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1. Introduction 

Two-dimensional (2D) nanosheets obtained via exfoliation of layered compounds have 

attracted intensive research in recent years, opening up new fields in the science and 

technology of 2D nanomaterials.1-6 These 2D nanosheets, which possess atomic or molecular 

thickness and infinite planar dimensions, are emerging as important new materials due to 

their unique properties. Research in such exotic 2D systems recently intensified as a result of 

emerging progress in graphene (carbon nanosheet)1, 2 and novel functionalities in oxide 

nanosheets.3-5 In particular, oxide nanosheets are exceptionally rich in both structural 

diversity and electronic properties, with potential application in areas ranging from catalysis 

to electronics. Now, by using the exfoliation approach, it is possible to investigate dozens of 

different 2D oxide nanosheets in search of new phenomena and applications. 

One of the important and attractive aspects of the exfoliated nanosheets is that various 

nanostructures can be fabricated using them as 2D building blocks.7-18 It is even possible to 

tailor superlattice-like assemblies, incorporating into the nanosheet galleries a wide range of 

materials such as organic molecules, polymers, and inorganic and metal nanoparticles. 

Sophisticated functionalities or nanodevices may be designed through the selection of 

nanosheets and combining materials, and precise control over their arrangement at the 

molecular scale.  

In this chapter, we review the current research on oxide nanosheets. Our particular focus is 

placed on recent progress that has been made in the synthesis and properties of oxide 

nanosheets, highlighting emerging functionalities in electronic applications. 

2. Synthesis of oxide nanosheets 

Various nanosheets based on transition-metal oxides have been synthesized by 
delaminating the precursor crystals of layered oxide into their elemental layers (Table 1).  
Chemical exfoliation is the most facile route for making isolation of single layers (oxide 
nanosheets) separately from thicker layered compounds (Fig. 1). These procedures have 
attracted much attention as an efficient method for preparing single layers with lateral sizes 
of up to several micrometers. Pioneering works in this line appeared in the 1990s by Sasaki 
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Ti oxide Ti0.91O2, Ti0.87O2, Ti0.8Co0.2O2, Ti0.6Fe0.4O2, Ti(5.2–2x) 

/6Mnx/2O2 (0 ≤ x ≤ 0.4) Ti0.8-x/4Fex/2Co0.2-x/4O2 (0 ≤ x ≤ 0.8)
Semiconducting, 
Photocatalytic, 
Dielectric, 
Ferromagnetic 

Mn oixde MnO2 Redoxable 

Nb/Ti and 
Ta oxide 

Nb6O17, Nb3O8, TiNbO5, Ti2NbO7, Ti5NbO14, TaO3 Photocatalytic, 
Dielectric 

Perovksite Gd1.4Eu0.6Ti3O10, Bi4Ti3O12, LaNb2O7, La0.9Eu0.05Nb2O7, 
SrTa2O7, La0.7Tb0.3Ta2O7, Eu0.56Ta2O7, Ca2Nb3O10, 
Sr2Nb3O10, Ca2Ta3O10, Sr2Ta3O10 

Photocatalytic, 
Dielectric, 
Photoluminescence 

Mo oxide MoO2 Conducting 

Ru oxide RuO2.1, RuO2 Redoxable, 
Conducting 

W oxide W2O7, Cs4W11O36 Redoxable 
Photochromic 

Table 1. Library of oxide nanosheets 

et al.,19, 20 reporting the successful delamination of layered titanates into single titanate 

nanosheets. Prompted by the findings related to functional oxide nanosheets, several 

strategies on functional oxides can be found in the literature.  

 

 

Fig. 1. Schematic illustration for the exfoliation of a layer compound into nanosheets. 

