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1. Introduction 

Alzheimer’s disease (AD) is a tenacious neurodegenerative dementia, characterized 
clinically by progressive loss of memory, cognitive dysfunction, and behavioral 
abnormalities, accompanied by the accumulation of intracellular neurofibrillary tangles 
(NFTs), neuropil threads, as well as extracellular amyloid-beta containing senile plaques, 
cerebrovascular amyloid-beta deposits, and selective nerve cell and synapse loss (Kelliher et 
al, 1999; Tanzi, 1999; Solertea et al, 2000). The last two decades have witnessed an expanding 
body of research that elucidated the central role of amyloid precursor protein (APP) 
processing and amyloid beta (Abeta) production in the risk, onset, and progression of AD 
(Findeis, 2007). The accumulation of insoluble aggregates of Abeta peptide 1–42 (Abeta42) 
derived from APP is believed to play an important role in AD (Hardy, 1997; Kelliher et al, 
1999). The generation of Abeta peptides requires two sequential proteolytical cleavages of 
APP by beta-secretase (BACE1) (Roßner et al, 2006) and gamma-secretase, composed of four 
integral membrane proteins, presenilins (PS1/2), APH-1 (anterior pharynx-defective 1), 
PEN-2 (presenilin enhancer 2) and nicastrin (NCT) (Kaether et al, 2006; Zhang & Koo, 2006). 
Previous evidence points to the involvement of the endoplasmic reticulum (ER) in AD 
pathogenesis owing to the fact that it is an important site for generating Abeta42 in neurons 
(Hartmann et al, 1998) and that presenilins are predominantly localized in this cellular 
compartment (Kovacs et al, 1996; Cook et al, 1996). Cleavage of the APP ectodomain by 
beta-secretase at the amino-terminus of Abeta is followed by cleavage of the beta-secretase-
generated carboxyl-terminal fragment (beta-CTF, C99) at the carboxyl terminus of Abeta  by 
gamma-secretase. A third activity, referred to as alpha-secretase, cleaves otherwise the APP 
ectodomain within the Abeta sequence, and subsequent cleavage of the alpha-secretase-
derived APP CTF (alpha-CTF, C83) by gamma-secretase results in production of P3 
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(Abeta17-40/42) (McLendon, et al., 2000; Roßner et al, 2006; Walsh, et al., 2007). Studies in 
molecular pathology have indicated that the accumulation of Abeta leads to Abeta fibril 
deposition or beta-sheet amyloid deposition, whereas the dye molecular Congo red can 
interfere with beta-amyloid fibril formation as well as bind to preformed fibrils and prevent 
in vitro cytotoxicity, which is supported by the results of Carter DB and Chou KC (1998).  
On the other hand, nicotine produces its actions on mammalian tissue via interactions with 
a family of ligand-gated ion channels that modulate the effects of the alkaloid on nervous, 
cardiovascular, immune, and neuromuscular system function (Wei, et al, 2005). The 
neuronal nicotinic acetylcholine receptors (nAChRs) are named on the basis of their subunit 
components and are thought to have a pentameric functional motif formed from a variety of 
subunits that comprise an ion channel similar to that of the neuromuscular junction nAChR. 
Two of the most abundant brain nAChRs are the heteromeric alpha4beta2 and homomeric 
alpha7 subtypes and the latter is an important target for Abeta-mediated neurotoxicity 
(Wang, et al, 2000). Abeta42 activation of alpha7 receptors expressed in the Xenopus laevis 
oocyte was prevented by two alpha7 ligands, the antagonist methyllycaconitine and a 
metabolite of GTS-21 (Wei, et al, 2005). The alpha7 receptor agonists enhance cognition and 
auditory-gating processes and thus are attractive drug candidates for the treatment of senile 
dementias and schizophrenia. Chou KC group has screened and found new drug candidates 
for treating Alzheimer’s disease using GTS-21 as a template to search the Traditional 
Chinese Medicines Database by DOCK module based on the structure of alpha7 nicotinic 
acetylcholine receptor (Wei, et al, 2005). In addition, a key hallmark for AD is the decreased 
level of acetylcholine, a neurotransmitter playing a decisive role in memory and learning 
(Whitehouse, et al, 1982). Acetylcholinesterase (AChE), which degrades acetylcholine to its 
inactive metabolite choline, has emerged as a promising target for the management of AD. 
We have characterized some novel poly-phenols from the stem bark of Hopea hainanensis, 
especially hopeahainol A as AchE inhibitors with an IC50 value of 4.33 μM (Ge, et al, 2008). 
We have even made progress with the interaction between AD-related proteins and other 
proteins focused attention upon as potential drug targets (Jiang, et al, 2006). Moreover, the 
identification of the cell type-specific expression and activation of NF-kB, Sp1 and YY1 
transcription factors may provide a basis to specifically interfere with BACE1 expression 
and, thereby, to lower the concentrations of Abeta peptides, which may prevent neuronal 
cell loss and cognitive decline in AD patients (Roßner et al, 2006). 
It is clear that the accumulation of Abeta initiates a series of downstream neurotoxic events. 
As a result, considerable attention is being focused on attempts to develop therapies for 
Alzheimer’s disease that are directed towards metabolic pathways that involve Abeta. One 
way is to reduce production of Abeta through the upstream processing enzymes (beta-
secretase and gamma-secretase). gamma-secretase is a multi-subunit protease complex, 
minimally consists of four individual proteins: presenilin, nicastrin, APH-1, and PEN-2. 
Consequently, several gamma-secretase inhibitors have recently been described, including 
transition state analogs that mimic the gamma-secretase cleavage site on the immediate 
Abeta precursor (C99) and presumably compete with it for binding to the gamma-secretase 
enzymatic site (Netzer, et al., 2003). Here express gamma-secretase’s substrate (such as 
EGFP-tagged C99 of APP) in the cultured cells (CHO) under control of tetracycline inducible 
system (Tet-off system) and then evaluate the efficiency of the inhibitors by ELISA (Enzyme-
Linked Immunosorbnent Assay) and Western blot. This paper focuses on construction of a 
drug screen model for AD’s gamma-secretase inhibitors and further finds some active 
compounds possessing gamma-secretase inhibition activity. 
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2. Materials and methods 

