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1. Introduction 

A major challenge in drug development is to accurately estimate human adverse drug 

effects to allow the selection and advancement of drug candidates with the best safety 

profile for further development. Due to species differences, safety data obtained with the 

routine in vivo studies with nonhuman laboratory animals do not always correctly predict 

human outcome. Human liver-derived systems, especially human hepatocytes, represent 

physiologically-relevant experimental systems for the evaluation of human adverse drug 

effects. The assays developed with human-based in vitro experimental systems for the 

assessment of two major adverse drug effects: drug-drug interactions and drug toxicity can 

be used routinely during drug development to select and optimize drug candidates to 

enhance the probability of clinical success. 

2. Current challenges in drug development 

Efficacy and safety are two co-dependent requirements for successful drug development – 
clinical failure will result if the drug candidate possesses only one of these two properties. 
For the past 50 years, drug candidates are evaluated for pharmacological and safety 
properties using in vivo animal models. It is now known that this paradigm, namely, 
prediction of human drug properties with animals in vivo, is no longer valid. DiMassi et al 
(2003)1 has estimated that for R&D initiated in 2001 with approval 12 years later (based on 
the average time required for approval), the out-of-pocket cost for a single approved drug is 
estimated to be U. S. $ 970 million, equivalent to a capitalized cost of U. S. $ 1.9 billion. 
Frequent clinical trial failure, with lack of efficacy and the occurrence of unexpected adverse 
drug effects as major reasons, accounts for astronomical time and costs involved in the 
development of a successful drug. The most recent published estimation of the clinical 
approval success rate for investigational drugs is 16% 2. Furthermore, marketed drugs are 
frequently withdrawn or have their use limited due to adverse effects, with dire 
consequences to the welfare of the patients and the financial status of the drug 
manufacturers 3.  
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3. Overcoming species-species differences  

True advancement in the efficiency of drug development can only be made if one accepts 

that, due to species differences, data from nonhuman laboratory animals do not always 

predict human drug properties. As in vivo experimentation with humans in vivo during 

preclinical phases is neither practical nor ethical, surrogates for humans in vivo need to be 

applied. Experimental models with human tissues and human cells represent practical and 

relevant surrogates.  

A major breakthrough in the acceptance of the reliability of in vitro human-based system in 

the prediction of human drug properties is the advancement of human-based drug 

metabolism systems. Human liver fractions (e.g. human liver microsomes), human 

hepatocytes, and cDNA-derived human drug metabolizing enzymes have been found to 

provide useful information for the prediction of human metabolism in vivo. These systems 

are now used routinely for the evaluation of drug metabolism and drug-drug interaction 

potential of drug candidate in various phases of drug development 4, 5, with the approaches 

fully endorsed by U. S. FDA 6. It is interesting to note that the application of in vitro drug 

metabolism technologies using human-based experimental systems has been attributed to 

the removal of pharmacokinetics as a major reason for clinical trial failure.  

The success in the application of in vitro drug metabolism systems, in combination with 

data from relevant in vivo animal models, in the prediction of human metabolism suggest 

that the same approach will also be successful for safety evaluation 7, 8. Based on the premise 

that the inability to accurately predict human drug toxicity is due to species-species 

differences, i. e., there are human-specific drug properties that cannot be revealed by 

nonhuman animal studies, a safety evaluation strategy is proposed here for the preclinical 

evaluation of human drug toxicity: 

1. Application of human-based in vitro systems to provide human-specific toxicity data; 
2. Select a relevant animal species to develop in vivo parameters; 
3. Predict human in vivo drug toxicity via a combination of human-specific information 

obtained in vitro, and in vivo parameters obtained from nonhuman animals in vivo.  
Success of this In Vitro-In Vivo Strategy (IVIVS) requires the development of in vitro 

experimental systems with human-specific properties to cover the key adverse drug effects 

in humans, and a vigorous set of parameters defining the relevant nonhuman animal 

species.  

4. Human hepatocytes as a key in vitro experimental system for the 
evaluation of human-specific drug properties 

The liver is a key determinant of drug properties. It is a major organ for drug metabolism, 
and is often a target for drug toxicity 9,10. Hepatocytes or liver parenchymal cells are the cells 
in the liver responsible for drug metabolism and are the target cells for hepatotoxic drugs. 
Isolated hepatocytes therefore represent the most physiologically-relevant experimental 
system for the evaluation of hepatic drug metabolism and hepatotoxicity 11-13 for the 
following reasons:  
1. Human xenobiotic metabolism: Fresh isolates or cryopreserved fresh isolates of human 

hepatocytes are known to contain most, if not all, of the in vivo hepatic xenobiotic 
metabolism capacity 12.  
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2. Human target cells: The hepatocytes are the cells in the human liver that are damaged 
by hepatotoxicants, leading ultimately to liver failure 14,15. 