In the case of metal oxides, protonation usually resulted in electrostatic repulsions that 

facilitated exfoliation. By this procedure, single layers of Ti oxides,19-22 Mn oxides,23 Nb/Ta 

oxides,24-26 Mo oxides,27 Ru oxides,28 and W oxides,29 as well as sheets of several 

perovskites7, 9, 30-35 have been separated from bulk samples (Fig. 2).  

In these cases, a chemical intercalator that assists the separation of layers and hampers the 
reassembly of the bulk lamellar material is always required. Tetrabutylammonium (TBA) is 
the most commonly used intercalator, but also tetrametylammonium and ethylammonium 
have been used successfully for these purposes. Layered transition-metal oxides such as 

Cs0.7Ti1.8250.175O4 (: vacancy), K0.45MnO2, and KCa2Nb3O10 can be used as the starting 
material for the nanosheet.19, 20, 23, 31 A common feature of these host compounds is cation-
exchange properties involving interlayer alkali metal ions, which are a key to facilitating 
exfoliation. As the first step to delamination, these layered materials are acid-exchanged  

into protonated forms such as H0.7Ti1.8250.175O4�H2O, H0.13MnO2�0.7H2O, and 
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HCa2Nb3O10�1.5H2O, in which the interlayer alkali metal ions can be completely removed 
under suitable conditions while maintaining the layered structure. The resulting protonic 
oxides are subsequently delaminated through reaction with a solution containing TBA ions, 
producing turbid colloidal suspensions of Ti0.91O2, MnO2, and Ca2Nb3O10 nanosheets. Such 
an exfoliation process is quite general: exfoliation of the other layered host compounds 
proceeds in a similar fashion. 
 

 

Fig. 2. Strucutres of selected oxide nanosheets. (a) Ti0.91O2, (b) MnO2, (c) TiNbO5, (d) 
Ca2Nb3O10, (e) Cs4W11O36. 

These materials have prompted many efforts to elucidate their structural properties. The 
formation of unilamellar nanosheets was confirmed by direct observation with atomic force 
microscopy (AFM), x-ray diffraction (XRD), and transmission electron microscopy (TEM).36-

40 Fig. 3 depicts an AFM image for Ti0.87O2 nanosheets. The AFM data clearly reveals a sheet-
like morphology, which is inherent to the host layer in the parent compounds. The average 
thickness was 0.93 ± 0.1 nm. This value is nearly comparable to the crystallographic 
thickness of the host layer in the corresponding parent compound, supporting the formation 
of unilamellar nanosheets. On the other hand, the lateral size depends on the choice of 
starting materials. For nanosheets derived from polycrystalline powder samples, the lateral 
size ranges from submicrometers to several tens of micrometers. After tuning the exfoliation 
conditions by using flux-grown single crystals, the technique provides high-quality 
nanosheet crystallites up to ~100 µm in size, which is suitable for electronic applications.21 

 

 

Fig. 3. AFM image of Ti087O2 nanosheets dispersed on a Si substrate. 

www.intechopen.com



 
Nanofabrication 156 

3. Chemical nanomanipulation of oxide nanosheets 

Oxide nanosheets are an important and promising component for creating new materials. 
Oxide nanosheets have a high 2D anisotropy of the crystallites: thickness is ~1 nm wheras 
lateral size ranges from submicrometers to ~100 µm. In addition, these nanosheets are 
obtained as negatively charged crystallites that are dispersed in a colloidal suspension. 
These aspects make the nanosheets a suitable building block for designing nanostructured 
films. In practice, colloidal nanosheets can be organized into various nanostructures or 
combined with a range of foreign materials at the nanometer scale by applying wet-process 
synthetic techniques involving flocculation and layer-by-layer (LbL) self-assembly. Through 
these processes, oxide nanosheets can be combined with a wide range of polyions such as 
organic polyelectrolytes, metal complexes, clusters and even oppositely charged nanosheets, 
which is a major advantage of this approach. Furthermore, control of particulate shape as 
thin flakes and hollow spheres has been achieved through freeze- or spray-drying 
techniques. 
One of the highlights is the fabrication of nanocomposite films of organic 
polymer/nanosheet materials that exhibit useful properties. Several groups have 
demonstrated that the electrostatic LbL self-assembly via sequential adsorption and 
Langmuir-Blodgett (LB) procedure are effective for this purpose (Fig. 4).   
 