2.1 Materials 

The expression plasmids pcDNA3.1 (-), pEGFP, T vector (pBluescript II SK (+)), and 
tetracycline inducible expression system (pUHD30F and p15-1neo) were kindly provided by 
Prof Xue-Liang Zhu (Institute of Biochemistry and cell Biology, Chinese Academy of 
Sciences). The restriction endonucleases, SacII, XbaI, EcoRI, BamHI, HindIII and Cfr9I, and 
T4 DNA ligase were purchased from MBI Ferments (MD, USA). NdeI, SacI, XbaI, BspE I 
(AccIII) and ExTaq polymerase were obtained from TAKARA Bio Inc. Taq DNA polymerase 
and Pfu-Taq DNA polymerase were purchased from Shanghai Bioasia Biotechnology Co., 
Ltd (China). UNIC-10 trizol total RNA extraction kit, RT-PCR kit, DNA gel extraction kit, 
Uniq-10 DNA retraction kit, and plasmid mini preparation kit were from Shanghai Sangon 
Biotechnology Company (China). Methylenebisacrylamide, acrylamide, BSA, EDTA, and 
standard molecular weight protein marker were purchased from Nanjing Shengxing 
Biotechnology Co., Ltd (China). DNA marker was from MBI Company. The primers for PCR 
were synthesized by Shanghai Bioasia Biotechnology Co., Ltd (China). 
The Chinese hamster cell lines CHO (ATCC 9096) was kindly provided by Prof Xue-Liang 
Zhu (Institute of Biochemistry and cell Biology, Chinese Academy of Sciences). TransfastTM 
reagent (eukaryotic cell transfection kit) was obtained from Promega Company (Madison, 
WI., USA). DMEM (Dulbecco’s Modified Eagels’ Medium) was obtained from GIBCO. New 
Zealand fetal bovine serum (FBS), L-glutamine, Trypsin, sodium pyruvate, ampicillin 
(Amp), and aminoglycosides (i.e. neomycin and kanamycin) were purchased from Hyclone 
(Logan, UT, USA). G418 (geneticin) was obtained from Ameresco Inc. PC152 (anti-beta-
amyloid (15-30) rabbit pAb), recognizing three beta-amyloid peptides (Abeta40, Abeta42, 
and Abeta43), was obtained from Merck Co. Inc. Bovine insulin, bovine GSA (G-protein’s 
alpha), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and were 
obtained from Sigma Co. (St. Louis, MO, USA). BCA (bicinchoninic acid), ELISA TMB 
(3,3’,5,5’- tetramethylbenzidine), PBS buffer (PH7.4), Hepes, CaCl2, Na2HPO4, and NaH2PO4 
were purchased from Shanghai Sagon Company (China). 2-substituted-1,2,3,4-tetrahydro-
isoquinoline derivatives (compound I1-I6 and II1-II6) were designed and synthesized by 
our laboratory. 

2.2 Design and construction of expression plasmids 
2.2.1 Construction of expression plasmid pcDNA-C99 of human APP segment 

Human total RNA was extracted from brain using UNIC-10 trizol total RNA extraction kit. 
Then obtain cDNA by reverse transcription using RT-PCR kit. C99 includes gamma- 
secretase active sites as gamma- secretase substrate. Taking cDNA as a template, the region 
of the gene encoding C99 of human APP (Homo sapiens amyloid beta (A4) precursor 
protein, NM_000484) was amplified by PCR using the following oligonucleotides: 5’-GCT 
GGATCC gcagaattccgacatgactc-3’ as the 5’ forward primer and 5’-AGC AAGCTT 
ctagttctgcatctgctcaaag-3’ as the 3’ reverse primer (restriction sites for BamHI and HindIII are 
underlined, respectively) according to Goo and Park (2004). The PCR product was purified 
using agarose gel DNA extraction kit and confirmed by sequencing analysis. The 
sequencing analysis is consistent with the gene sequence (1986-2282) of human APP 
(NM_201414.1), which codes residue 661-759 segment of human APP (NM_201414.1), 
namely residue 672-770 of APP770 (Fig. 1a). The PCR product was restricted with BamHI 
and HindIII, identified by 10g/L agarose gel electrophoresis and cloned into expression 
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vector pcDNA3.1(-), named pcDNA-C99. The expression vector was transformed into 
Escherichia coli DHalpha5 fertilized on LB (30μg /ml Amp included) plate at 37°C 
overnight for amplification screening. Single clone was selected to be cultured in LB liquid 
overnight and then purified using plasmid mini preparation kit. The expression vector was 
verified by PCR, digestion and sequencing (Fig. 1b). 
 

 

 

Fig. 1. Amino acid sequence of APP770, in which the single-underlined amino acid sequence 
means APP695. a) The amino acid sequence double-underlined displays Abeta42, while that 
shaded (D672-N770) figures C-terminal fragment of APP of 99 amino acids (C99, includeing 
gamma- secretase active sites). b) Southern blot of recombinant APP fragment by Agarose 
gel electrophoresis. Note: 1. Empty pcDNA3.1(-); 2. Not digested pcDNA3.1(-)-C99; M. DNA 
Marker. C99 gene fragment is about 300bp. DNA marker are 100, 200, 500, 750, 1000 and 
2000bp 
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2.2.2 Construction of LGC (leading peptide -EGFP-C99) fusion gene 

Construction of LGC fusion gene was based on APP leading peptide, pEGFP-C1, and 

pcDNA-C99, which is able to express a EGFP-tagged C99 segment under control of the 

tetracycline-responsive system (Zhu, 1999). Schematic diagrams of all constructs are shown 

in Fig. 2A. To construct pLGC, the region coding for APP leading peptid, containing 

nucleotides 195 to 245 (NM_201414_1), was synthetized as the 5’ forward primer of LGC 

fusion; the region coding for EGFP was from pEGFP-C1 (Clontech); and the region coding 

for C99 was from pcDNA-C99. To link EGFP to C99, BspE I (AccIII or BspM II) restriction sit 

was introduced into 3’ reverse primer of EGFP and 5’ forward primer of C99, respectively. 

To render membrance localization of LGC fusion produced by pLGC, a sequence coding for 

APP’s signal peptide (nucleotides 195 to 245) was introduced in frame into the NheI site 

located before the EGFP-coding sequence and C99 cDNA to form pLGC-EGFP. The region 

of the gene encoding APP’s leading peptide-EGFP fusion segment (LG) was amplified by 

PCR with primers: 5’-GTGCTAGC atgctgcccggtttggcactgctcctgctggccgcctggacggctcgggcg 

ctggaggtacccact gatatggtgagcaagggcgaggag-3’ as the 5’ forward primer and 5’-GATCCGGA 

cttgtacagctcgtccatgc-3’ as the 3’ reverse primer (restriction sites for NheI and BspEI are 

capital letters underlined, respectively, while the signal peptide of APP is small letters 

underlined). The PCR fragment was cleaved with NheI and BspE I and then was ligated to 

replace the NheI-BspEI restriction fragment of pEGFP-C1 (nucleotides 592 to 1330). 

Similarly, the encoding region of C99 was amplified by PCR using the following 

oligonucleotides: 5’-GCTCCGGA gcagaattccgacatgactc-3’ as the 5’ forward primer and  

5’-AGCAAGCTT ctagttctgcatctgctcaaag-3’ as the 3’ reverse primer (restriction sites for 

BspEI and HindIII are underlined, respectively). The PCR fragment was digested with 

BspE I and HindIII and then was ligated to replace the BspEI-HindIII restriction fragment 

of pEGFP-C1 (nucleotides 1331 to 1352). The resulting plasmid was named pLGC-EGFP. 

The PCR fragment in pLGC-EGFP was sequenced. The sequence coding for the 17-residue 

leading peptide of APP was inserted as previously described. pLGC-EGFP was 

constructed from pEGFP-C1 to express LGC fusion with a signal peptide at N termini as 

in APP. 

