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1. Introduction 

Alzheimer’s disease (AD) is a disabling neurodegenerative disorder typical of old age. 
Recent advances led to the development of drugs which effectively alleviate cognitive 
symptoms. About one-third of patients however do not respond to current pharmacological 
treatment (Ryu et al., 2005). Reasons of such lack of efficacy of available drugs may 
represent a step ahead in the understanding of this disabling disorder. To define a non 
responder profile is the aim of this work. 
Accordingly, authors will deal with pathogenesis of AD, neuro-behavioural symptoms, 
brain imaging and CSF characteristics in order to extract from each section the most relevant 
features helpful for identification of non responder profile. Such work is difficult and may 
meet disagreement among specialists, however authors strongly believe that this work may 
represent a sort of starting point contributing to better understand AD pathophysiology. 

1.1 Apathy and Alzheimer’s disease 

Apathy is a behavioural syndrome common in normal physiological aging, is also part of 
the psychiatric spectrum of mental illness, and often is part of clinical symptoms of 
neurodegenerative disorders like AD, fronto-temporal dementia, Parkinson’s disease. The 
opportunity to discuss about its presence during AD lead to start from its definition and 
anatomical substrates, to better understand possible pathologic reasons of its occurrence.  
Apathy is an observable behavioural syndrome consisting in a quantitative reduction of 
voluntary (or goal-directed) behaviours (Levy and Dubois, 2006). Therefore, apathy occurs 
when the systems that generate and control voluntary actions are altered. In this view 
apathy can be defined as the quantitative reduction of self-generated voluntary and 
purposeful behaviour. Accordingly, apathy is not to be considered a clinical aspect of 
depression, although they may co-exist (Marin et al., 1993;1994).  
Anatomical circuits of apathy are generally represented by cortical areas like the prefrontal 
cortex (neo-, paleo- and archeo-cortex), amygdala and hippocampus and the ventral basal 
ganglia (limbic striatum or better the nucleus accumbens, midbrain ventral tegmental area, 
medial tip of subthalamic nucleus, centro-median and para-fascicular nuclei of the 
thalamus) (Haber et al., 1995; Deniau et al., 1997; Haber et al., 2010) (Fig. 1). In general, 
prefrontal cortex (PFC) has an essential role in cognitive and executive processes that involve 
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PFC: prefrontal cortex; NAcc: nucleus accumbens; VP: ventral pallidum; VTA: ventral tegmental area; 
STN: subthalamic nucleus; THAL: thalamus; Glu: glutamatergic excitatory neurons; GABA: GABA-
ergic inhibitory neurons; DA: dopaminergic neurons. 

Fig. 1. Schematic representation of ventral aspects of the cortical-basal ganglia circuit. Pre-
frontal cortex envy inputs to the main afferent nuclei of the system, the NAcc, which in turn 
envy inputs to the VP. Then information flow pass through the STN to the Parafascicular 
and Centro-Median nuclei of the thalamus and then again to the cortex 

motivation, emotion learning and memory. PFC integrates sensory and limbic information 
and promotes goal-directed behavior through efferent projections to the nucleus accumbens 
(NAcc). In addition, PFC sends outputs to other limbic areas such as the hippocampus and 
amygdala, which in turn modulate the activity of the NAcc through excitatory-
glutamatergic projections. NAcc has been proposed to play a role in emotion, and more 
generally in limbic-motor integration (Nicola et al., 2007). This hypothesis has been based on 
the anatomical organization of the NAcc which suggests that this nucleus is an interface 
through which limbic (glutamatergic) structures influence motor activity, and that these 
limbic influences on behavior could in part be controlled by meso-limbic (dopaminergic 
structures) and cholinergic systems (Haber et al., 1997; Amalric et al., 1993) (Fig. 2).  
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PFC: prefrontal cortex; HIPP: hippocampus; NAcc: nucleus accumbens; SN-VTA: substantia nigra and 
ventral tegmental area; BFN: basal forebrain nucleus. 