3. Endpoints: Myriad of toxicological endpoints allowing measurements of necrosis, 
apoptosis, nuclear receptor interactions, P450 functions, transporter functions etc. have 
been developed in hepatocytes for the evaluation of adverse drug properties15,16. 

In the past, the use of human hepatocytes has been severely limited by their availability. 
This limitation has been overcome in the past decade due to advances in the procurement of 
human livers for research, and the commercial availability of isolated human hepatocytes. 
The application of human hepatocytes in drug metabolism studies is  greatly aided by the 
successful cryopreservation of human hepatocytes to retain drug metabolism activities 12, 13, 

17. Recently, the usefulness of cryopreserved human hepatocytes is further extended through 
the development of technologies to cryopreserve human hepatocytes to retain their ability to 
be cultured as attached cultures (plateable cryopreserved hepatocytes) which can be used 
for longer term studies such as enzyme induction studies 12. 
Cryopreserved human hepatocytes have several advantages over the use of freshly isolated 
cells: 
1. Experimentation can be readily scheduled; 
2. There are little or no deleterious effects of cryopreservation on key hepatocyte 

properties; 
3. Repeat of experimentation can be performed at different times or by different 

laboratories with cells from the same donor; 
4. The hepatocytes can be pre-characterized for properties relevant to a specific study 

before they are used for experimentation; 
5. Hepatocytes from multiple donor can be used in the same study. 

5. Critical assays for the evaluation of adverse drug effects 

Two adverse drug effects are responsible for clinical failures and drug withdrawal: drug-
drug interactions and drug toxicity. Below are the critical assays for these adverse drug 
effects. In this chapter, the overall scientific concepts behind these assays and the general 
approaches used in the assays are described. 

6. Critical assays for drug-drug interactions 

Metabolic drug-drug interaction results from the alteration of the metabolic clearance of one 

drug by a co-administered drug. There are two major pathways of metabolic drug-drug 

interactions: 

Inhibitory drug-drug interaction: When one drug inhibits the drug metabolism enzyme 
responsible for the metabolism of a co-administered drug, the result is a decreased 
metabolic clearance of the affected drug, resulting in a higher than desired systemic burden. 
For drugs with a narrow therapeutic index, this may lead to serious toxicological concerns. 
Most fatal drug-drug interactions are due to inhibitory drug-drug interactions. 
Inductive drug-drug interactions: Drug-drug interactions can also be a result of the 

acceleration of the metabolism of a drug by a co-administered drug. Acceleration of 

metabolism is usually due to the induction of the gene expression, leading to higher rates of 

protein synthesis and therefore higher cellular content of the induced drug-metabolizing 

enzyme and a higher rate of metabolism of the substrates of the induced enzyme. Inductive 
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drug-drug interactions can lead to a higher metabolic clearance of the affected drug, leading 

to a decrease in plasma concentration and loss of efficacy. Inductive drug-drug interactions 

can also lead to a higher systemic burden of metabolites, which, if toxic, may lead to safety 

concerns. 

Due to the realization that it is physically impossible to evaluate empirically the possible 
interaction between one drug and all marketed drugs, and that most drug-metabolizing 
enzyme pathways are well-defined, a mechanism-based approach is used for the evaluation 
of drug-drug interaction potential of a new drug or drug candidate 18-20, This mechanistic-
based approach is endorsed and required by the U. S. FDA (www.fda.Gov/cber 
/gdlns/interactstud.htm) for new drug applications. The approach consists of the following 
major studies: 
1. Metabolic phenotyping: The major enzymes involved in the biotransformation of the 

drug candidate are identified. The major emphasis in the past has been on phase 1 

oxidation pathways and on P450 isoforms. Elucidation of enzyme pathways involved in 

the biotransformation of a drug candidate will allow the identification of potential 

drug-drug interactions with drugs that are known modifiers (inhibitors and inducers) 

of the pathways. 

a. Metabolite identification: Structural identification of the metabolites allow one to 

deduce the major pathways of metabolism. Identification of  

i. Experimental systems: Human liver homogenate 9000 x g supernatant (S9); 

human liver microsomes (HLM); hepatocytes 

ii. General incubation conditions:  

1. S9 or HLM: 0.25 to 1.0 mg protein/mL in 0.1 M phosphate buffer at pH 7.4 

containing NADPH or NADPH regenerating system (phase 1 oxidation); 

uridine 5'-diphospho-glucuronic acid (UDPGA; cofactor for glucuronidation) 

and 3'-phosphoadenosine 5'- phosphosulfate (PAPS; cofactor for sulfation). 