Then, the region of the gene encoding LGC fusion segment was amplified by PCR using the 

following oligonucleotides: 5’-CCTCCGCGGatgctgcccggtttggcactg-3’ as the 5’ forward 

primer and 5’-TCCTCTAGActagttctgcatctgctcaaag-3’ as the 3’ reverse primer (restriction 

sites for SacII and XbaI are underlined, respectively). The PCR product was restricted with 

SacII and XbaI; the resultant ~ 1.1kb fragment was ligated to replace the SacII-XbaI fragment 

of pUHD30F, a vector derived from pUHD20 (Zhu et al, 1997), to create pLGC-30F. The PCR 

fragment in pLGC-EGFP was sequenced and identified by 10g/L agarose gel 

electrophoresis. 

The expression vectors (pLGC-EGFP and pLGC-30F) was transformed into Escherichia coli 

DHalpha5 fertilized on LB (30μg /ml Amp included) plate at 37°C overnight for 

amplification screening. Picked monoclonal to amplify, extracted plasmids, and tested 

positive clones by PCR, enzymatic detection, and sequencing of positive clones (Fig. 2).  

a. Construction of LGC fusion gene; 

b. Construction of expression plasmid pLGC-EGFP;  

c. Construction of tetracycline-inducible expression system (pLGC-30F); 

d. Southernblot of recombinant plasmid pLGC-EGFP (left) and pLGC-30F (right) by 

agarose gel electrophoresis. 1. DNA marker; DNA marker are 100, 250, 500, 750, 1000 
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and 2000bp. Left: 2-3. PCR analysis; 4-5. Digested pLGC-E by NheI and HindIII. Right: 

2-3. Digested pLGC-30F by SacII and XbaI; 4-5. PCR analysis. 

 

 

(a) 

 

  

                                 (b)                                                                                (c) 

  

(d) 

Fig. 2. Construction of LGC fusion gene and recombinant plasmids pLGC-EGFP and pLGC-
30F 
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2.3 Stable expression of LGC fusion in CHO cells  
2.3.1 Cell culture 

Chinese hamster ovary (CHO) cells were cultured in a humidified atmosphere of 5% CO2, 
95% air at 37 °C with DMEM (Dulbecco’s modified Eagle medium) growth media 
supplemented with 10% FBS, 3% glutamine and 20 μg/ml kanamycin (Basani et al., 2001; 
Basani et al., 2000; Pabón et al., 2006). After 7-10 days of culture, colonies with CHO 
morphology were passed to fresh feeder layers for subculture. Resulting colonies were 
dissociated for 10 min with 0.25% trypsin and passed to fresh feeder layers at 5-10-day 
intervals, depending on the proliferation rate. The CHO cell lines at a stage of rapid 
proliferation were chosen for the following transgenic experiment. 

2.3.2 Transfection and selection of stably transfected cells under control of Tet-off 
system 

Stable transfection of tTA into CHO cells was done via the calcium phosphate 
coprecipitation (CPP) method (Resnitzky et al, 1994; Zhu et al, 1997; Baron et al, 1997; Ryoo 
et al, 1997). For stable expression, CHO cells were transfected and selected with G418 as 
described previously (Yang et al, 2009). Briefly, CHO cells were incubated in 24-well plates 
at a density of 5.5×105 cells per well for 24 h before transfection. CHO cells were transfected 
with 20 µg of pLGC-30F in combination with 2 µg of p15-1neo (modified by P.L. Chen and 
W.-H. Lee by inserting a G418-resistant gene into p15-1, one of the two plasmids required 
for the tetracycline system) using the calcium phosphate method (Zhu et al, 1997). For 
transient expression, cells were assayed 48 h after transfection. Clones were selected in the 
presence of G418 (1 mg/ml), cells were extracted, and proteins were analyzed by sodium 
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and then by immunoblotting with 
anti-amyloid monoclonal antibody (Resnitzky et al, 1994). Positive clone was found to 
induce expression from both plasmids in the absence of Tet and was chosen to be used in 
the subsequent experiments.  
Cells were subsequently cultured in presence of G418 (1 mg/ml) for 3 weeks. We 
replenished the selective media every 3-4 days, and observed the percentage of surviving 
cells. Viable colonies were subcultured to test inducible expression of the EGFP-tagged C99 
by ELISA, fluorescence assay and western blot analysis. Cells stably transfected with the 
empty pUHD-30F vector were selected with G418 and used as a control (Appendix 1). 
Tetracycline (1 µg/ml) was always included in the culture medium until expression of 
exogenous LGC fusion was required (Gossen and Bujard, 1992; Resnitzky et al, 1994). G418-
resistant colonies were then cultured as a whole in DMEM containing 0.2 mg of G418/ml. 
To prevent unscheduled expression, all the transfected cells were maintained in DMEM 
containing tetracycline (1 mg/ml) (Zhu et al, 1997; Zhu, 1999). G418-resistant CHO colonies 
expressing LGC under control of tetracycline (tetracycline-inducible expression system, Tet-
off system), named Tet-CHO. 

2.3.3 ELISA using anti-beta-amyloid 

2.0×105 cells were plated in 96-well plates and incubated with primary rabbit anti-beta-

amyloid (15-30) antibody (PC152) (1:2000 dilution) in PBS buffer with 1%BSA followed by 
10 mins incubation of HRP-conjugated goat anti-rabbit IgG (1:20000 dilution) in PBS buffer 
with 1%BSA. Optical density (OD) determined by ultraviolet spectrophotometry was 
measured with an ELISA plate reader at test wavelength of 450nm (table 1). Absorbance 
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value (A450) was used for calculating cell survival rate as follows: survival rate=(A450 for 
experimental group/A450 for control group) ×100%. 
 

 

ELISA a         WBb F-EGFP c Clones 

1 2 3 4 5 6 7 8 9 Mean±S.D. Anti-Abeta Fluorescence 

A (control) 0.0528 0.0550 0.0537 0.0514 0.0515 0.0509 0.0532 0.0532 0.0519 0.0526±0.0013*   

B (control) 0.0560 0.0511 0.0519 0.0504 0.0508 0.0507 0.0536 0.0528 0.0551 0.0525±0.0020*   

C 0.1410 0.1543 0.1342 0.1428 0.1429 0.1397 0.1397 0.1399 0.1306 0.1406±0.0065* + + 

D 0.1821 0.1881 0.1712 0.1654 0.1566 0.1694 0.1564 0.1568 0.1695 0.1684±0.0113* + + 

E 0.5514 0.5017 0.4982 0.5439 0.4578 0.5834 0.4290 0.4423 0.5021 0.5011±0.0521* ++ + 

F 0.3410 0.3325 0.3869 0.3478 0.4421 0.4019 0.3908 0.4063 0.3566 0.3784±0.0363* + +  

Note: CHO cells were cultured in DMEM medium supplemented with 10% fetal bovine serum. cDNAs 
encoding human LGC fusion were cloned into pUHD-30F and were introduced into the CHO cells 
using TransfastTM according to the manufacturer’s instructions. Two days after transfection, the cells 
were transferred to selection medium containing 0.722 M (500 mg/ml) G418. After 3 weeks of selection, 
LGC expression was detected and assessed by ELISA, Western blot, and Fluorescence (and RT-PCR) 
using anti-beta-amyloid antibody, respectively. The cells were then sorted by fluorescence-activated cell 
sorting to obtain cell lines expressing high levels of LGC fusion. 

a The ELISA result of expressed proteins in CHO with rabbit anti-beta-amyloid as the first antibody by 
accounting fluorescence (A450) of the transfected CHO cells; * P < 0.001. 
b Using western blot detecting the fluorescence (A450) of the transfected CHO cells with rabbit anti-beta-
amyloid antibody. 
c Using microplate reader detecting the fluorescence (OD488) of the transfected CHO cells with EGFP. 

