 

and the energy conservation laws describes adequately a large set of hydrodynamical 

phenomena. However, there are some aspects which suggest that this system is only an 

approximation.  

For example, if we consider propagation of small perturbations described by this system, 

then it is possible to separate formally the longitudinal, shear and heat or entropy waves. 

The coupling of the longitudinal and heat waves results in their splitting into independent 

acoustic-thermal and thermo-acoustic modes. For these modes the limits of phase velocities 

tends to infinity at high frequencies so that the system is in formal contradiction with the 

requirements for a finite propagation velocity of any perturbation which the medium can 

undergo. Thus it is possible to suggest that such a hydrodynamic equation system is a mere 

low frequency approximation. Introducing the effects of viscosity relaxation (Landau & 

Lifshitz, 1972), guarantees a limit for the propagation velocity of the shear mode, and the 

introduction of the heat relaxation term (Deresiewicz, 1957; Nettleton, 1960; Lykov, 1967) in 

turn ensures finite propagation velocities of the acoustic-thermal and thermo-acoustic 

modes. However, the introduction of such relaxation processes requires serious effort with 

motivation. 
Classical mechanics provides us with the Lagrange’s variational principle which allows us 
to derive rigorously the equations of motion for a mechanical system knowing the forms of 
kinetic and potential energies. The difference between these energies determines the form of 
the Lagrange function. This approach translates directly into continuum mechanics by 
introduction of the Lagrangian density for non-dissipative media. In this approach the 
dissipation forces can be accounted for by the introduction of the dissipation function 
derivatives into the corresponding equations of motion in accordance with Onsager’s 
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principle of symmetry of kinetic coefficients (Landau & Lifshitz, 1964). There is an 
established opinion that for a dissipative system it is impossible to formulate the variational 
principle analogously to the least action principle of Hamilton (Landau & Lifshitz, 1964). At 
the same time there are successful approaches (Onsager, 1931a, 1931b; Glensdorf & 
Prigogine, 1971; Biot, 1970; Gyarmati, 1970; Berdichevsky, 2009) in which the variational 
principles for heat conduction theory and for irreversible thermodynamics are applied to 
account explicitly for the dissipation processes. In spite of many attempts to formulate a 
variational principle for dissipative hydrodynamics or continuum mechanics (see for 
example (Onsager, 1931a, 1931b; Glensdorf & Prigogine, 1971; Biot, 1970; Gyarmati, 1970; 
Berdichevsky, 2009) and references inside) a consistent and predictive formulation is still 
absent. Therefore, there are good reasons to attempt to formulate the generalized 
Hamilton’s variational principle for dissipative systems, which argues against its established 
opposition (Landau & Lifshitz, 1964). Thus the objective of the chapter is a new formulation 
of the generalized variational principle (GVP) for dissipative hydrodynamics (continuum 
mechanics) as a direct combination of Hamilton’s and Osager’s variational principles. The 
first part of the chapter is devoted to formulation of the GVP by itself with application to the 
well-known Navier-Stokes hydrodynamical system for heat conductive fluid. The second 
part of the chapter is devoted to the consistent introduction of viscous terms into the 
equation of fluid motion on the basis of the GVP. Two different approaches are considered. 
The first one dealt with iternal degree of freedom described in terms of some internal 
parameter in the framework of Mandelshtam – Leontovich approach (Mandelshtam & 
Leontovich, 1937). In the second approach the rotational degree of freedom as independent 
variable appears additionally to the mean mass displacement field. For the dissipationless 
case this approach leads to the well-known Cosserat continuum (Kunin, 1975; Novatsky, 
1975; Erofeev, 1998). When dissipation prevails over angular inertion this approach 
describes local relaxation of angular momentum and corresponds to the sense of internal 
parameter. Finally, it is shown that the nature of viscosity phenomenon can be interpreted 
as relaxation of angular momentum of material points on the kinetic level. 

2. Generalized variational principle for dissipative hydrodynamics 

2.1 Hamilton’s variational principle 

The non-dissipative case of Hamilton’s variational principle can be formulated for a 
continuous medium in the form of the extreme condition for the action functional 0Sδ = : 

 
2

1

t

t V

S dt drL=  


, (1) 

which is an integral over the time interval ( 1t , 2t ) and the initial volume V  of a given mass 
of a continuum medium in terms of Lagrangian’s coordinates. From the principles of 
particle mechanics the Lagrangian density L  is represented as the difference between the 
kinetic K  and potential U  energies:  

 ( , ) ( ) ( )L u u K u U u∇ = − ∇
     . (2) 

Expression (2) implies that the Lagrangian can be considered as a function of the velocities 

of the displacements 
u

u
t

∂
=

∂

  and deformations ( )u div u∇ =
 

.  
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The motion equations derived from variational principles (1), (2) have the following form  

 0
d L L

dt uu

∂ ∂
+ ∇ =

∂∇∂
 . (3) 

In the simplest case, when the kinetic and potential energies are determined by the 
quadratic forms  

 
2 2

02 ( )K u uρ=
   ,   2 22 2ll ikU λε µε= + ,   

1

2
i k

ik
k i

u u

x x
ε

 ∂ ∂
= + 

∂ ∂ 
 (4) 

the well-known equation of motion for an elastic medium (Landau & Lifshitz, 1972) can be 
derived:  

 0 ( ) ( ) 0
d

u u u
dt

ρ µ λ µ− ∆ − + ∇ ∇ =
   , (5) 

where 0ρ  is the density of the medium, and λ  and µ  are the Lamé’s constants. 