2. Hepatocytes: 0.5 to 1.0 million cells/mL in Isotonic buffer (e.g. Krebs-Hensleit 

Buffer) maintained at pH 7.2. 

3. Temperature: 37 deg. C 

4. Compound concentration: Generally 10 uM 

5. Time: Multiple time points up to 30 minutes (HLM); 2 hrs (hepatocytes in 

suspension); 24 hrs. (hepatocytes in monolayer culture) 

iii. Metabolite identification: HPLC-MS/MS is the most commonly used approach 

for the initial identification of the metabolites. NMR is used for definitive 

structural identification. 

b. Major pathway identification: Chemical inhibitors are used to identify of the major 

oxidative pathways involved in the formation of the metabolites. Inhibition of 

metabolism of the parent compound, as indicated by metabolic stability or 

decreased formation of metabolites, would suggest that the participation of the 

pathway in the metabolism of the compound. Examples of inhibitors for the major 

pathways are as follows: 

i. P450 inhibition: 1-aminobenzotriazole (S9; HLM; hepatocytes) 

ii. MAO inhibitors: pargyline (S9) 

iii. FMO inhibitiors: 45 deg. C inactivation (S9; HLM). 

c. P450 isoform identification: 
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i. Experimental system: HLM or cDNA-P450 isoforms 

ii. Incubation with HLM in the presence of isoform-selective inhibitors or 

individual cDNA-P450 isoforms to determine pathway responsible for 

metabolism. Inhibition of metabolism by an inhibitor of a specific isoform 

(Table 1) with corroborative data using the identified cDNA-P450 isoform 

would allow the identification of the isoform for the metabolism of the 

compound in question. 

d. Evaluation of inhibitory potential for drug-metabolizing enzymes: The drug 
candidate will be evaluated for its ability to inhibit known drug metabolizing 
enzymes, with emphasis on the P450 isoforms. The incubation conditions are 
similar to that described above for metabolite identification, using substrates that 
are selective for the pathways in question (Table 1). 

e. Evaluation of induction potential for drug metabolizing enzymes: The drug 
candidate will be evaluated for its ability to induce known drug metabolizing 
enzymes. The inducible P450 isoforms: CYP1A, 2B and 3A are the ones required by 
U. S. FDA.  Human hepatocytes are considered the “gold standard” for induction 
studies, with cryopreserved hepatocytes that can be cultured after thawing and 
have been characterized to be responsive to prototypical inducers as the preferred 
system. As of this writing, virtually all known inducers of P450 isoforms in vivo are 
inducers in human hepatocytes in vitro (Table 1) 12. Experimental evaluation of 
enzyme induction involves the treatment of human hepatocytes for several days 
with the test article followed by evaluation of enzyme activities using P450 
isoform-specific substrates 20.  

The general experimental conditions are as follows: 
i. Experimental system: Primary cultured human hepatocytes 
ii. Culturing condition: Matrigel-collagen sandwich (requirement: >80% 

confluent cultures). 
iii. Treatment regiment: Culturing of hepatocytes for 2 days followed by 3 days of 

treatment 
iv. Endpoints: Quantification of CYP1A2, 2B6 and 3A4 gene expression by RT-

PCR as well as activities using isoform-specific substrates (Table 1). 

7. Higher throughput human hepatocyte-based drug-drug interaction studies 

Of the multiple P450 isoforms, CYP3A4 is the most abundant of the isoforms in the human 

liver. CYP3A4 has been found to be responsible for the metabolism of a large variety of 

exogenous and endogenous substrates 21, 22. In drug development, there is a need to evaluate 

the inhibitory and inductive potential of drug candidates towards CYP3A4 to estimate their 

drug-drug interaction potential with the myriad drugs that are substrates of this important 

P450 isoform 23-25. In our laboratory, we have developed cost- and time-effective higher 

throughput screening assays for the evaluation of drug-drug interaction potential of drug 

candidates involving CYP3A4. The assays are as follows: 

1. 384-well CYP3A4 inhibition assay 26; 

2. 96-well time-dependent CYP3A4 inhibition assay 27; 

3. 96-well CYP3A4 induction assay 26. 

The throughput of the assays are increased via the use of the following technologies: 
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1. Cryopreserved human hepatocytes cultured in micro-well cell culture plates: The 

properties and advantages of cryopreserved human hepatocytes have been discussed 

earlier. The use of micr-owell (96 and 384 well plates) allows the ease of sample 

organization, decreased cost of cells and reagents, and allows the use of automation. 