 

Fig. 4. Schematic illustration for chemical nanomanipulation of oxide nanosheets. (a) 
Electrostatic sequential deposition and (b) Langmuir-Blodgett deposition. 

Electrostatic sequential deposition is one of the most powerful methods of fabricating 
nanostructured multilayer films with precisely controlled composition, thickness and 
architecture on a nanometer scale [Fig. 4(a)]. This technique, often called “molecular beaker 
epitaxy”, has been first developed by Decher41 and applied to various charged materials. In 
this LbL process, a multilayer assembly can be built up by alternately dipping the substrate 
in a colloidal suspension of nanosheets and an aqueous solution of suitable polyelectroytes. 
Polycations such as poly (diallyldimethylammonium chloride) (PDDA) and poly 
(ethylenimine) are usually used as a counterpart of the oxide nanosheets. Fig. 5(a) depicts an 
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example of the multilayer film of (PDDA/Ti0.91O2)10 on a quartz glass substrate, showing 
UV-visible absorption spectra in the fabrication process. The absorption peak at 265 nm, 
attributable to the Ti0.91O2 nanosheets, was progressively enhanced as the number of 
deposition cycles increased, clearly indicating the repeated adsorption of nearly equal 
amounts of nanosheets. XRD data provides further evidence for the formation of multilayer 
films by the evolution of Bragg peaks and their progressive enhancement. Other 
characterizations by ellipsometry, FT-IR and AFM all support the growth of multilayer 
nanocomposite films. Multilayer films of other nanosheets were fabricated by similar 
procedures.  
 

 

Fig. 5. UV-visible absorption spectra in the multilayer buildup processes for 
(Ti0.91O2/PDDA)10 (a) and (PDDA/Ti0.91O2/PDDA/MnO2)10 (b). The insets indicate the 
designed stacked structures of the nanosheets. 

Such LbL assembly of various nanosheets also allows us to tailor superlattices or 
heterostructures by tuning the number of nanosheets and their stacking sequences. Fig. 5(b) 
shows UV-visible absorption spectra for the superlattice assembly composed of MnO2 and 
Ti0.91O2 nanosheets. The observed spectral changes clearly indicate that the films grew as 
designed. The superlattice approach makes it possible to design complex functions that 
cannot be achieved using a single material. 
LB deposition has been proved much simple and effective as another approach for 
organizing 2D nanosheets [Fig. 4(b)].42-45 LB film deposition, the formation of a floating 
monolayer on water surface in a Langmuir trough followed by an appropriate level of 
compression, is preferable for achieving dense packing or neat tiling. Through vertical-
dipping/lifting, the monolayer is deposited onto a flat substrate in LbL fashion. Pioneering 
work42 has demonstrated that exfoliated nanosheets could float by adhering to amphiphilic 
ammonium cations at the air/water interface through electrostatic interaction, and thus the 
ordinary LB procedure is applicable for fabricating nanosheet films. Although LB technique 
has been used for decades, its application for nanoparticles and nanorods is often frustrated 
by defects ranging from pinholes to larger reorganization of the layers. In the case of 
nanosheets, the LB technique provides nearly perfect mono- and multilayer films with 
atomically flat surfaces. The LB-based LbL approach with the use of an atomically flat 
substrate is effective for fabricating atomically uniform and highly dense nanofilms of oxide 
nanosheets. Fig. 6 shows a cross-sectional high-resolution TEM image of a 5-layer (7.5 nm 
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thick) Ca2Nb3O10 film on a SrRuO3 substrate.46 The image clearly reveals a stacking structure 
corresponding to the LbL assembly of nanosheets. Such LB-deposited nanofilms are very 
suitable for a number of applications in electronic devices. 
 