2.2 Onsager’s variational principle 

If we consider quasi-equilibrium systems, then the Onsager’s variational principle for least 
energy dissipation can be formulated (Onsager, 1931a, 1931b). This principle is based on the 
symmetry of the kinetic coefficients and can be formulated as the extreme condition for the 
functional constructed as the difference between the rate of increase of entropy, s , and the 
dissipation function, D . Here the entropy s  is considered as a function of some 
thermodynamic relaxation process α , and the dissipation function D as a function of the 
rate of change of α , i.e. 

 
[ ]( ) ( ) 0s Dαδ α α− =  

. (6) 

The kinetic equation can then be derived from variational principle (6) to describe the 
relaxation of a thermodynamic system to its equilibrium state, i.e.:  

 ( ) 2 ( )
d

s D
dt

α α=  . (7) 

The above equation satisfies strictly the symmetry principle for the kinetic coefficients 
(Landau & Lifshitz, 1986).  

2.3 Variational principle for mechanical systems with dissipation 

As was mentioned above, the generalization of the equation of motion (3) in the presence 
of dissipation is obtained by introducing the derivative of the dissipation function with 
respect to the velocities into the right hand side of the equation (3). Therefore, in 
accordance with Onsager’s symmetry principle for the kinetic coefficients (Landau & 
Lifshitz, 1964) we have  

 
d L L D

dt uu u

∂ ∂ ∂
+ ∇ = −

∂∇∂ ∂
   . (8) 
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Now it is possible to show, that the equation of motion can be derived in the form of 
equation (8) if Hamilton’s variational principle is adapted with the following form of the 
Lagrangian function: 

 
0

( , ) ( ) ( ) ( )
t

L u u K u U u D u dt′∇ = − ∇ − 
       , (9) 

where the time integral of the dissipation function is introduced into equation (2). The initial 

time in integral (9) denoted for simplicity equal to 0 corresponds to the time 1t  in functional (1). 

It needs, however, to pay attention that at variation of dissipative term in such approach an 
additional item appears, which has to be neglected by hands. Indeed, variation of the last 
term in (9) leads us to result  

 
0 0 0 0

( ) ( ) ( )
( )

t t t t
D u d D u d D u

D u dt udt u dt udt
dt dtu u u

δ δ δ δ
   ∂ ∂ ∂

′ ′ ′ ′= = −   
′ ′∂ ∂ ∂   

   
              (10a) 

If to neglect by the last item in this expression  

 
0 0

( ) ( ) ( )
( ( )) ( ) ( )

t t
D u d D u D u

D u t dt u t udt u t
dtu u u

δ δ δ δ
 ∂ ∂ ∂

′ ′ ′= − ≈ 
′∂ ∂ ∂ 

 
             , (10b) 

then the result gives us the same term 
( )D u

u

∂

∂


 , which we need artificially introduce in the 

motion equation (8) for account of dissipation. From the one hand this approach can be 
considered as some rule at variation of integral term, because it leads us to the required 
form of the motion equation (8). From the other hand the following supporting basement 
can be proposed. Variation of action containing all terms in Lagrangian (9) with account of 
initial and boundary conditions can be written in the form 

 
2

1 0

( ) ( ) ( ) ( )
t t

t

d K u U u D u d D u
dt dV u udt

dt u dtu u u
δ δ

    ∂ ∂ ∇ ∂ ∂ 
′− + ∇ − + =    

′∂∇∂ ∂ ∂     
  

      
      (11a) 

It is seen from (11a) that the required form of the motion equation with dissipation arises 
due to zero value of coefficient at arbitrary variation of the displacement field uδ


. The last 

additional item, containing variation uδ


 under integral, prevent to the strict conclusion in 
the given case. Nevertheless, if to rewrite the first term in (11a)  in the same integral form as 
the last term  

 
2

1 0

( ) ( ) ( ) ( )
( )

t t

t

d K u U u D u d D u
dt dV dt t t u

dt u dtu u u
δ δ
    ∂ ∂ ∇ ∂ ∂ 

′ ′= − − + ∇ − +    
′ ′∂∇∂ ∂ ∂     

  
      