2. Luciferin-IPA as CYP3A4 substrate: Luciferin-IPA is metabolized to luciferin 
specifically by CYP3A4. The use of this substrate allows CYP3A4 activity to be 
quantified using a plate-reader, thereby eliminating the need for the time-consuming 
and costly LC/MS assays that are used with conventional substrates. 

 

P450  
Isoforms 

Substrates  Inhibitors Inducers 

CYP1A2 7-ethoxyresorufin 
dealkylation;  
Phenacetin-O-deethylation 

Furafylline;  
a-naphthoflavone 

3-methylcholanthrene; 
omeprazole 

CYP2A6 Courmarin 7-
hydroxylation 

Tranylcypromine; 
methoxsalen 

Dexamethasone 

CYP2B6 Buproprion hydroxylation Ticlopidine; clopidogrel Phenobarbital; 
phenytoin 

CYP2C8 Taxol 6-hydroxylation Quercetin Rifampin 

CYP2C9 Tolbutamide methyl-
hydroxylation 

Sulphenazole Rifampin 

CYP2C19 S-mephenytoin 4’-
hydroxylation 

Omeprazole Rifampin 

CYP2D6 Dextromethorphan O-
demethylation 

Quinidine none 

CYP2E1 Chloroxazone 6-
hydroxylation 

Diethyldithiocarbamide none 

CYP3A4/5 Midazolam 1-
hydroxylation; testosterone 
6b-hydroxylation; 
luciferin-IPA dealkylation 

Ketoconazole; 
itraconazole; 
troleandomycin; 
verapamil 

Rifampin; 
phenobarbital; 
phenytoin; troglitazone 

Table 1. Model P450 isoform-selective substrates, inhibitors, and inducers. These 
compounds can be used for pathway identification (inhibitors); evaluation of isoform-
selective inhibition (substrates); and as positive controls for the evaluation of P450 induction 
(inducers). 

8. 384 well CYP3A inhibition assay with intact human hepatocytes 

Evaluation of P450 inhibition is traditionally performed with liver microsomes and 
recombinant CYP enzymes 28, 29. Intact hepatocytes represent an additional experimental 
system that may provide useful information to improve the accuracy of the prediction of in 
vivo effects. A chemical, for instance, may be metabolized by non-CYP pathways to a 
metabolite that is a potent P450 inhibitor and therefore would be inhibitory in hepatocytes 
but not in microsomes or recombinant CYP enzymes. Gemfibrozil, for instance, requires 
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glucuronidation for its CYP2C8 inhibitory effects and is found to be a potent CYP2C8 
inhibitor in hepatocytes but not in liver microsomes nor recombinant CYP2C830. 
Hepatocytes can also be used for the modeling of differential inhibitor distribution between 
plasma and intracellular compartments. Lu et al. reported the use of hepatocytes suspended 
in 100% human plasma to accurately predict CYP3A4 inhibitory effects of several CYP3A 
inhibitors in vivo 31.  The presence of active transporters in human hepatocytes, including 
cryopreserved hepatocytes, also suggests that an inhibitor may be actively accumulated 
inside the cells, leading to substantially higher concentration and a correspondingly higher 
inhibitory effect which would not be observed using cell free systems 32, 33. 
We have previously introduced the use of human hepatocytes in P450 inhibition studies 20, 

34, 35. In the HTS human hepatocyte CYP3A4 inhibition assay described here, 384-well plates 
were used to reduce the quantity of hepatocytes, reagents, as well as the chemical to be 
evaluated26. The use of LIPA as CYP3A4 substrate substantially enhances the efficiency of 
the assay, as its metabolism can be quantified based of luminescence using a plate reader 35, 
thereby eliminating the need for HPLC and mass spectrometry that are routinely required 
with conventional substrates such as testosterone and midazolam. The use of robotics 
allowed rapid and accurate delivery of relatively small volumes of reagents into the 384 well 
plates. The accuracy of the assay is demonstrated by the relatively low coefficient of 
variation (standard deviations <10% of mean values) of the results.  
A homogenous (addition assay) has been developed in our laboratory using cryopreserved 
human hepatocytes cultured in 384 well plates. An automated workstation is used for the 
performance of the assay. The workstation is programmed to perform serial dilutions of the 
model inhibitors and for the initiation of the assay. White opaque 384-well plates are used. 
The workstation is programmed to add into each of the wells of the 384-well plates 10 uL of 
hepatocytes (containing 10,000 cells) and 10 uL of Hepatocyte Metabolism Medium 
containing either solvent (0.1% v/v of acetonitrile) or P450 inhibitors at the designated 
concentrations (at 3X of the designated concentrations). The assay is initiated by the 
addition of 10 uL of 3 uM LIPA (final concentration 1 uM). The plates are returned to a cell 
culture incubator maintained at 37 deg. C, in a highly humidified atmosphere of 95% air and 
5% carbon dioxide. After an incubation period of 120 minutes, the plates are returned to the 
workstation for the addition of 10 uL of Luciferin Detection Reagent. Luminescence is 
quantified using a multichannel plate reader.  
Representative results of the application of this HTS assay to evaluate CYP3A4 inhibitory 
potential of drug substances, using model CYP3A4 inhibitors, are shown in Fig. 1.   