Table 1. The detected result of expressed proteins in CHO cells 

2.3.4 Western blot using anti-beta-amyloid 

The positive cells were detected by Western blotting using rabbit anti-beta-amyloid as the 

first antibody and HRP-labeling goat anti-rabbit IgG as the secondary antibody. Confluent 

cultures of CHO cells grown in 60-mm diameter dishes were rinsed with PBS. Following a 

brief rinse with PBS, cells were harvested by gentle scraping into 5 ml PBS and centrifuged 

at 200g. LGC fusion was extracted with 100μl cell lysis buffer for Western containing 

protease inhibitors cocktail (e.g. PMSF), but without reducing agents, followed by a 5 sec 

sonication to eliminate DNA viscosity. Protein concentration in extracts was determined 

using BCA reagent. Equal amounts of LGC were loaded and resolved on 18% SDS 

polyacrylamide gels. Proteins separated by SDS-PAGE were electrotransferred on PVFD 

(polyvinylidene fluoride) membranes and probed with anti-beta3 antibodies (1:2000 

dilution). Immunoreactivity was detected with a corresponding secondary anti-IgG 

antibody conjugated with HRP (1:10000 dilution) and with an enhanced chemiluminescent 

(ECL) substrate (Fig. 3).  

 

 

Fig. 3. Western blot results of LGC expressed in CHO cells using anti-amyloid antibody after 
ELISA results of the transfected CHO cells show positive with anti-amyloid as the first 
antibody 
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2.3.5 Fluorescence test 

The following detection of LGC fusion stably expressed in CHO cells was determined by 
fluorescent microscopy. The CHO cells expressing LGC were inoculated in 96-well plate. 
The fluorescence was read with Tecan Safir microplate reader (excitation at 488 nm 
wavelength; emission at 507 nm wavelength) at excitation and emission wavelengths of 488 
and 507 nm, respectively (table 2). Absorbance value (A488) was used for calculating cell 
survival rate as follows: survival rate=(A488 for experimental group/A488 for control group) 
×100%.  
 

 1 2 3 4 5 6 7 8 Mean±S.D.  

C 29286 30382 28562 30082 25511 32003 20826 30505 28395±3599* 
D 23461 31222 26847 32466 29306 29002 26725 29544 28572±2838* 
E 30597 32319 29415 33785 30984 30679 30350 27999 30766±1743* 
F 22019 32479 31875 33087 32355 29952 25670 29211 29581±3899* 
control 19996 23069 22992 18006 23385 23408 20639 22474 21746±1984* 

* P<0.001 vs group control with the same concentration. 

Table 2. The fluorescence values (OD488) of expressed proteins in CHO cells 

2.3.6 RT-PCR test 

Total RNA was isolated from CHO cells expressing LGC using UNIC-10 trizol total RNA 

extraction kit. PowerScript reverse transcriptase (Invitrogen) was used to synthesize the 

first-strand cDNA from an equal amount of the RNA sample. The newly synthesized cDNA 

templates were further amplified by Platinum Taq DNA polymerase (Invitrogen). cDNA 

sequence of LGC was obtained by the following PCR procedure with plasmid pLGC-30F as 

template: (1) 95°C for 5 min; (2) 30 cycles at 95°C for 30 sec, 57°C for 60 sec, 72°C for 75 sec; 

(3) 72°C for 10 min (Yang, et al, 2005; Yang, et al, 2006; Li, et al, 2006). The LGC gene-specific 

primers 5’-CCTCCGCGGatgctgcccggtttggcactg-3’ and 5’-TCCTCTAGActagttctgcatctgctcaaag-

3’ were used to amplify LGC gene fragment. The samples were restricted with SacII and 

XbaI and further analyzed on 10g/L agarose gel electrophoresis (Fig. 4). 

 

 

Fig. 4. RT-PCR products on 10g/L agarose gel electrophoresis. Right: 1. DNA marker; DNA 
marker are 100, 250, 500, 750, 1000 and 2000bp. Left: 2-5. RT-PCR products 
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2.4 Lithium chloride assay 

After CHO cells were transfected with pLGC-30F by CPP method, positive cell colonies 
were isolated by the selective medium containing geneticin (G418). G418-resistant colonies 
were limiting dilution in 96 well flat bottomed culture plates at a density of 1.25×104 cells 
per well in the absence of tetracycline to induce expression. Stocks of lithium chloride (LiCl) 
were prepared in sterile water, whereas compounds were prepared in dimethylsulphoxide. 
LiCl were added to cells in fresh medium at the final concentrations 0.25 and 0.5 mM, 
respectively, and media and cells were collected 48 h later. Abeta determinations from 
media were made by fluorescence assay and ELISA. The fluorescence intensity of CHO cells 
expressing LGC fusion with EGFP was detected using the microplate reader at an excitation 
and emission wavelength of 488 nm and 507 nm, respectively. Optical density (OD) 
determined by ultraviolet spectrophotometry was detected with an ELISA microplate reader 
at test wavelength of 450nm (table 3).  
 
mM The fluorescence values (OD488) by EGFP    Mean±S.D. 

0.00 41169 43903 42605 41551 44615 46157 45805 48343 42045 42422 43622 43840±2220* 

0.25 39132 38565 40417 39567 42697 39193 40993 40909 43352 39795 42658 40662±1626* 

0.50 27879 28683 30744 29829 31154 29915 30797 29832 29722 29626 29208 29763±951* 

 OD450 by ELISA 

0.00 0.2681 0.2384 0.2354 0.2337 0.2272 0.2348 0.231 0.244 0.2571 0.2375 0.2333 0.2400±0.00015* 

0.25 0.1731 0.1613 0.1427 0.151 0.1263 0.1122 0.1196 0.1092 0.1341 0.1315 0.1171 0.1344±0.00043* 

0.50 0.1309 0.1384 0.1092 0.112 0.0966 0.0761 0.0946 0.1213 0.1254 0.1315 0.1310 0.1152±0.00038* 

* P<0.001 vs group control with the same concentration. 

Table 3. Test of the CHO cell model expressing LGC fusion by LiCl 

 
OD570 

 C (M) 
1 2 3 4 Mean±S.D. 

Inhibiting rate 
(%) 

Pepstatin A 8.00×10－4 0.48 0.4959 0.4504 0.4876 0.4785±0.0198* >100 

 5.36×10－4 0.3777 0.3765 0.3312 0.3425 0.3570±0.0237* >100 

 2.64×10－4 0.2293 0.2315 0.2498 0.2477 0.2396±0.0107* >100 

 8.00×10－5 0.2011 0.2086 0.202 0.2086 0.2051±0.0041* 90.63 

 5.36×10－5 0.175 0.1711 0.1765 0.1651 0.1719±0.0051* 59.82 

 2.64×10－5 0.1457 0.1413 0.1469 0.1564 0.1476±0.0064* 37.18 

 8.00×10－6 0.1386 0.1357 0.1398 0.1317 0.1365±0.0036* 26.84 

Control 0 0.1119 0.1079 0.1007 0.1098 0.1076±0.0049*  

* P<0.001 vs group control with the same concentration. 