      (11b) 

then due to the same reason of arbitrary variation uδ


 the multiplier in brackets at this 

variation has to be equal to zero. It is possible to see now, that, if the function 
( )d D u

dt u

 ∂
 

′ ∂ 


  is 
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not singular in the point t t′ = , then its contribution can be neglected in this point in 
comparison with singular contribution from delta-function. The presented arguments can be 
considered as a basis for variation rule of integral term in Lagrangian.  
In particular, if the dissipation function is considered as a quadratic form of the deformation 
velocities, i.e.:  

 

2 2

2 ( ) i k l

k i l

u u u
D u

x x x
η ς
   ∂ ∂ ∂

′ ′∇ = + +   
∂ ∂ ∂   

   , (12) 

then the derived equation of motion with account of (4) corresponds to the linearized 
Navier–Stokes equation:  

 0 ( ) ( ) ( )
3

d
u u u u u

dt

η
ρ λ µ λ η ς

 
− + ∆ − ∇ ∇ = ∆ + + ∇ ∇ 

 

       , (13) 

where the shear and volume viscosities, η  and ς  respectively are given by / 2η′  and 

4

3
ς η′ ′+

 
respectively, from the constants in (12). 

2.4 Independent variables 

When GVP is formulated in the form (9) we need to determine variables in which terms the 
Lagrange’s function has to be expressed. To answer on this question let’s return to the 
hydrodinamics equations and look at variables for their description.  

In absence of dissipation, as it easy to see, these variables are velocity, density, pressure and 
entropy , , ,v P sρ


. For the dissipationless case the entropy holds to be constant for given 

material point, hence a pressure can be considered, for example, as a function of solely 
density ( , )P s constρ = . The density of the given mass of continuum is expressed in terms of 
its volume. Hence variation of density can be expressed in terms of variation of volume or 
through divergence of the displacement field ( )divuρ ρ=


. In particular, linearization of the 

continuity equation leads to relation  

 0(1 )divuρ ρ= −


 (14) 

Velocity by definition is a time derivative from displacement v u=
  . Thus, the displacement 

field u


 can be considered as the principal hydrodinamical variable for the dissipationless 
case.  
In the presence of dissipation, the hydrodynamic equations also involve the temperature T , 
implying in the following set of variables: , , , ,v P s Tρ


. If pressure and entropy depend on 

density and temperature ( , ), ( , )P T s Tρ ρ  in accordance to the state equation, then the fields 
of displacements and temperatures: ,u T


 can be considered as the principal hydrodynamical 

variables.  
Further, we will adopt the idea of Biot (Biot, 1970), and introduce some vector field Tu


 

(some vector potential), called the heat displacement, as independent variable instead 
temperature, so that the relative deviation of temperature T from its equilibrium state 0T  is 
determined by the divergence of the field Tu


. Namely in analogy with (14)  

 0(1 )TT T divuθ= −


 (15a) 
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where θ  is some dimensionless constant which is specially introduced in definition (15a) 
for simplification of the expression for the dissipation function. Thus, the divergence of the 
heat displacement field Tu


 determines temperature deviation from its equilibrium level 

 0

0
T

T T
u

T
θ

−
= − ∇


. (15b) 

2.5 Generalized variational principle (GVP) for dissipative hydrodynamics 

The above example (12), (13) of the derivation of the equation of motion for dissipative 
systems on the basis of Hamilton’s variational principle with the Lagrange’s function (9) 
suggests the possibility of formulating a generalized variational principle for dissipative 
hydrodynamical systems. This formulation can be obtained by a simple combination of 
Hamilton’s variational principle (eqs. (1) and (2)) and Onsager’s variational principle (eq. 
(6)), if the latter is integrated over time and multiplied by a temperature term (Maximov , 
2008, 2010, originally formulated by Maximov , 2006). The Lagrangian density in this case 
can be written in the following form:  

 
0 0

t t

L K E T s Ddt K F T Ddt
 

′ ′= − + − = − − 
  
  , (16) 

where E  and F  are the internal energy (potential for the dissipationless case) and the free 
energy  respectively. For the non-dissipative case, the Lagrangian depends on the time and 
spatial derivatives of the mean mass displacement field u


, which is a basic independent 

variable in this formulation. For the dissipative case, the temperature should be considered 
as an additional independent variable for a complete description. Hence, a free energy and 
dissipation function should also depend on the temperature variations. But temperature by 
itself is not a convenient variable here. Instead it is more convenient to consider the heat 
displacements Tu


 , introduced in previous section, of which the divergence will give us 

temperature.  
In this case the generalized Lagrangian can be written in the following form:  

 0

0

( , , ) ( ) ( , ) ( , )
t

T T TL u u u K u F u u T D u u dt′∇ ∇ = − ∇ ∇ − 
           . (17) 

It is important to note here that the opportunity to formulate the variational principle for a 
dissipative system arises due to the energy conservation for two interacting fields: the mean 
mass displacement u


 and the heat displacement Tu


. The dissipation function only plays a 

role in the transformation rate between these fields. 
In this way the motion equations derived by variation of action with the Lagrangian (17), 
can be expressed in the following forms  