9. 96-well time-dependent inhibition assay for CYP3A4 in human hepatocytes 

In terms of P450 inhibition, time-dependent inhibition (TDI) or mechanism-based P450 
inhibition is of particular concern.  In TDI, the inactivated P450 needs to be replaced by 
newly synthesized proteins to return to its normal activity. After cessation of administration 
with the TDI inhibitor, the patient would continue to have decreased drug metabolizing 
capacity before the inactivated enzymes are fully replaced 23, 36.  
While TDI is generally studied using liver microsomes or recombinant CYP 37, 38, there are 
substantial efforts in the evaluation of this important mechanism of drug-drug interaction in 
human hepatocytes 39, 40. Human hepatocytes, because of the intact plasma membrane, 
complete and uninterrupted drug metabolism enzymes and cofactors, represent a desirable 
in vitro experimental system for the evaluation of human drug properties. 
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Traditionally, TDI studies with hepatocytes utilize suspension cultures 40. The use of 
hepatocytes in suspension culture is a common practice with cryopreserved cells as most 
preparations of cryopreserved hepatocytes would have compromised ability to be cultured 
as monolayer cultures. Due to our success in cryopreservation of human hepatocytes to 
retain their ability to be cultured, a convenient and quantitative approach for the evaluation 
of TDI using monolayer cultures of plateable cryopreserved human hepatocytes has been 
developed in our laboratory41.  
 

 
 
 
 
 

 

1-Aminobenzotriazole 
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Fig. 1. Examples of the application of the higher throughput hepatocyte assays in the 
evaluation of CYP3A4 inhibition (top panel), time-dependent CYP3A4 inhibition (middle 
panel), and CYP3A4 induction. For the CYP3A4 inhibition assay, dose-dependent inhibition 
was observed for the three model inhibitors, ketoconazole, verapamil, and fluoxetine (top 
panel). The model time-dependent inhibitor, 1-aminobenzotriazole, yielded time-dependent 
and dose-dependent inhibition (left figure, middle panel). A plot of the slop of the time-
dependent decrease in activity versus inhibitor concentration yielded the classical saturation 
curve (right figure, middle panel) which can be used to calculate the time-dependent 
inhibition enzyme kinetic constants kinact and KI. The model CYP3A4 inducers rifampin, 
carbamazepine, phenytoin and phenobarbital yielded dose dependent induction of CYP3A4 
activity (bottom panel). From Li35; Doshi and Li26; and Li and Doshi27. 

In this assay, the cryopreserved human hepatocytes are thawed from cryopreservation using 

Cryopreserved Hepatocytes Recovery Medium and plated at 50,000 cells per well in 96-well 

collagen coated plates in Cryopreserved Hepatocytes Plating Medium at a volume of 100 uL 

per well. The cells are cultured for 4 hours in a cell culture incubator maintained at 37 deg. C 

with a highly humidified atmosphere of 5% carbon dioxide and 95% air. The cells on the day 

of plating (4 hour cultures) are used for the evaluation of TDI. The plating medium is removed 

and the cells are washed 3 times with Hepatocyte Metabolism Medium (HMM), followed by 

the addition of 50 uL of HMM per well. At designated times 50 uL of treatment media 

consisting of HMM containing 2X concentrated solutions of the inhibitors or medium control 

is added. At designated periods after treatment media are removed by quickly inverting the 

96-well plates on absorbent paper. The cells are washed 5 times with 100 uL of HMM to 

remove the inhibitors. The cells are incubated at 37 deg. C with 100 uL per well of HMM for a 

60 min “washout” period to allow removal of intracellular inhibitors by diffusion to minimize 

competitive inhibition with CYP3A4 substrate. After the washout period, medium is replaced 

with that containing 3 uM of the CYP3A4-specific substrate LIPA. After an incubation period 

of 30 min, 50 uL of the incubated substrate solution from each well is removed and placed into 
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a white 96-well plate. After all the solutions are collected from the various time points, 50 uL of 

Luciferin Detection Reagent is added to each well containing incubated substrate solution 

followed by quantification of luminescence using a Wallac Victor-3 plate reader. Luminescence 

signals are converted to pmoles of luciferin based on a standard curve generated from 

luciferin.  Viability of the hepatocytes after treatment is determined after CYP3A4 activity 

quantification using cellular ATP as an endpoint using a commercially available ATP kit 

consisting of lysis buffer and ATP detection reagent.  