 

Fig. 6. Cross-sectional high-resolution TEM image of a 5-layer (7.5 nm thick) Ca2Nb3O10 film 
on a SrRuO3 substrate. Note that the film/substrate interface is atomically flat without an 
interfacial layer between Ca2Nb3O10 and SrRuO3 substrate. The nanofilms of this quality 
show an excellent dielectric property as will be discussed in section 4.1. 

A clear benefit of these LbL approaches is the engineering of the clean interface, which 

appears to be a key step in the design of film properties. Currently, physical depositions 

such as vapor deposition and laser ablation are the main methods of fabricating oxide films. 

These techniques, however, usually require a complex and difficult deposition process 

involving high-temperature postannealing (> 600°C), which can cause degradation in the 

film-substrate interface arising from both nonstoichiometry and thermal stress. In that 

scence, the solution-based bottom-up fabrication using oxide nanosheets provides new 

opportunities for room-temperature fabrication of oxide nanoelectronics, while eliminating 

integration problems encountered in current film-growth techniques. 

4. Electronic applications 

The development of a wide range of nanosheets with various properties is very important in 

the design of nanodevices with sophisticated functionality. Currently, extensive effort is 

being made to develop oxide nanosheets with new physical and chemical properties. The 

range of applications of nanoassemblies could therefore be widened significantly. Here, we 

describe the current status of researches on oxide nanosheets, highlighting emerging 

functionalities in electronic applications. 

4.1 Electronic devices 

In nanosheets, 2D structures created by lateral confinement can potentially lead to not only 

the modification of electronic structures but also the modulation of electron-transport 

phenomena that arise from the quantum confinement effect. Research in such exotic 2D 

systems recently intensified as a result of emerging progress in graphene and its novel 
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functionalities.1, 2, 47 In graphene, a number of unique conducting phenomena have already 

been found, such as anomalous quantum Hall effect, bipolar supercurrent, etc.  

Despite the similar 2D structural nature, oxide nanosheets are quite different electronically 
(Table 1). Most oxide nanosheets synthesized to date are d0 transition metal oxides (with 
Ti4+, Nb5+, Ta5+, W6+), where the empty d orbitals of metal mix with the filled p orbitals of the 
ligands.48 Such d0 materials are not electronically interesting, but semiconducting or 
insulating materials. In current research on oxide nanosheets, experimental efforts have thus 
focused on their use as a semiconducting host or dielectric.  
Ti0.91O2 nanosheets possess semiconducting properties similar to those of bulk TiO2, such as 

rutile and anatase except for some modifications due to size quantization.49 Ti0.91O2 

nanosheets generate anodic photocurrent by band gap excitation under light irradiation 

with wavelengths shorter than 320 nm, corresponding to wider band gap energy of 3.8 eV.50 

In contrast, MnO2 nanosheets have a broad absorption peak centered at 372 nm, which 

results from d-d transitions in the MnO2 nanosheets.13 Various interesting and useful 

properties have also been developed by organizing or assembling these oxide nanosheets 

into composite materials or multilayer films. Ti0.91O2 nanosheets flocculated with lanthanide 

cations emitted intense photoluminescence at room temperature through effective energy 

transfer from the semiconducting nanosheet host.15, 51 Highly stable photoinduced charge 

separation was attained in a composite film of restacked Ti0.91O2 nanosheets and 

mesoporous silica or clay minerals, in which electron donors and acceptors are spatially 

separated at a distance of micrometers. 