0

d K F D
T

dt uu u

∂ ∂ ∂
− ∇ = −

∂∇∂ ∂
   , 

(18) 

0 0
TT

D F
T

uu

∂ ∂
− ∇ =

∂∇∂
 . 
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Taking into account that the kinetic energy is given by quadratic form (4), the free energy is 
given by its usual expression for thermo-elasticity in quadratic form (Landau  & Lifshitz, 
1972): 

 

2

2 2 0 0

0 0

2 ( , ) 2 2ik ll ll

T T T T
F u T

T T
µε λε κ αε

θ θ

   − −
∇ = + + +   

   

   , (19a) 

or with substitution of expression (13) instead of the temperature terms: 

 
( ) ( )22 22 ( , ) 2 2T ik ll T ll TF u u u uµε λε κ αε∇ ∇ = + + ∇ + ∇

    
, (19b) 

The dissipation function is the square of the difference between the mean mass and the heat 
displacements  

 
22 ( , ) ( )T TD u u u uβ= −

      
. (20) 

The meanings of the coefficients κ , α  and β  in quadratic forms (19), (20) will be defined in 
the next section by comparison with the classical Navier-Stokes hydrodynamical system of 
equations. 
In this case the motion equations for the mean displacement field and for the temperature 
field derived on the basis of the generalized variational principle are just equivalent (at 

0µ = ) to the linearized traditional system of hydrodynamics equations: 

 0 0( ) ( ) ( ) /( )
d

u u u T T
dt

ρ µ λ µ α α κ θ− ∆ − + + ∇ ∇ = + ∇
       (21) 

 0 0( )T T u T T uβ θ κ α θ− ∇ − ∆ = ∆∇
    . (22) 

2.6 Comparison with the system of hydrodynamics equations 

Coefficients of the quadratic forms in equations (19) and (20) can be determined by 
comparison between the system of equation (21) and (22) and the linearized system of 
hydrodynamics equations (Landau  & Lifshitz, 1986)  considering the variables ,u T


:  

 0(1 )uρ ρ= − ∇


, (23) 

 ( )
2

2
0 0 0 02 3

d u
c u T u u

dt

η
ρ ρ ρ α η ζ

 
− ∆ = − ∇ + ∆ + + ∇ ∇ 

 

     , (24) 

 0 0 0 0V

dT
C T u T

dt
ρ ρ α κ ′+ ∇ − ∆ =

 . (25) 

where 0c  is the isothermal sound velocity, VC  - the heat capacity at constant volume, κ  the 
heat conductivity coefficient, and α  the thermal expansion coefficient. In the absence of 
viscosity 0η =  and 0ς = , which was not taken into account in the dissipation function (20), 
the structure of equations (21), (22) nearly coincides with the second (24) and the third (25) 
equations in the system of hydrodynamics equations (Landau  & Lifshitz, 1986). The only 
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difference is the additional term in the right part of equation (22) in comparison with (25). 
We note here briefly that the reason for the introduction of this term is related to a 
generalized form of the Fourier law for heat energy flow. Besides the term of the 
temperature gradient in the Fourier law, an additional density or pressure gradient term 
should appear in spite of the contradicting argument presented in (Landau  & Lifshitz, 
1986). The independent support of this result can be found in refs. (Martynov, 2001;  
Zhdanov  &  Roldugin 1998).  
The coefficients of equations (21), (22) and (24), (25) for the fluid case ( ( ) 0rot u =


 ) can be 

found by comparison. One needs to take into account the different dimensions of equation 

(22) and (25), and, hence, the presence of common dimension multiplier in the comparison 

of coefficients for these equations. 
The parameters of the quadratic forms are expressed explicitly in terms of the physical 

parameters by the following expressions 

 ( )
2

20 0 1
cρ

β γ
χ

= − , 
0

1

T

γ
θ

α

−
= − , ( )2

0 0 1cα ρ γ= − , 2
0 02 cλ µ ρ γ+ = , ( )2 2

0 0 1cκ ρ γ= − , (26) 

where γ  is the specific temperature ratio, /P VC Cγ = , and 0/ VCχ κ ρ=  is the temperature 

conductivity coefficient. It is remarkable that the coefficient in the dissipation function β  is 

inversely proportional to the temperature conductivity coefficient. 