Results are expressed as % remaining activity, which is calculated as a ratio of the activity in 

the presence of inhibitors to that of the solvent control using the following equation:  

% Remaining Activity (%) = [Normalized Activity (Treatment)/Normalized Activity 
(Solvent Control)] x 100;  

whereas activity represents luciferin generated in each well quantified by luminescence 
normalized by relative activity based on ATP content using the following equations: 

Normalized Activity = CYP3A4 Activity/Relative Viability 

Relative Viability (%) = ATP Content (Treatment)/ATP Content (Solvent Control)  

Enzyme kinetic parameters for TDI are derived as follows: The observed rate of enzyme 

inactivation (kobs ) is determined as the initial slope of the linear regression line of a semi-

logarithmic plot of the natural logarithm of remaining activity versus preincubation time. 

kinact and KI values are determined based on the double reciprocal Lineweaver-Burk plot (1/ 

kobs versus 1/[I], whereas [I] represents inhibitor concentration), where kinact is estimated as 

the reciprocal of the Y-intercept and KI as the negative reciprocal of the x-intercept.  
Representative results of the application of this HTS assay to evaluate time-dependent 
CYP3A4 inhibitory potential of drug substances, using the model time-dependent CYP3A4 
inhibitor, 1-aminobenzotriazole, are shown in Fig. 1.   

10. 96-well CYP3A4 induction assay with human hepatocytes 

Enzyme induction is a major mechanism for drug-drug interactions. Induction of a drug 
metabolizing enzyme by one drug would lead to the enhanced metabolism of co-
administered drugs that are substrates of the induced enzyme.  
As freshly isolated hepatocytes possess endogenous activities which may be the result of 
inducers present in the donor’s systemic circulation, the isolated hepatocytes are cultured 
for 2 to 3 days to allow the P450 enzyme activities to return to a basal level. Testing for 
induction potential is that initiated by treatment of the cultured hepatocytes for 2 to 3 days 
to allow full expression of the induced enzyme. Induction is generally evaluated by 
measuring enzyme activity as activity represents the most relevant endpoint for drug-drug 
interaction. Both freshly isolated and plateable cryopreserved human hepatocytes can be 
used for the induction study. 
In our laboratory, we have developed a higher-throughput P450 induction assay using 96 
well plates26. The procedures are as follows: 
1. Day 0: Plate human hepatocytes (freshly isolated or plateable cryopreserved human 

hepatocytes) with 50 uL of cell suspension per well, at a cell density of 1 million 
cells/mL thereby delivering 50,000 cells per well.  
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2. Day 1: Change medium to cold (4 to 10 deg. C) medium containing 0.25 mg/mL of 
Matrigel®. 

3. Day 2: Change medium to treatment medium containing test articles at the desired 
concentrations. 

4. Day 3, 4, 5: Continue treatment. Medium change is not necessary unless the test article 
is known to be unstable under the culturing conditions. 

5. Day 6: Measure activity (in situ incubation with LIPA) or extraction of RNA for the 
evaluation of gene expression. 

Representative results of the application of this HTS assay to evaluate CYP3A4 induction 
potential of drug substances, using model CYP3A4 inducers, are shown in Fig. 1.   

11. In vitro evaluation of drug toxicity 

The current success in the application of human-based in vitro experimental models in the 

evaluation of drug metabolism and drug-drug interactions paths the way for a similar 

approach to evaluate drug toxicity, especially human-specific toxic events that cannot be 

observed in laboratory animals. In vitro toxicity assays are can be applied in various during 

phases of drug development: 

1. Early screening of intrinsic toxicity: Cell-based systems are used for rapid screening of 
drug candidates, especially structural analogs, to allow the selection of less toxic 
structures for further development. The screening assay can allow logical evaluation of 
structures responsible for toxicity (toxicophore) which, hopefully, can be separated 
from structures for pharmacological activity (pharmacophore).  Toxicity screening with 
in vitro systems require only limited amount of test articles, and is rapid and 
quantitative. Toxicity is most effective when one has an indication for in vivo toxicity 
(e.g. hepatotoxicity or nephrotoxicity) for a lead molecule, therefore allowing the 
selection of the most appropriate in vitro system for screening (e.g. hepatocytes for 
hepatotoxicity and renal proximal tubule cells for nephrotoxicity). 