Fig. 2. Schematic representation of the complex relationship among NAC(nucleus 
accumbens) and cortical areas (amygdale, hippocampus and prefrontal cortex), dopamine-
nuclei (substantia nigra and ventral tegmental area) and basal forebrain cholinergic neurons 
(Meinert’s nucleus). NAC is in a position to modulate excitatory drive from cortical areas, 
cholinergic inputs to the cortex through basal forebrain neurons, modulated by dopamine 
inputs from the ventral midbrain 

Inputs from the cortex convey through the multiple organization of the basal ganglia into 
the pallidum and then back to the cortex. Such arrangement is organized to extract 
(selection) relevant signals from background noise and to amplify it throughout the final 
pathway. The final selection is then transferred back to the PFC, which in turn generates 
inputs in output targets such as cognitive, limbic and even motor territories (Haber et al., 
2010).  
Over all, PFC and nucleus NAcc are considered the main structures responsible for apathy. 
In this view, apathy may be distinct at least in three different phenomena related to cortico-
basal ganglia topography (Levy and Dubois, 2006): the first, that involves the affective-
emotional processing, is topographically related to the ventral-medial PFC and its 
connection with NAcc and amygdala. This circuit integrates the affective or emotional value 
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of a given stimulus into ongoing behaviour. The second, involving cognitive processing, is 
topographically related to lateral PFC and to the dorsal caudate nucleus. This circuit is 
responsible for executive elaboration of a plan of action and involved in a goal-directed 
behaviour. The third, is observed in severe cases of apathy, is characterised by difficulties in 
self-initiating actions or thoughts, contrasting with relatively spared externally driven 
response. This pattern which was called the “auto-activation” deficit is the result of bilateral 
lesion of the pallidum (Starkstein et al., 1989; Lugaresi et al., 1990) or after extensive damage 
of the PFC (Kumral et al., 2002). 
Within these perspectives, apathy observed in AD patients is more likely to be the result of a 
dysfunction of affective-emotional processing, thus involving the medial PFC and its 
connection with amigdala and NAcc. 
During normal aging as well as during AD, it is conceivable to suppose that due to 
morphological and metabolic changes of cortical neurons and of subcortical nuclei, 
disorder of emotional-affective processing may appear. PFC and hippocampus has been 
demonstrated to show particular vulnerability during normal aging. Subtle regional 
changes of dendritic branching or altered mechanisms of neural plasticity has been 
experimentally demonstrated in lab animals and also in humans (Hof et al., 2004; Petanjek 
et al., 2008; Bloss et al., 2010; Juraska et al., 2011; Kalpouzos et al., 2011). These changes are 
also associated to reduced levels of neurotransmitters like acetylcholine, glutamate, GABA 
and dopamine with age (Chen et al., 2011). Such alterations may reasonably be responsible 
for appearance of apathetic behavior. Moreover, several reports showed that dopamine 
transmission is particularly vulnerable with age. In particular reduction of the accumbal 
dopamine transporter, and of cortical dopamine receptors (both D1-like and D2-like, where 
D2-like seem to be prevalent) in aged subjects (Volkow et al., 1994,1996; Ishibashi et al., 
2009; Backman et al., 2009). These changes were related to PFC cognitive deficits and in 
particular were related to executive function impairment (Mizoguchi et al., 2009). Given 
the particular deficits of dopamine transmission and the role played by this transmitter in 
the control of PFC-basal ganglia circuit, it is conceivable to suppose that such changes 
could be responsible for apathetic behavior in old subject. Moreover, apathy increases with 
age in healthy old population (Brodaty et al., 2010), and its presence is considered an early 
sign of cognitive decline (Onyike et al., 2007). Contrarily to what expected bio-physical and 
also metabolic differences between AD brain and aged brain are very subtle (Hof et al., 
2004). Myth of neuronal loss during aging is not confirmed, and pathologic metabolism of 
APP and hyper-phosphorylation of tau protein do represent the real difference with age 
related changes (Giannakopoulos et al., 2008 and 2009; Dickstein et al., 2010). Although 
many neurotransmitters dysfunction were found in AD brain, interest on dopaminergic 
transmission has been recently developed with relevant results (McNeil et al., 1984; 
Martorana et al., 2009; Martorana et al., 2010; Koch et al., 2011-b). However, apathy is 
usually recognized as part of AD symptoms, being considered the most common 
behavioral symptom in AD. Apathy increases with severity of AD (yet from conversion 
from MCI to AD) and has been associated with poorer initiative and executive functions 
(Drijgers et al., 2011). More importantly, apathy could be an early manifestation of a more 
aggressive AD phenotype, in which a faster cognitive decline occur (Starkstein et al.,2010). 
Studies of correlation between dopamine deficits and apathy in AD are needed to better 
interpret this behavioral syndrome. Of note is the concept that presence of apathy may 
render difficult the pharmacological approach to AD patients (See Boyle et al., 2004; Robert 
et al., 2010).  
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In conclusion, to define apathy simply a neuropsychiatric symptom common in AD, as well 
as in other dementias or degenerative disorders of the brain, or whether it may represent a 
clinical predictor of the turn-over (thus worsening) of a defined clinico-pathologic entity 
(like AD) actually represent a challenge for neurologists studying cognitive decline.  