3. Viscous terms in dissipative hydrodynamics 

3.1 Account of viscosity relaxation for a fluid 

To take into account fluid viscosity in the equation of motion in the framework of the 

generalized variational principle it is possible to introduce additional internal parameters to 

describe the quasi-equilibrium state of the medium, analogous to the Mandelshtam – 

Leontovich approach (Mandelshtam & Leontovich, 1937). As will be shown, in order to 

describe both the shear and the volume viscosities simultaneously, this internal parameter 

needs to possess the properties of a tensor. To simplify the description we consider the case 

when the temperature variation variable T  is not essential so that the heat displacement Tu


 

terms can be omitted. In this case the additional terms associated with the tensor internal 

parameter ikξ , will appear in the expression for the free energy of an elastic medium (19), 

and it can be written as:  

 2 2 2 2
1 2 1 22 ( , ) 2 2 2ij ik ll ll ik kk ll ik kiF u a a b bξ µε λε ξ ξ ξ ε ξ ε∇ = + + + + +


, (19c) 

where ia  and ib  are some coefficients of a positively determined quadratic form. The 

kinetic energy is then given by the ordinal expression (4) and the dissipative function in the 

absence of the temperature term can be written as the following quadratic form:  

 2 2
1 22 ( )ij ll ikD ξ γ ξ γ ξ= +    (27) 

with some coefficients 1γ , 2γ . 
The system of motion equations, derived on the basis of the generalized variational 

principle for this case can be rewritten as  
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 0 1 2( ) ( ) 0ik
ll

k

d
u u u b b

dt x

ξ
ρ µ λ µ ξ

∂
− ∆ − + ∇ ∇ − ∇ − =

∂

   , (28) 

 1 2 1 2 1 2 0ll ik
ik ik ll ik ik ik

d d
a a b u b

dt dt

ξ ξ
γ δ γ δ ξ ξ δ ε+ + + + ∇ + =


. (29) 

Here in the first equation (28) we safe for shortness the tensor notation for vector obtained 
as divergence of internal parameter tensor. Equation (28) is the motion equation for an 
elastic medium. Equation (29) is the kinetic equation for the internal parameter tensor ikξ . 
Convolving the kinetic equation by indexes it is possible to obtain the separate kinetic 
equation for the spherical part of the internal parameter tensor llξ : 

 0ll
ll ll

d
a b

dt

ξ
γ ξ ε+ + =  , (30) 

where the coefficients with tilde have the following meaning: 

 1 23γ γ γ= + , 1 23a a a= + , 1 23b b b= +  (31) 

Kinetic equation (29) is an inhomogeneous ordinary differential equation of the first order. 
Its solution can be written as: 

 
( )

( )

at t t

ll ll

b
e t dtγξ ε

γ

′− −

−∞

′ ′= − 






 (32) 

For the other components of the internal tensor parameter ikξ  we can also obtain a kinetic 
equation of similar form to equation (29), but with added inhomogeneous terms, i.e. 

 2 2 2 1 1 0ik
ik ik ik ll ik ll

d
a b a b

dt

ξ
γ ξ ε δ ξ δ ε+ + + + =  (33) 

where the following notations are introduced  

1
1 1a a a

γ

γ

 
= − 
 

 


, 

 1
1 1b b b

γ

γ

 
= − 
 

 


 (34) 

Again, the solution of equation (33) has a form analogous to expression (32) with additional 

contributions from the terms with multipliers 1a  and 1b . Specifically,  

2

2

( ) ( )
2 1 2 2 1 1 1

2 2 2 2 2 2

( ) ( )
1

( ) ( )

a at tt t t t

ik ik ik ll ik ll

b b a a b a a
dt e dt e

b a a a a
γ γγ γ γ γ

ξ ε δ ε δ ε
γ γ γ γ γ γ

′− − ′− −

−∞ −∞

  − −
′ ′= − − − −    − −  

 



   
    

 (35) 

Taking the divergence of tensor (35), we obtain the following vector  
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( )
2

2

( )
2 1 2 2 1

2 2 2 2

1 ( )
( ) ( ) 1

2 ( )

at t t
ik

k

b b a a
dt e u u u

x b a a
γξ γ γ

γ γ γ

′− −

−∞

  ∂ −
′= − ∆ + ∇ ∇ − ∇ ∇ − −    ∂ −  


  

 
 

(36) 

( )
1 1

2 2

( )
( )

( )

at t tb a a
dt e u

a a
γγ γ

γ γ γ

′− −

−∞

−
′− ∇ ∇

− 



   
  

 

If we substitute (36) and (32) in the motion equation (28), we can write:  

( )
1 1

0 1 2
2 2

( )
( ) ( ) ( )

( )

at t td b a a
u u u b b dt e u

dt a a
γγ γ

ρ µ λ µ
γ γ γ

′− −

−∞

 −
′− ∆ − + ∇ ∇ =− − ∇ ∇ − 

− 





     
  

 

(37) 

( )
2

2

2 ( )
2 1 2 2 1

2 2 2 2

1 ( )
( ) ( ) 1

2 ( )

at t tb b a a
dt e u u u

b a a
γ γ γ

γ γ γ

′− −

−∞

  −
′− ∆ + ∇ ∇ − ∇ ∇ −    −  


  

 
 

In the low frequency limit, at times greater than the relaxation times / aγ   and 2 2/ aγ , it is 

possible to derive an equation analogous to the Navier – Stokes motion equation with shear 

and volume viscosities: 