2. Mechanistic evaluations: Mechanistic understanding is critical to drug development. It 

allows a better understanding of human health risks, defines potential risk factors, and 

evaluates the relationship between efficacy and adverse effects. Mechanistic studies 

may be performed after adverse effects are observed in nonhuman animals to aid the 

prediction of human toxicity as well as the development of approaches for a more 

acceptable replacement. The defined experimental conditions and the availability of 

reagents and approaches for multiple endpoints of in vitro experimental systems allow 

one to define the key pathways involved in a toxicology phenomenon.  

The preferred human in vitro systems for the evaluation of drug toxicity are primary cells 

derived from human organs, used within a period that the cells would retain differentiated 

functions, thereby serving as surrogates of the similar cells in vivo.  

Primary cell culture systems, including stem-cell derived differentiated cells representative 

of the key cell types in each organ, are currently available and the respective organ-specific 

toxicity: 

 Hepatocytes (hepatotoxicity) 
 Renal proximal tubule epithelial cells (nephrotoxicity) 
 Vascular endothelial cells (vascular toxicity) 
 Neuronal cells, glial cells and astrocytes (neurotoxicity) 
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 Cardiomyocytes (cardiotoxicity) 
 Bone marrow cells (bone marrow toxicity) 

12. Overcoming the major deficiencies of in vitro system 

An argument routinely raised against the application of in vitro systems in safety evaluation 
is that toxicity is a complex phenomenon and therefore cannot be adequately modeled by 
simple in vitro systems such as cell culture assays.   
The major deficiencies of in vitro experimental systems can be defined as follows: 
1. Lack of systemic effects. In vitro experimental systems in general consist of single cell 

types. Toxic effects are evaluated in the absence of influences from systemic effects that 
may be critical to drug toxicity. An example is the participation of the immune system 
in organ toxicity. One hypothesis for idiosyncratic hepatotoxicity, for instance, is the 
hapten-hypothesis which postulates that liver failure arises from the cytotoxicity of 
antibodies towards antigens developed between the idiosyncratic drug (or its 
metabolites) on the plasma membrane of the hepatocytes. 

2. Absence of chronic dosing.  It is generally believe that drug toxicity due to acute 
cytotoxic events can be studied effectively with in vitro systems. However, toxic effects 
due to chronic, low-dose treatments may require multiple events that may or may not be 
obtained with in vitro studies, with cells treated for a relatively short time period (e.g. 24-
hours). Long-term treatments (e.g. months to years) of cells in culture is theoretically 
possible but in practice near impossible. Further, it is extremely difficult to maintain 
primary cells, the preferred cell system, in a differentiated state for a long time period. 

For in vitro systems to be useful, one needs to develop experimental approaches to 
overcome these deficiencies. 

13. In vitro experimental model for multiple organ interactions: Integrated 
discrete multiple organ co-culture ( IdMOC) 

One major drawback of in vitro system is that each cell type is studied in isolation. In the 
human body, multiple organ interactions may be critical to drug toxicity. An example of 
multiple organ interactions is a drug which is firstly metabolized by one organ (e.g. liver) to 
form metabolites which may enter the general systemic circulation to cause toxicity in a 
distant organ (e.g. heart).  
The multiple organ interaction is not covered by the TACIT approach8 using a single cell 
type, as the initiating events may include effects of a toxicant on a nontarget cell. To 
overcome this deficiency, we have developed the IdMOC (Independent Discrete Multiple 
Organ Co-culture) system (42-44). The IdMOC allows the co-culturing of cells from different 
organs as physically separated cultures that are interconnected by an overlying medium, 
akin to the blood circulation connecting the multiple organs in the human body (Fig. 1). The 
IdMOC models the multiple organ interaction in the whole organism in vivo, allowing the 
evaluation of organ-specific effects a drug and its metabolites. The IdMOC represents an 
improved in vitro experimental system for routine screening of ADMET drug properties.  
The IdMOC involves the “wells-in-a-well” concept. The typical IdMOC plate consists of a 
chamber within which are several wells (Fig. 2). Cells of different origins (e.g. from different 
organs) are initially cultured, each in its specific medium, in the wells. When the cells are 
established, the wells are flooded with an overlying medium, thereby connecting all the 
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wells. The multiple cell types now can interact via the overlying medium, akin to the 
multiple organs in a human body interacting via the systemic circulation. 
The IdMOC system can be used for the following: 
1. Differential cytotoxicity: Evaluation of the toxicity of a substance on different cell types 

(e.g. cells from different organs) under virtually identical experimental conditions with 
multiple cell-type interactions. Aflatoxin B1, a know hepatotoxicant in humans in vivo, 
is shown to have selectively higher cytotoxicity in hepatocytes in the IdMOC co-culture 
of hepatocytes, renal proximal tubule cells, and small airway epithelial cells. 