1.2 Neuroimaging morphometric predictors 

The effectiveness of current pharmacological treatment of AD, by using AchEIs on cognitive 
decline symptoms can be highly variable. Genetic factors like the presence of 1 or 2 
apolipoprotein E4 (APOE4) alleles are considered predictive of poorer response to therapy, 
while demographic factor like sex, or culture of the subject revealed some importance if 
related or associated to APOE status.  
Recently, the development of neuro-morphometric measures of regional blood flow and 
also brain metabolism provided a new possible biomarker of the AD pathologic process. In 
particular, volumetric analysis of different brain regions showed that hippocampal volume 
loss is present in patients with mild AD, and the progression of volume loss parallels the 
worsening of clinical symptoms, and may also be used to predict to the pharmacological 
response of patients (Csernansky et al., 2005). 
Moreover, during AD neuro-psychiatric symptoms are usually persistent, although with 
variable intensity, and can also be resistant to treatment (Ryu et al., 2005). The physio-
pathological and psychological mechanisms involved in the development of neuro-
psychiatric symptoms are still poorly understood. Thus, several neuro-anatomical 
correlative studies have been made, and association between discrete regional pathologies 
and psychiatric symptoms emerged (Mega et al., 2000; Sweet et al., 2003; Rosen et al., 2005; 
Sultzer et al., 2003; Shanks and Venneri, 2004; Migneco et al., 2001). Most of recent literature 
tried to correlate neuro-psychiatric symptoms to morphological features, particularly in 
early stages of AD. Delusions and agitation, more frequent at late stages of AD, are 
associated primarily with atrophy of the right fronto-parietal regions (matching with results 
obtained with metabolic and cerebral blood flow studies) (se Staff et al., 1999 ; Sultzer et al., 
2003). Agitation was observed in about one third of AD patients and associated to atrophy 
of left insula and bilaterally of anterior cingulate cortex (Bruen et al., 2008). 
Apathy which is the most frequent symptom of early AD, may be also an early indicator of 
the disease and is detectable in a high proportion of patients with mild cognitive 
impairment (Palmer et al., 2007; Lyketos et al., 2007). Presence of apathy was correlated with 
atrophy of sub-cortical nuclei like putamen bilaterally and of left caudate nucleus. 
Significant correlations were also found with atrophy of anterior cingulated cortex 
bilaterally, inferior frontal and orbito-frontal regions of both hemispheres (Gado et al., 1983; 
Jack et al., 2005; Shiino et al., 2006; Bruen et al., 2008). Apathy has also been linked to 
dysfunction or atrophy of ventral frontal areas (Rosen et al, 2005; Marshall et al., 2007). 
Apathy is often seen in early presentation of AD and is sometimes described even before 
memory deficits become noticeable.  
In conclusion morphometric analysis of AD brains indicate that variable degrees of atrophy 
in selected brain regions could represent a potential and reliable predictor of clinical-type of 
presentation and may also be used as predictor of pharmacological response to treatment. 