 0 ( ) ( ) ( ) ( )
3

d
u u u u u

dt

η
ρ µ λ µ η ζ− ∆ − + ∇ ∇ = ∆ + + ∇ ∇

          (38) 

where the effective elastic moduli λ and µ  and coefficients of shear and volume viscosities 
are expressed as  

2
2

22

b

a
µ µ= − ,

 

2
2 1 1

1 2
2 2 2

( )

2 ( )

b b a a
b b

a a a a

γ γ
λ λ

γ γ

 −
= + − − 

− 

  
   ,

 

2
2

2 2
2

1

2

b

a
η γ=

,
 

(39) 

1 1 2 2 1 2 2 1
1 2 22 2

2 2 2 22

( ) ( )

3 ( ) 2 ( )

b a a b b a a
b b b

a a a aa a

η γ γ γ γ
ζ γ γ

γ γ γ γ

   − −
+ = − − −   

− −   

    
   

 

It is important to note that the structure of the effective shear modulus µ  in (39) is 
determined by a difference, which can be equal to zero, in which case equation (38) 
becomes completely equivalent to the Navier – Stokes equation for a viscous fluid. Thus 
the condition 

 
2
2

22

b

a
µ =  (40) 

should be satisfied to consider a solid with shear relaxation like a viscous fluid. If 0µ > , 

then we have the case of elastic medium with a shear viscosity (the Voight’s model) or with 
relaxation in the more general case (37). Thus, in the framework of the uniform approach it 
is possible to describe viscous fluids and solids with visco-elastic properties.  
As a final remark of this section it is possible to say several words about physical sense of 
the introduced internal parameter. Since in the low frequency limit the majority of gases and 
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fluids, including the simplest of them, is described by the Navier-Stokes equation, then the 
only available value, which could relax in all cases, and hence could be considered as 
common scalar internal parameter, is the mean distance between molecules in gas or liquid. 
In the condensed and especially in the solid media the mutual space placement of atoms 
becomes to be essential, hence a space variation of their mutual positions, holding rotational 
invariance of a body as whole, has to be described by symmetrical tensor of the second 
order. Hence the corresponding internal parameter could be the same tensor. Thus, the 
discrete structure of medium on the kinetic level predetermines existence, at least, of 
mentioned internal parameters, responsible for relaxation. 

3.2 Shear viscosity as a consequence of the angular momentum relaxation for the 
hydrodynamical description of continuum mechanics 

As shown in the previous section, it is possible to derive the system of hydrodynamical 
equations on the GVP basis for viscous, compressible fluid in the form of Navier-Stokes 
equations. However for the account of terms responsible for viscosity it is required to 
introduce some tensor internal parameter ikξ  in agreement with Mandelshtam-Leontovich 
approach (Mandelshtam & Leontovich, 1937). Relaxation of this internal parameter provides 
appearance of viscous terms in the Navier-Stokes equation. It is worth mentioning that the 
developed approach allowed to generalize the Navier-Stokes equation with constant 
viscosity coefficient to more general case accounting for viscosity relaxation in analogy to 
the Maxwell’s model (Landau & Lifshitz, 1972). However the physical interpretation of the 
tensor internal parameter, which should be enough universal due to general character of the 
Navier-Stokes equation, requires more clear understanding. On the intuition level it is clear 
that corresponding internal parameter should be related with neighbor order in atoms and 
molecules placement and their relaxation. In the present section such physical interpretation 
is represented. 
As was mentioned in Introduction the system of hydrodynamical equations in the form of 
Navier-Stokes is usually derived on the basis of conservation laws of mass M , momentum 
P


 and energy E . The correctness of equations of the traditional hydrodynamics is 
confirmed by the large number of experiments where it is adequate. However the 
conservation law of angular momentum M


 is absent among the mentioned balance laws 

laying in the basis of traditional hydrodynamics. In this connection it is interesting to 
understand the role of conservation law of angular momentum M


 in hydrodynamical 

description. It is worth mentioning that equation for angular momentum appeared in 
hydrodynamics early (Sorokin, 1943; Shliomis, 1966) and arises and develops in the 
momentum elasticity theory. The Cosserat continuum is an example of such description 
(Kunin, 1975; Novatsky, 1975; Erofeev, 1998). However some internal microstructure of 
medium is required for application of such approach. 
In the hydrodynamical description as a partial case of continuum mechanics the definition 
of material point is introduced as sifficiently large ensemble of structural elements of 
medium (atoms and molecules) that on one hand one has to describe  properties of this 
ensemble in statistical way and on the other one has to  consider the size of material point as 
small in comparison with specific scales of the problem. A material point itself as closed 
ensemble of particles possesses the following integrals of motion: mass, momentum, energy 
and angular momentum.  