Table 4. Activity of Pepstatin A by MTT assay 

2.5 MTT assay 
2.5.1 Activity of pepstatin A  

Pepstatin A was aspartic proteinase inhibitor (PDB filecode 2RMP) (Yang & Quail, 1999) as 
well as beta-secretase inhibitor with IC50 value of 50 mM (Michelle, et al, 2001), which was 
reported to block solubilized gamma-secretase activity with IC50 value of 4.0 and 5.9 μM, 
respectively (Li et al, 2000; Zhang et al, 2001).  
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Tet-CHO cells were incubated in 96 well plates at a density of 2.0×104 cells per well 
overnight. Pepstatin A was prepared in dimethylsulphoxide (DMSO). Pepstatin A was 
added to cells in fresh medium in the presence of 1 μg/ml Tet (Gossen and Bujard, 1992; 
Liang et al, 2004) at the final concentrations 8.0×10-4, 5.36×10-4, 2.64×10-4, 8.0×10-5, 5.36×10-5, 
2.64×10-5, and 8.0×10-6 M, respectively (table 4). 5mg/ml MTT at 20 μl per well were added 
to the pepstatin-treated or -untreated cells 48 h later. After 4 h, DMSO was added to dissolve 
the formed formazan crystals. Absorbance of the final product was examined by measuring 
the optical density at 570 nm using the microplate reader. Absorbance value was used for 
calculating cell survival rate as follows: survival rate=(A570 for experimental group/A570 for 
control group) ×100%. 

2.5.2 Screening of some compounds 

Some compounds (I1-I6 and II1-II6) under test were prepared in DMSO. Similarly, Tet-CHO 
cells were incubated into 96-well plates and cultured in DMEM supplemented with 10% 
FBS. These compounds were added to Tet-CHO cells in fresh medium in the presence of 1 
μg/ml Tet at different final concentrations (table 5). After incubation at 37 °C in a 5% CO2 
atmosphere for 48 h, Abeta determinations from media were made by fluorescence assay. 
The fluorescence intensity of Tet-CHO cells expressing LGC fusion with EGFP was detected 
using the microplate reader at an excitation and emission wavelength of 488 nm and 507 
nm, respectively. 
On the other hand, incubated at 37 °C for 48 h later, MTT was added (final concentration 0.5 
µg/ml) to the compound-treated or -untreated cells for 4 h, then DMSO was added to 
dissolve the formed formazan crystals. Optical density (OD) was measured with the 
microplate reader at test wavelength of 570nm. Absorbance value was used for calculating 
cell survival rate as follows: survival rate=(A570 for experimental group/A570 for control 
group) ×100%. 

2.5.3 Cytotoxicity  

The cytotoxic effect of these compounds on normal CHO cells were tested by MTT assay 
and the IC50 values were calculated from the dose-response curves (Basani et al., 2001; Yang 
et al., 2009). CHO were incubated into 96-well plates and cultured in DMEM supplemented 
with 10% FBS. The compounds (Table 5) were added to CHO cells. After incubation at 37 °C 
for 48 h, MTT was added (final concentration 0.5 µg/ml) to the compound-treated or -
untreated cells for 4 h, then DMSO was added to dissolve the formed formazan crystals. 
Absorbance of the final product was examined by measuring the optical density at 570 nm. 

2.6 Statistics 

Data are expressed as mean±standard deviation (S.D.) throughout this paper. All 
experiments were performed independently at least thrice. Statistical analyses were 
performed with Student’s t-test where significant (P<0.01) differences were found between 
mean values. 

3. Results 

3.1 Plasmid pLGC 

The consecutive cleavage of APP by beta- and gamma-secretase constitutes the 
amyloidogenic pathway as it generates Abeta, which plays a critical role in the pathogenesis  
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a The inhibitory concentrations (IC50) of these compounds for anti-beta-amyloid aggregation were 
evaluated by MTT assay based on Tet-CHO cells expressing EGFP-tagged C99 (LGC fusion). P<0.01; n=3. 
b Using microplate reader detecting the fluorescence (OD488) of the transfected CHO cells with EGFP. 
c The inhibitory concentrations (IC50) of these compounds for cell toxicity were evaluated by MTT 
method using flow cytometry accounting absorbance (A570) of CHO cells and Hela cells. P<0.01; n=5. 

Table 5. The biological activities of some compounds 
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of Alzheimer’s disease. C99 is derived from cleavage of APP by the protease beta-secretase 
at the N-terminus of the Abeta-domain, which is further cleaved within its transmembrane 
domain by gamma-secretase, leading to the secretion of the Abeta peptide. beta-secretase 
might generate Abeta peptides by cleavage of APP between position Met671 and Asp672 of 
APP770 as well as gamma-secretase by cleavage of Val711-Ile712 or Ala713-Thr714 of 
APP770 (Fig. 1). To construct cell model of gamma-secretase inhibitors, we introduced C99 
sequence into the structure of gamma-secrease’s substrate (LGC fusion), composed of APP’s 
signal peptide, EGFP and C99. The resultant 1.1kb LGC fragment was ligated to replace the 
NheI-HindIII restriction fragment of pEGFP-C1 to form pLGC-EGFP. In addition, to utilize 
the tetracycline-responsive system to express EGFP-tagged C99, the resultant 1.1kb 
fragment was ligated to replace the SacII-XbaI fragment of pUHD30F to create pLGC-30F. 
The expression vectors were transformed into E. coli DHalpha5 and confirmed by 
sequencing analysis (Fig. 2). 

3.2 Stable expression of LGC in CHO cells 

Tetracycline-inducible expression system includes pUHD30F (vacancy vector for expressing 
target gene) and p15-1neo (expressing tTA). CHO cells were cultured in DMEM medium 
supplemented with 10% FBS. pLGC-30F mentioned above in combination with 2 µg of p15-
1neo was introduced into the CHO cells via CPP method (Zhu et al, 1997; Zhu, 1999). Cells 
were subsequently cultured in presence of G418 (1 mg/ml) for 3 weeks and then were 
detected and assessed by ELISA, fluorescence assay and western blot using anti-beta-
amyloid antibody (Table 1). Tetracycline (1 µg/ml) was always included in the culture 
medium until expression of exogenous LGC fusion was required. G418-resistant colonies, 
Tet-CHO, were then cultured as a whole in DMEM containing 0.2 mg/ml of G418 and 1 
mg/ml of tetracycline. 
The ELISA was used to validate LGC expression in transfected cell colonies. The A450 of the 

negative control proteins from 9 CHO cells was 0.0526 ± 0.0013 (mean ± S.D.). The total 

range of the A450 was 0.1406 to 0.5011 (Table 1). The t test reveals that four samples (C-F 

clones) are positive, whose A450 values were significantly higher than the negative serum 

sample (P < 0.001).  

The positive cells were chosen for the identification of LGC by Western blotting using 

mouse anti-beta-amyloid as the first antibody and HRP-congulated goat anti-rabbit IgG as 

the second antibody (Fig. 3). Comparison of the assay results between ELISA and western 

blot displayed that three samples (C, D, E and F clones) are positive; the protein expression 

amount of E is higher than that of C, D and F, which is supported by fluorescence assay 

(Table 2) and RT-PCR analyses (Fig. 4).  