Another enticing possibility is the use of oxide nanosheets in high-κ dielectrics, a key 

material for future semiconducting technology. For example, Ti0.87O2 and Ca2Nb3O10 

nanosheets act as high-κ nanoblocks, and their multilayer assemblies exhibit low leakage 

current density (<10-7 Acm-2) with a high dielectric constant of >100 even for thicknesses as 

low as 10 nm.43, 46, 52-55 Fig. 7 summarizes the εr values for oxide nanosheets and various 

high-κ oxides. In the ultrathin region (< 20 nm), the εr values of Ti0.87O2 and Ca2Nb3O10 

nanosheets are larger than the values reported for any other high-κ materials. It should be 

noted that the high εr values of Ti0.87O2 and Ca2Nb3O10 nanosheets persist even in the < 10 

nm region, which is in sharp contrast to a size-induced dielectric collapse in (Ba1-xSrx)TiO3.56, 

57 These results suggest that Ti0.87O2 and Ca2Nb3O10 are a very promising candidate for high-

κ applications such as high-density capacitors and gate dielectrics. 

Oxide nanosheets are reported to be an excellent material for electric batteries. In particular, 

owing to their unique 2D morphology, it is expected that laterally confined 2D nanosheet 

crystals can significantly enhance the host capabilities of active electrode materials. RuO2.1 

nanosheets showed high performance as electrochemical supercapacitors.28 Reassembled 

Ti0.91O2 or MnO2 nanosheets, either with or without carbon, are reported to have as large a 

capacity as Li-ion batteries.14, 58-60 Multilayer films of MnO2 nanosheets prepared on ITO 

substrate also exhibited electrochromic behavior associated with the electrochemical redox 

process between Mn3+ and Mn4+.61 This electrochromic efficiency is estimated to be 

64.2 cm2 C-1 at 385 nm, which is a relatively high value among manganese oxides. 

An alternative route to nanosheet-based electronics is to consider oxide nanosheet not as an 
active component for nanodevices but as a seed layer, in which 1-nm-thick monolayer films 
can be used for design and orientation control of crystal films.62-64 The idea is to exploit the 
advantage of oxide nanosheets having high thermal stability even in ultrathin form. Such a 
technique is expected to have great potential for advances in thin-film technology. 
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Fig. 7. The εr values for oxide nanosheets and various high-κ oxides. 

4.2 Spin-electronic devices 

Recent interest in room-temperature (RT) ferromagnetic semiconductors and low-
dimensional magnetic nanostructures (motivated by possible application in spin-electronic 
devices) has stimulated research in the synthesis and characterization of TiO2 nanosheet 
based materials. Titania nanosheets substituted with magnetic elements (Co, Fe, Mn) are 
ferromagnetic at room temperature.65 The magnetization of Ti0.8Co0.2O2 nanosheets is 
anisotropic due to the 2D nature, and a maximum magnetic moment of 1.4 μB/Co for H // 
film is obtained, which is greater than the spin moment of 1μB/Co theoretically expected for 
low-spin Co2+ as well as that in Co-doped anatase with semiconducting (0.3 μB/Co) and 
insulating (1.1 μB/Co) grounds.65, 66 Similar ferromagnetic properties have also been 
reported in a series of substituted and co-substituted titania nanosheets, including 

Ti0.8Co0.2O2, Ti0.6Fe0.4O2,67 Ti0.8-x/4Fex/2Co0.2-x/4O2 (0  x  0.8)68, and Ti(5.2-2x)/6Mnx/2O2 (0  x  
0.4)69, and Co1/3Al2/3(OH)2. Spin-glass behavior was recently observed in the dried 
aggregate of tetramethylammonium (TMA)/MnO2 nanosheets, in which the geometrical 
frustration was caused by the triangular arrangement of the mixed-valence Mn4+/Mn 3+ ions 
in the MnO2 layer.70 
Concerning applications, ferromagnetic nanosheets have become a pivotal architectural 
element in magneto-optical (MO) and magneto-electronic devices, because low-dimensional 
nanostructures make use of the advantage offered by spin-polarized electrons and realize 
the integration of ferromagnetic materials into nanoelectronics. Indeed, the 2D nature of the 
electronic state of ferromagnetic nanosheets leads to a gigantic MO response, superior to 
that of bulk systems (Fig. 8). Multilayer films of Ti0.8Co0.2O2 and Ti0.6Fe0.4O4 nanosheets 
exhibited a robust MO effect (~104 deg cm-1) near the absorption edge at 280 nm, the shortest 
operating wavelength attained so far.67 More interestingly, alternating stacking 