The basic independent variables, in terms of which the hydrodynamical description should 
be constructed, are the values which can be determined for separate material point in 

www.intechopen.com



 
Hydrodynamics – Advanced Topics 

 

46

accordance with its integrals of motion: mean mass displacement vector u


 (velocity of this 
displacement /v u t= ∂ ∂

 
 is determined by integrals of motion /v P M=


), rotation angle ϕ


 

(angular velocity of rotation ϕΩ =
   is determined by integrals of motion /M IΩ =


, where 

I  - inertia moment) and heat displacement Tu


, determining variation of temperature and 
related with integral of energy E .  
In accordance with the set of independent field variables we can represent the kinetic K  and  
the free F  energies as corresponding quadratic forms  

 2 22K u Iρ ϕ= +
    (41) 

 2 2 2 2 22 ( 2 )( ) [ ] 2 [ ] ( ) ( ) [ ]F u u uλ µ µ δϕ σ ϕ ε ϕ ς ϕ= + ∇ + ∇ + ∇ + + ∇ + ∇
      

 (42) 

Taking into account that the dissipation dealt only with field of micro rotations, and 
omitting for shortness dissipation of mean displacement field, described by heat 
conductivity, we can write the dissipation function in the following form   

 22D γϕ=
  (43) 

Equations of motion derived from GVP without temperature terms have the forms:  

 [ ]
[ ]

d K F F D

dt u uu u

∂ ∂ ∂ ∂
− ∇ − ∇ = −

∂∇ ∂ ∇∂ ∂
     (44a) 

 [ ]
[ ]

d K K F F D

dt ϕ ϕ ϕϕ ϕ

∂ ∂ ∂ ∂ ∂
+ − ∇ − ∇ = −

∂ ∂∇ ∂ ∇∂ ∂
      (45a) 

Without dissipation 0β =  the motion equations obtained with use of quadratic forms (41)-
(43) correspond to the ones for Cosserat continuum (Kunin, 1975; Novatsky, 1975; Erofeev, 
1998). Indeed for this case the equations (44) have forms: 

 ( 2 ) ( ) [ [ ]] [ ] 0
d

u u u
dt

ρ λ µ µ δ ϕ− + ∇ ∇ + ∇ ∇ − ∇ =
     (44b) 

 ( ) [ [ ]] [ ] 0
d

I u
dt

ϕ ε ϕ ς ϕ σϕ δ− ∇ ∇ + ∇ ∇ + + ∇ =
      (45b) 

The explicit form of these equations confirms that they are indeed the Cosserat continuum. 
If one sets formally 0δ = , then equations (44b) and (45b) are split and the equation (44b) 
reduces to ordinal equation of the elasticity theory and the equation (45b) represents the 
wave equation for angular momentum.  
When dissipation exists the system of equations (44)-(45) contains additional terms 
responsible for this dissipation  

 ( 2 ) ( ) [ [ ]] [ ] 0u u uρ λ µ µ δ ϕ− + ∇ ∇ + ∇ ∇ − ∇ =
     (44c) 

 ( ) [ [ ]] [ ]I uϕ ε ϕ ς ϕ σϕ δ γϕ− ∇ ∇ + ∇ ∇ + + ∇ = −
        (45c) 

For the case 0ε = , 0ς =  and 0I =  the second equation (45c) reduces to the pure relaxation 
form: 
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 [ ]u
σ δ

ϕ ϕ
γ γ

= − − ∇
    (46) 

Its solution can be represented in the form: 

 
( )

[ ]
t t t

dt e u

σ

γδ
ϕ

γ

′− −

−∞

′= − ∇
 

 (47a) 

Substitution (47a) in (44c) leads to the following result  

 
2 ( )

( 2 ) ( ) [ [ ]] [ [ ]]
t t t

u u u dt e u

σ

γδ
ρ λ µ µ

γ

′− −

−∞

′− + ∇ ∇ + ∇ ∇ = − ∇ ∇
     (48a) 

For the case of large times / 1tσ γ >>  the upper limit of integration gives the principal 
contribution and equation reduces to the form  

 
2 2

2
( 2 ) ( ) [ [ ]] [ ]u u u u

δ δ
ρ λ µ µ γ

σ σ

 
− + ∇ ∇ + − ∇ ∇ = ∇  

 

      (48b) 

By the reason that the medium at large times should behave like a fluid then the following 
condition has to be satisfied 

 
2

0
δ

µ
σ

− =  (49) 

Taking into account condition (49) let’s make more accurate estimation of the integral, 
computing it  by parts  

 
2 ( )

( 2 ) ( ) [ [ ]]
t t t

u u dt e u

σ

γδ
ρ λ µ

σ

′− −

−∞

′− + ∇ ∇ = − ∇ ∇
     (48c) 

The corresponding estimation for the large time limit /t γ σ>>  reduces to the equation  

 
2

2
( 2 ) ( ) [ [ ]]u u u

µ
ρ λ µ γ

δ
− + ∇ ∇ = ∇ ∇

     (48d) 

which coincides with the structure of Navier-Stokes equation in the presence of shear 
viscosity.  