LiCl were added to Tet-CHO cells in fresh medium at different concentrations. After 48 h, 

Abeta determinations from media were made by fluorescence assay (A488) and ELISA (A450) 

(Table 3). The A488 and A450 of the negative control were 43840 ± 2220 and 0.2400 ± 0.00015, 

respectively. The t test shows that LiCl at a concentration of 0.25 and 0.5 nM are positive, 

whose A450 values were significantly higher than the control sample (P < 0.001). 
The extent of inhibiting Abeta generation and assembly of pepstatin A was measured by 
MTT assay. Inhibiting rate of different concentrations of pepstatin A are >100%, 90.63%, 
58.82%, 37.18% and 26.84%, respectively, whose IC50 (half-maximal inhibitory concentration) 
values is approximately 35.83 μM (Table 4), which is consist with the research results 
(pepstatin A with IC50 value of 35 μM) of Campbell’s group (Campbell et al, 2002). This also 
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verified that Tet-CHO cell model can be used for detection of gamma-secretase inhibitor 
activity. 

3.3 Activity of some new compounds 

To determine their molecular basis, the ability of these compounds to inhibit EGFP-tagged 

C99 binding to gamma-secrease were measured based on the Tet-CHO cells. Fluorescence 

assay reveals that these compounds inhibited production of Abeta by interfering gamma-

secrease. Similarly, the IC50 values for inhibiting Abeta generation and assembly of 

compounds I1-I6 and II1-II6 were 0.819 to 81.920 mM (Table 5), while IC50 of pepstatin A is 

35.83 μM, which is consistent with Campbell’s results (pepstatin A with IC50 value of 35 μM) 

(Campbell et al, 2002).  

Cytotoxicity profiles of compounds I-1-I-6 and II-1-II-6 treated on Tet-CHO cells were 

compared with the standard CHO cell-based MTT assay. Their cytotoxicity assay on Tet-

CHO cells was more sensitive than that on the standard CHO cells, and nine compounds  

I-1, I-2, I-3, I-4, II-1, II-2, II-4, II-5 and II-6 with IC50 values of 5.39 to 9.91 mM (Table 5). 

Especially, compounds I-1, I-3, II-1, II-4, and II-6 show higher anti- Abeta activities with a 

sort order of I-1 > II-4 > II-6 > II-1 > I-3. Further evaluation is under investigation.  

Comparison of their anti-Abeta activities with their cytotoxicities displayed that nine 

compounds I-1, I-2, I-3, I-4, II-1, II-2, II-4, II-5 and II-6 are positive, especially compounds 

I1, I3, II1, II4, and II6 show higher anti-Abeta activities but lower than pepstatin A. 

4. Discussion 

A system for tetracycline-regulated inducible gene expression has been described which 

relies on constitutive expression of a tetracycline-controlled transactivator (tTA) fusion 

protein combining the tetracycline (Tet) repressor (tetR) and the transcriptional activation 

domain of virion protein 16 (VP16). In the Tet-Off expression system, tTA regulates 

expression of a target gene that is under transcriptional control of a tetracycline-responsive 

promoter element (TRE), which is made up of Tet operator (tetO) sequence concatemers 

fused to the human cytomegalovirus (hCMV) immediate-early promoter (Gossen, & Bujard, 

1992). The specificity of the Tet repressor-operator-effector interaction and the 

pharmacological characteristics of Tet’s make this autoregulatory system well suited for the 

control of gene activities both in cultured cells and in transgenic animals (Gossen, et al, 1995; 

Shockett, et al, 1995). For example, Zhu’s group has researched regulation of cell motilities 

by expression of nuclear distributions (Nud) (Yan et al, 2003; Liang et al, 2004; Liang et al, 

2007; Ma et al, 2009), mitosin (Zhu, 1999; Zhou et al, 2005; Yang et al, 2003), etc. (Shen et al, 

2008; Shan et al, 2009; Ding et al, 2009; Zhang et al, 2009), under the control of tetracycline-

inducible Tet-off system. 