2. Differential distribution: Evaluation of the differential accumulation/distribution of a 
substance among multiple cell types. This application is especially useful for the 
development of cytotoxic anticancer agent with selective affinity towards cancer cells. 

3. Multiple organ metabolism: Evaluate the ultimate metabolic fate of a substance upon 
metabolism by cells representing multiple organs with metabolic functions (e.g. liver, 
kidney, lung). This application allows the development of metabolite profiling of drugs 
which are subjected to both hepatic and extrahepatic metabolism. 

Evaluate of organ-specific toxicity is illustrated by the treatment of IdMOC with a known 
hepatotoxicant, aflatoxin B1, in IdMOC with three human primary cell types: hepatocytes, 
renal proximal tubule epithelial cells, and pulmonary (small airway) epithelial cells. Aflatoxin 
B1 was found to be significantly more cytotoxic towards human hepatocytes, presumably due 
to the higher P450 activities of the cells versus the other two cell types (Fig. 3), as it is known 
that aflatoxin requires P450 metabolism to toxic metabolites to exert its toxicity. 

14. Conclusion 

Accurate prediction of human adverse drug effects represents a major challenge for drug 
development. The high rate of clinical failure of drug candidates that have been carefully 
selected from preclinical studies illustrates clearly that the routine, “classical” approach of 
preclinical safety evaluation is inadequate. It is argued here that species-species differences 
in drug toxicity is a major reason – human-specific toxicity, by definition, cannot be 
predicted with nonhuman laboratory animals. It is proposed here that human in vivo drug 
toxicity can be predicted using a combination of human-based in vitro experimental systems 
and appropriate in vivo laboratory animals - the In Vitro-In Vivo Strategy (IVIVS). The 
success of IVIVS will depend on the selection of appropriate in vitro models. Human-
specific drug metabolism, appropriate target cell populations, and relevant endpoints are 
three key parameters for the selection of an appropriate in vitro model. Human hepatocytes 
and human liver fractions represent useful appropriate experimental models to evaluate 
liver specific events such as hepatic metabolism, drug-drug interactions, and hepatotoxicity. 
Higher throughput screening assays have been developed to allow early screening of 
human-specific adverse drug effects. IdMOC allows the co-culturing of multiple cell types 
modeling in vivo multiple organ interactions and thereby represent a more complete in vitro 
experimental system for the prediction of in vivo drug properties. 
It is to be noted that recent research findings have demonstrated that in addition to drug 
metabolizing enzyme activities, uptake and efflux transporters also play critical roles in the 
manifestation of adverse drug effects 10, 45. Human hepatocyte assays for the evaluation of 
uptake and efflux transporters have been established and are being applied towards drug 
development 46-50. These transporter assays, when applied in conjunction with the assays 
described in this chapter, should aid the selection of the most appropriate drug candidates 
for further drug development.  
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Fig. 2. The Integrated Discrete Multiple Organ Co-culture (IdMOC) experiment system is 
based on the concept that in the human body consists of multiple organs interacting via the 
systemic circulation (Top figure). A toxicant may be metabolized by one or more of the 
organs, and the resulting metabolites may interact with one or more organs via the systemic 
circulation. This concept is reduced to practice as an IdMOC plate (Lower Figure), with 
multiple wells within a chamber. Cells from individual organs are cultured physically 
separated in the wells, with the cells of the multiple organs interconnected via an overlying 
medium. From Li 43 
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Fig. 3. Application of the Integrated Discrete Multiple Organ Co-culture (IdMOC) 
experiment system in the evaluation of organ specific toxicity. IdMOC with co-cultures of 
human hepatocytes (solid bars), renal proximal tubule cells (shaded bars), and small airway 
epithelial cells (open bars) was used to evaluate the cytotoxicity of the known hepatotoxic 
agent, aflatoxin B1. While dose-dependent cytotoxicity was observed for all cell types, 
aflatoxin B1 was significantly more cytotoxic towards human hepatocytes. The results 
illustrate the application of IdMOC in the evaluation of organ-selective toxicity of drug 
substances. Other applications of IdMOC include organ-selective drug distribution and 
integrated multiple organ metabolism. 
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