Let’s consider the case with non zero moment of inertia 0I ≠ . For this case the second 
equation (45c) is also local in space and it can be resolved for the function ϕ


 in Fourier 

representation ( t ω→ ) 

 
2

[ ]u
I i

δ
ϕ

ω ωγ σ

−
= ∇

− + +

 
 (50) 

The zeros of the denominator  

 ( )2
1,2

1
4

2
i I

I
ω γ γ σ= − ± −  (51) 
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determine two modes of angular momentum relaxation. Under condition 2 /(4 )I γ σ<  both 
zeros are real and have the following asymptotics for small momentum of  inertia 0I → : 

 1i
σ

ω
γ

≈ −          2i
I

γ
ω ≈ −  (52) 

The first zero does not depend on momentum of inertia I  and the second root goes to 

infinity when 0I → . Under condition 2 /(4 )I γ σ=  the zeros coincide and have the value 

1 2i
σ

ω
γ

≈ − , and under the condition 2 /(4 )I γ σ>  the zeros are complex conjugated with 

negative real part, which decreases with increase of I . The last case corresponds to the 
resonant relaxation of angular momentum.  
In the time representation the solution of the equation (50) can be written in the form  

 
( )

2
2 ...

[ ] ( )
2...

t
t t

Idt e u sh t t
I

γ
δ

ϕ
′− −

−∞

   
′ ′= − ∇ −      


 

 (47b) 

here the notation 2... 4 Iγ σ= −  is used. For the case of resonant relaxation 2 /(4 )I γ σ>  
the corresponding expression has the form  

 
( )

2
...2

[ ] sin ( )
2...

t
t t

Idt e u t t
I

γ
δ

ϕ
′− −

−∞

    ′ ′= − ∇ −     


 
 (47c) 

Substitution of the explicit expressions (47b) or (47c) in the equation (44c) gives the 
generalisation of the Navier – Stokes equation for a solid medium with local relaxation of 
angular momentum. As was mentioned above under special condition (49) and in the 
limiting case (52) this equation reduces exactly to the form of Navier – Stokes equation. 
Thus, it is shown that relaxation of angular momentum of material points consisting a 

continuum can be considered as physical reason for appearance of terms with shear 

viscosity in Navier-Stokes equation. Without dissipation additional degree of freedom  dealt 

with angular momentum leads to the well known Cosserat continuum. 

4. Conclusion 

The first part of the chapter presents an original formulation of the generalized variational 

principle (GVP) for dissipative hydrodynamics (continuum mechanics) as a direct 

combination of Hamilton’s and Onsager’s variational principles. The GVP for dissipative 

continuum mechanics is formulated as Hamilton’s variational principle in terms of two 

independent field variables i.e. the mean mass and the heat displacement fields. It is 

important to mention that existence of two independent fields gives us opportunity to 

consider a closed mechanical system and hence to formulate variational principle. 

Dissipation plays only a role of energy transfer between the mean mass and the heat 

displacement fields. A system of equations for these fields is derived from the extreme 

condition for action with a Lagrangian density in the form of the difference between the 

kinetic and the free energies minus the time integral of the dissipation function. All 

mentioned potential functions are considered as a general positively determined quadratic 
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forms of time or space derivatives of the mean mass and the heat displacement fields. The 

generalized system of hydrodynamical equations is then evaluated on the basis of the GVP. 

At low frequencies this system corresponds to the traditional Navier – Stokes equation 

system. It allowed us to determine all coefficients of quadratic forms by direct comparison 

with the Navier – Stokes equation system. 

The second part of the chapter is devoted to  consistent introduction of viscous terms into 
the equation of fluid motion on the basis of the GVP. A tensor internal parameter is used for 
description of relaxation processes in vicinity of  quasi-equilibrium state by analogy with the 
Mandelshtam – Leontovich approach. The derived equation of motion describes  the 
viscosity relaxation phenomenon and generalizes the well known Navier – Stokes equation. 
At low frequencies the equation of fluid motion reduces exactly to the form of Navier – 
Stokes equation. Nevertheless there is still a question about physical interpretation of the 
used internal parameter. The answer on this question is presented in the last section of the 
chapter. 
It is shown that the internal parameter responsible for shear viscosity can be interpreted as a 
consequence of relaxation of angular momentum of material points constituting a 
mechanical continuum. Due to angular momentum balance law the rotational degree of 
freedom as independent variable appears additionally to the mean mass displacement field. 
For the dissipationless case this approach leads to the well-known Cosserat continuum. 
When dissipation prevails over momentum of inertion this approach describes local 
relaxation of angular momentum and corresponds to the sense of the internal parameter. It 
is important that such principal parameter of Cosserat continuum as the inertia moment of 
intrinsic microstructure can completely vanish from the description for dissipative 
continuum. The independent equation of motion for angular momentum in this case 
reduces to local relaxation and after its substitution into the momentum balance equation 
leads to the viscous terms in Navier – Stokes equation. Thus, it is shown that the nature of 
viscosity phenomenon can be interpreted as relaxation of angular momentum of material 
points on the kinetic level. 
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