Additionally, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has 
become a useful tool in molecular and cell biology, as its intrinsic fluorescence can be 
visualized in living cells (Elsliger, et al., 1999), especially the enhanced green fluorescent 
protein (EGFP) widely used as a molecular tag in cell biology (Pan, et al., 2009). GFP emits a 
bright green light when expressed in either eukaryotic or prokaryotic cells and illuminated 
by blue or UV light. GFP has generated intense interest as a marker for gene expression and 
localization of gene products (Ormoe, et al., 1996). The crystal structure of recombinant 
wild-type GFP reveals also that the protein is in the shape of a cylinder, comprising 11 
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strands of beta-sheet with an alpha-helix inside and short helical segments on the ends of 
the cylinder. The fluorophore (chromophore), resulting from the spontaneous cyclization 
and oxidation of the sequence -Ser65 (or Thr65)-Tyr66-Gly67-, are protected inside the 
cylinders and requires the native protein fold for both formation and fluorescence emission 
(Ormoe, et al., 1996; Yang, et al., 1996). Up to now, the numerous applications include: using 
GFP as a reporter for gene expression, as a marker to study cell lineage during development 
and as a tag to localize proteins in living cells (Gerdes & Kaether, 1996). Here we focus on 
the use of EGFP as a protein tag and upon those applications of this new tool in which EGFP 
promises to be truely superior to conventional methods. 
This experiment is to design a drug screening cell model for gamma-secretase inhibitors. So 
far, the specific components of gamma-secretase, composed of PS, APH-1, PEN-2 and 
nicastrin, and its mechanism have not yet established. In view of the wide distribution of 
gamma-secretase in a variety of cell lines and tissues, as well as testing of new beta-secretory 
inhibitors or gamma-secretase inhibitors using APP transgenic cell or APP transgenic 
animal, we utilized the tetracycline-responsive system to express EGFP-tagged C99 fusion 
as a gamma-secretase substrate in the cultured CHO cells and validated by ELISA and 
Western blot for the following evaluation of the efficiency of some compounds.  
To further contruct cell model for screening gamma-secrease inhibitors, we designed a novel 
fusion as gamma-secrease’s substrate based on the structural basis of the proteolytical 
cleavages of APP. C99 was further defined as the domain of APP for gamma-secrease’s 
substrate due to APP processing pathways and Abeta production, resulting from sequential 
cleavage of APP by proteases named beta- and gamma-secretases (Walsh, et al., 2007; 
Mouradian, 2007; Roßner et al, 2006). BACE1 (beta-secretase) might generate Abeta peptides 
by cleavage of APP between position Met671 and Asp672 of APP770 as well as gamma-
secretase by cleavage of Val711-Ile712 or Ala713-Thr714 of APP770 (Fig. 1). Elevated 
Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to Abeta40, has 
been identified as important in early events in the pathogenesis of AD (Mouradian, 2007). 
Here, C99 sequence was introduced into the structure of gamma-secrease’s substrate (LGC 
fusion). The region coding for EGFP was from pEGFP-C1, added to the structure of gamma-
secrease’s substrate. To link EGFP to C99, BspE I restriction sit was introduced into 3’ 
reverse primer of EGFP and 5’ forward primer of C99, respectively. To render membrance 
localization of LGC fusion, a sequence coding for APP’s signal peptide was introduced by 
the 5’ forward synthesized primers in frame into the NheI site located before the EGFP-
coding sequence and C99 cDNA. The resultant 1.1kb fragment was ligated to replace the 
NheI-HindIII restriction fragment of pEGFP-C1 (nucleotides 592 to 1352) to form pLGC-
EGFP (Fig. 2). pLGC-EGFP was constructed from pEGFP-C1 to express LGC fusion with a 
signal peptide at N termini as in APP. To utilize the tetracycline-responsive system (Zhu, 
1999) to express EGFP-tagged C99, the resultant 1.1kb fragment was ligated to replace the 
SacII-XbaI fragment of pUHD30F to create pLGC-30F. The expression vectors (pLGC-EGFP 
and pLGC-30F) were transformed into Escherichia coli DHalpha5 in order to verify the 
correct sequence through sequence analysis (Fig. 2). It is necessary to connect EGFP gene to 
the N-terminal of the gamma-secretase substrate C99 in order to facilitate screening. Only 
the pair of plasmids were stably transfected into CHO cells, target gene was able to 
expressed and the cells show fluorescent. EGFP fluoresces under certain wavelengths of 
ultraviolet excitation can be easily detected, but also its molecular weight is relatively small 
so that the basic structures of the proteins fused with EGFP do not been affected and the 
proteins can play their normal function. 
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In a previous study, our group has constructed the drug screening cell model applied to 
some compounds inhibiting FITC-fibrinogen binding to human alphaIIbbeta3 expressed in 
CHO cells (Yang et al, 2009). We utilized the tetracycline-responsive system (Zhu, 1999) to 
express EGFP-tagged C99 fusion as a gamma-secretase substrate. Expression levels were 
indeed reduced under control of either the cytomegalovirus promoter or the tetracycline-
responsive promoter. p15-1 neo included is essential for activation of the tetracycline-
responsive promoter in the pUHD30F vector. Moreover, the tetracycline inducible system 
(pUHD30F and p15-1 neo) contains switching mechanism, and close the expression of 
substrate (pUHD30F-C99) by adding Tet (or Dox) in Tet-off system to avoid generation of 
Abeta and its cell toxicity. The dual-plasmid system of the Tet-off system transfected CHO 
cells to build a cell model for anti-Abeta drug screen. G418-resistant cell lines were screened 
for conditional expression of LGC and the stable expression cell lines (Tet-CHO) was 
obtained. Cell lines transfected with just the expression vector were isolated as controls. 
Clones displaying highly regulated expression were obtained for LGC. It should be noted, 
however, that all clones exhibited a low basal level of LGC expression in the presence of 
tetracycline, which was detectable in most of the experiments performed. Then, added 
positive drugs (LiCl and pepstatin A) to validate whether this cell model has the effect of 
function for detection of gamma-secretase inhibitors. Finally, the cell model was capable of 
screening other compounds for discovery of new gamma-secretase inhibitors. 
Glycogen synthase kinase 3 (GSK3) is a constitutively active, proline-directed 
serine/threonine kinase that plays a part in a number of physiological processes ranging 
from glycogen metabolism to gene transcription. GSK3 also plays a pivotal and central role 
in the pathogenesis of both sporadic and familial forms of AD. The over-activity of GSK3 
accounts for memory impairment, tau hyper-phosphorylation, increased beta-amyloid 
production and local plaque-associated microglial-mediated inflammatory responses; all of 
which are hallmark characteristics of AD. The inhibitors of GSK3 would provide a novel 
avenue for therapeutic intervention in this devastating disorder (Hooper, et al., 2008). 
Inhibition of GSK3 by LiCl has been reported to reduce Abeta (Phiel, et al., 2003; Sun, et al., 
2002), perhaps through presenilin-dependent gamma-secretase inhibition (Netzer, et al., 
2003). Abeta peptides are derived from APP by sequential proteolysis, catalysed by beta-
secretase, followed by presenilin-dependent gamma-secretase cleavage (Phiel, et al., 2003). 
Besides interaction with nicastrin, APH-1 and PEN-2 required for gamma-secretase 
function, presenilins also interact with alpha-catenin, beta-catenin and GSK-3 (Francis et al, 
2002). The therapeutic concentrations of LiCl, a GSK3 inhibitor, block the production of 
Abeta peptides by interfering with APP cleavage at the gamma-secretase step, but do not 
inhibit Notch processing. Importantly, lithium also blocks the accumulation of Abeta 
peptides in the brains of mice that overproduce APP. The target of lithium in this setting is 
GSK-3, which is required for maximal processing of APP. Since GSK-3 also phosphorylates 
tau protein, the principal component of NFTs, inhibition of GSK-3 offers a new approach to 
reduce the formation of both amyloid plaques and NFTs, two pathological hallmarks of AD 
(Phiel, et al., 2003). Here, we added LiCl to Tet-CHO cells expressing EGFP-tagged C99 
fusion. The results of ELISA and fluorescence assay revealed that LiCl inhibited the 
production of Abeta at a concentration of 0.25 and 0.5 mM with the inhibiting rates of 7.25% 
and 32.11% by fluorescence assay, respectively (or 44% and 52% by ELISA, respectively) 
(Table 3), which is supported by the research results of Phiel’s group (LiCl with an IC50 of  
1–2mM) (Phiel, et al., 2003), and consistent with a report using transient overexpression of 
the APP carboxy terminus C100 in COS7 cells (Sun, et al., 2002). 
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Pepstatin A was aspartic proteinase inhibitor (PDB filecode 2RMP) (Yang & Quail, 1999) as 

well as beta-secretase inhibitor with IC50 value of 50 mM (Michelle, et al, 2001), which was 

reported to block solubilized gamma-secretase activity (Li et al, 2000). When C100Flag was 

used as a gamma-secretase substrate in an in vitro assay, the IC50 for pepstatin A to inhibit 

Abeta40 and Abeta42 generation was 4.0 and 5.9 μM, respectively (Li et al, 2000). A cell-free 

assay on membrane vesicles derived from C99-transfected cells showed that the IC50 of 

pepstatin A for inhibition of both Abeta40 and Abeta42 was estimated at ~ 4μM (Zhang et 

al, 2001). Because both C100Flag and C99 are immediate substrates for gamma-secretase, it 

is not surprising to see an IC50 for pepstatin A at 35 μM when Campbell and co-worker used 

microsomes derived from full length (FL) APP expressing cells (Campbell et al, 2002). Here, 

we built Tet-CHO cells expressing EGFP-tagged C99 fusion (LGC) with 17-residue signal 

peptide of APP and obtained an IC50 for pepstatin A at 35.83 μM employing MTT assay, 

similar to Campbell’s method. And Campbell et al have found that pepstatin A was shown 

to bind to PS1 with higher affinity to FL PS1 than to PS1 fragments. The high efficacy of 

pepstatin A binding to FL PS1 may lead to efficient inhibition of endoproteolysis compared 

to the low efficacy of binding to functional NTF/CTF complexes and inhibition of gamma-