(Ti0.8Co0.2O2/Ti0.6Fe0.4O2)5 caused a strong enhancement in MO response (~3  105 deg cm-1) 
at 400–550 nm, which stems from the interlayer d–d transitions (Co2+–Fe3+) between adjacent 

nanosheets.67 A similar MO response (~2105 deg cm-1) at 400–750 nm was also observed in 
(Co/Fe)-cosubstituted titania nanosheets, Ti0.8-x/4Fex/2Co0.2-x/4O2 (x = 0.2, 0.4, 0.6).68 These 
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MO materials are also important from a practical viewpoint as a key component for optical 
isolators in optical communication and data storage devices. In particular, such a large MO 
response including the blue light region offers potential for short-wavelength MO 
applications. 
 

 

Fig. 8. (a) Magneto-optical spectra for multilayer assemblies of (Ti0.8Co0.2O2)10 and 
(Ti0.6Fe0.4O2)10. (b) Magneto-optical spectra for (Ti0.8Co0.2O2/Ti0.6Fe0.4O2)5 superlattice and 
(Ti0.75Fe0.1Co0.15O2)10. We used magnetic circular dichroism (MCD) spectroscopy for the 
characterization of nanosheets. The MCD spectra were measured at RT on the basis of the 
difference in the absorption of right and left circularly polarized light. 1° of MCD 
corresponds to a 7% difference of optical absorption.  

These ferromagnetic nanosheets are also a model experimental system for future spintronics 

studies, and their assembly has great potential for the rational design and construction of 

complex nanodevices, even combined with transparent electronics and molecular devices. 

Although we focus here only on MO devices, the assembled structure is naturally viewed as 

a tunnel junction, which could obviously be used in novel devices such as spin-tunneling 

switches, spin valves and optical interconnectors. 

5. Conclusion 

The current status of research on oxide nanosheets was reviewed. A variety of physical and 

chemical properties of oxide nanosheets have been developed to functionalize nanosheets 

for electronic and spin-electronic applications, and further studies will yield new 

information on their physics. 

2D nanosheets also teach us how to handle and process 2D nanomaterials and develop 

nanotechnology in general. Although we have focused here only on high- properties in 

oxide nanosheets, 2D nanosheets exist in a whole class of functional materials, including 

metals, semiconductors, ferromagnetic, redox-active, photoluminescence, photochromic etc. 

2D nanosheets with having regulated 2D would create the unconventional interactions of 

electrons as well as the confinements of electrons and ions inside the 2D nanospace or 

quantum well. Through new chemical design of 2D nanosheets, we can expect new or 

unprecedented functionalities in the 2D confined system. Furthermore, we can utilize 
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nanosheet-based LbL technology as a new tool to develop advanced fusion functions by 

promoting the cooperative interaction between organized components, which are difficult to 

attain with the current synthetic techniques and thin-film technologies.  

Oxide nanosheets provide an ideal model to study phenomena in 2D systems. Previously 
restricted to theoretical study, 2D nanomaterials with their exotic properties are now open 
to experimentation using the individual 2D system. Graphene has already been found to 
exhibit a number of unique phenomena such as anomalous quantum Hall effect, bipolar 
supercurrent, half-metallic, etc. Although current experimental and theoretical efforts 
mainly focus on graphene, similar properties may be available with oxide nanosheets. We 
hope that all aspects described here demonstrate the great potential of oxide nanosheets, 
introducing more exciting physics and wide-ranging applications. 
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