secretase cleavage in the Golgi/TGN (Campbell et al, 2002). 
Fluorescence and MTT assay revealed that twelve new 2-substituted-1,2,3,4-
tetrahydroisoquinoline derivatives (I-1-I-6 and II-1-II-6) inhibited production and 
assemblage of Abeta to some extent by interfering gamma-secrease (Table 5). Especially, 
compounds I-1, I-3, II-1, II-4, and II-6 showed higher anti-Abeta activities while their 
cytotoxicity assay on Tet-CHO cells was more sensitive than that on the standard CHO cells. 
However, their IC50 values (from 0.819 to 81.920 mM) for inhibiting Abeta assembly (Table 
5) were smaller than that of pepstatin A. Our results displayed that their anti-Abeta 
activities depended on the substitutes at position 2 of the tetrahydroisoquinoline nucleus. 
Phenylsulfonyl, benzyl or ortho-substituted benzoyl derivatives have higher anti-Abeta 
activities, such as compounds I-1, I-3, II-1, II-4, and II-6, which is supported by our 
previous research results that the phenylsulfonye group is necessary (Yang et al., 2009). 
Electron-withdrawing groups (EWG) at the position ortho of benzene are propitious to anti-
Abeta activities, such as chlorine (II-4) and nitryl groups (I-3). Similarly, electron-donating 
groups (WDG) at the position para of phenylsulfonyl group are not beneficial to their anti-
Abeta activities, such as compound I-2. The anti-Abeta activities of unsubstituted 
phenylsulfonyl derivatives (I-1 and II-6) are evidently higher than that of I-2. We have 
reported that the nitrogen atom at 2 position of 1,2,3,4-tetrahydroisoquinoline interacted 
with the carboxyl group at the side chain of Asp179 of integrin alpha2b in the fashion of 
electrostatic interaction (Yang et al, 2009). Here the sulphonyl and carbonyl group at 2 
position of 1,2,3,4-tetrahydroisoquinoline may interact with gamma-secrease in the same 
fashion to exhibit anti-Abeta activities. On the other hand, our previous research has also 
exhibited that compound I-6 possessed higher anti-platelet aggregation by inhibiting 
fibrinogen binding to its receptor GPIIbIIIa (integrin alpha2bbeta3) with IC50 value of 
approximately 37.13 μM (Yang et al, 2009). Molecular modeling indicated that this 
compound might interact with fibrinogen receptor by Thr125 residue of beta3, Tyr166 and 
Asp179 residues of alpha2b, especially the hydroxyl groups of Thr125 and Tyr166 and the 
carboxyl group at side chain of Asp179. Interestingly, the anti-platelet aggregation activities 
of type II compounds have ever reported as well as ticlopidine (Yang et al, 2004). Their 
antiplatelet aggregatory activity is related to the sizes of substitutes, as well as charge or 
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electronegativity, which is consistent with the CoMFA study results: the steric and 
electrostatic interactive energy is the major contribution to antiplatelet aggregatory activity, 
and an area accomodating a small weak-polar group exists near the 7 position of the 
tetrahydroisoquinoline nucleus.  
Interestingly, these compounds possessed anti-Abeta activities as well as anti-platelet 
aggregation activites, and they may play important roles in AD therapy by fibrin-guided 
signal pathway (Adams, et al, 2004). Merkle and co-worker have indicated that vascular 
deposition of Abeta is associated with recurrent intracerebral hemorrhages in certain disease 
states and revealed a network of fibrin (Fn) and amyloid fibers formed in the presence of 
Abeta with significantly decreased lateral Fn-Fn interactions using electron microscopic 
analysis, namely Abeta significantly altering the nature of the Fn obtained in its presence 
(Merkle et al, 1996). Since platelets are the principal source of both APP and Abeta in human 
blood, AD platelet activation may reflect or even contribute to the pathogenesis of the 
disease (Sevush et al, 1998). These results suggest that fibrin is a mediator of inflammation 
and may impede the reparative process for neurovascular damage in AD. Fibrin and the 
mechanisms involved in its accumulation and clearance may present novel therapeutic 
targets in slowing the progression of AD (Paul et al, 2007). Fibrin receptors are defined as 
membrane-bound proteins that can transduce intracellular signals upon fibrin binding, 
whereas fibrin binding proteins are either soluble or anchored molecules that bind fibrin but 
have no documented ability to directly transduce intracellular signals upon fibrin binding. 
The functional consequences of these protein–fibrin interactions range from blood 
coagulation and initiation of angiogenesis, to inflammation and propagation of infection 
(Adams, et al, 2004). Fibrin binds several families of integrins, including beta1, beta2, and 
beta3 subtypes. Fibrin–integrin interactions mediate a variety of cellular responses, 
including clotting and inflammation via the mitogen-activated protein kinase (MAPK), the 
phosphoinositide-3 kinase (PI3K), or the NF-κB signal pathways. Moreover, reducing 
fibrinogen, a circulating protein critical in hemostasis, provides a significant decrease in the 
neurovascular damage, blood-brain barrier permeability and neuroinflammation present in 
AD. These studies implicate fibrinogen as a possible contributor to AD (Cortes-Canteli & 
Strickland, 2009). In addition, platelet-derived growth factor (PDGFs) has been indicated 
that it can induce the beta-gamma-secretase-mediated cleavage of APP through a Src-Rac-
dependent pathway (Gianni et al, 2003). Studies of PDGFs and their receptors have revealed 
roles for PDGF signaling in gastrulation and in the development of the cranial and cardiac 
neural crest, gonads, lung, intestine, skin, CNS, and skeleton as well as blood vessel 
formation and early hematopoiesis (Andrae et al, 2008). PDGF signaling is implicated in a 
range of diseases, such as certain gliomas, sarcomas, leukemias, epithelial cancers, vascular 
disorders, and fibrotic diseases, involving tumor growth, angiogenesis, invasion, and 
metastasis. How these compounds to inhibit both platelet aggregation and Abeta 
accumulation and its mechanism are under investigation. 

5. Conclusion 

This experiment is to design a drug screening cell model (Tet-CHO) for gamma-secretase 
inhibitors. In view of the specific components of gamma-secretase, we utilized the 
tetracycline-inducible Tet-off system to express EGFP-tagged C99 fusion as a gamma-
secretase substrate in the cultured CHO cells and validated by ELISA and Western blot for 
the following evaluation of the efficiency of some compounds. Additionally, twelve  
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2-substituted 1,2,3,4-tetrahydroisoquinoline derivatives were designed and synthesized by 
the aid of computer drug design, based on the principles of isosterism and the reported SAR 
of synthesized tetrahydroisoquinoline derivatives. These compounds have anti-Abeta 
accumulation activity by inhibiting gamma-secretase interaction with its substrate,  
EGFP-tagged C99. The phenylsulfonyl derivatives (compound I-1 and II-6), the benzyl 
derivative II-1, and the benzoyl derivatives (I-3 and II-4) showed higher anti-Abeta 
activities, which is supported by our previous research results that the phenylsulfonye 
group is necessary (Yang et al., 2009). Especially compound I-6 has not only anti-Abeta 
accumulation activity but also anti-platelet aggregation activity, suggesting a potential role 
of fibrin-guided signal pathway in AD therapy.  
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Flowchart for construction of drug screening cell model and its application 
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