1.3 Cerebrospinal fluid analysis  

Biochemical changes in the brain extracellular fluid are reflected in the cerebrospinal fluid 
(CSF). Levels of biological markers like Aβ42, total-tau (t-Tau) and hyper-phosphorylated 
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tau (p-Tau) are currently measured in clinical settings of many western countries, and used 
as diagnostic tool for diagnosis and for stratification of patients useful for pharmacological 
trials (Mattsson et al., 2009; Blennow and Zettemberg 2009). In AD patients typically levels 
of CSF Aβ42 is lower (370 ng/L in AD vs 670 ng/L in controls), while t-Tau (559 ng/L in 
AD vs 280 ng/L in controls) and p-Tau (82 ng/L in AD vs 51 ng/L in controls) are higher 
than in healthy controls (Blennow et al., 2007; Mattsson et al., 2009). Low levels of Aβ42 
reflect a disturbance of the metabolism of this protein.  
Aβ is produced mainly in neurons and is secreted in the CSF 12 hs later, then excreted 
through the blood-brain barrier 24 hs later into blood (clearance of Aβ), and finally 
degraded in the reticulo-endothelial system (Shoij et al., 2001). These different phases are in 
equilibrium among them. In AD patients, Aβ42 forms insoluble aggregates and accumulates 
in form of fibrils in extracellular space of the brain (Bateman et al., 2009). The reason why 
Aβ42 levels are decreased in CSF of these patients is believed to be caused by the 
impairment of the physiologic clearance mechanism above described.  
Major biological function of tau is to promote microtubule assembly and maintain the 
stability of the microtubules, play also crucial roles in signal transduction of neurons (Wang 
et al.,; 2008; Fanara et al., 2010), and in neural plasticity mechanisms (Avila et al., 2004; 
Boekhoorn et al., 2006). In AD patients, where plasticity mechanisms are altered, t-Tau levels 
increase three-fold than the age-matched controls. It’s increase in CSF is considered as the 
result of degenerating process of neurones. Thus, increase of tau protein may leak from the 
degenerating neurons into the CSF as disease progresses (Blom et al., 2009; Mattson et al., 
2009). P-Tau is considered a marker of NFT tangles production, and is strictly associated to 
the patho-physiological process of AD. Thus, p-Tau is increased in the CSF of AD in relation 
to neuronal degeneration degree (Blennow and Hampel, 2003).  
Whether CSF biomarkers could be used as predictors for progression rate or treatment 
response was investigated only recently (Wallin et al., 2010; Blom et al., 2009; de Souza et al., 
2011). In general, results of recent studies indicate that CSF biomarkers are not considered 
useful as predictors of treatment response (Wallin et al., 2009), nor were ever considered as 
markers for pharmacological response. From these studies has emerged that increased levels 
of t-Tau and p-Tau are associated to rapid progression rate of disease (Kester et al., 2009; 
Van Der Vlies et al., 2009), in particular for patients converting from MCI to AD (Blom et al., 
2009), and also for patients with malignant form of AD (Wallin et al., 2010). In the latter 
condition was characterised by very high levels of t-Tau(> 800 ng/L) in the CSF, and by 
higher risk of mortality.  
More recently high levels of tau (both total and hyper-phosphorylated) were also associated 
to hippocampal atrophy (de Souza et al., 2011), or with forms of pathologic neural plasticity 
(Koch et al., 2011a), indicating again for these proteins possible role as markers of rapid 
cognitive deficits observed in course of AD. Therefore, heterogeneity of AD patients reflects 
heterogeneity also in CSF biomarkers, thus the need to deepen the relationship between CSF 
biomarkers and different subgroups of AD emerges. Within these perspective, association 
between biomarkers and clinical and/or biochemical data could in turn provide new insight 
of our understanding of patho-physiology of AD and also of an appropriate 
pharmacological treatment. 

2. Non responder profile 

The current approach to cognitive deficits of AD patients derives from the so-called 
“cholinergic hypothesis”, where major cholinergic deficit was suggested to characterise AD, 
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similarly to dopamine for Parkinson’s disease. The cholinergic deficiency is currently a 
target of therapy since cholinesterase inhibitors treatment enhance the cholinergic 
transmission in AD and shows beneficial effects on cognition in both placebo controlled and 
open studies (Birks et al., 2006; Wallin et al., 2007). Despite several studies provided the 
efficacy of pharmacological treatment on cognition, however long-term treatment showed 
unsatisfactory results. Reasons of such interpretation of data were individuated in the 
progressive degeneration of cortical and sub-cortical neurons, as the consequence of the 
abnormal accumulation of Aβ42 and NFT formation.  
Interestingly, during the treatment trials of the first cholinesterase inhibitor tacrine, 
heterogeneity in treatment response was observed. About one-third of the patients 
evaluated resulted to respond to treatment, one-third remained unchanged and one-third 
resulted to not respond to pharmacological treatment (Minthon et al., 1993; Eagger and 
Harvey, 1995; Wallin et al., 2004). The discussion of these results showed clearly the need to 
define a treatment response, that was extended also to the AchEIs of second generation, 
however a consensus for how to define a response treatment do not exist.  
Such difficulty may justify a sort of “lack of interest” for non responders and moreover may 
render obscure and hard to define the non responder profile. Many variables (genetic, 
metabolic, vascular, biochemical, etc) may be considered responsible for pharmacological 
treatment un-efficacy, and in recent years several studies investigated the importance of 
these factors. Among others, as possible predictors to treatment response were included 
cognitive impairment severity (Pakrasi et al., 2003; Van Der Putt et al., 2006; Wallin et al., 
2005 and 2009), frontal lobe blood flow (Hanyu et al., 2003), age (Schneider et al., 1991; 
Evans et al., 2000), gender (Macgowan et al., 1998; Winblad et al., 2001), APOE genotype 
(Almkvist et al., 2001; Winblad et al., 2001). Unfortunately conflicting results were obtained, 
and reliable predictors are still unavailable.  
However, taking in account the anatomical, clinical and biochemical consideration made 
above, a profile of “non responder” AD patients may be outlined.  
In general patients that do not respond to treatment present with rapidly progressive 
cognitive decline, not dependent on age, gender, years of education, baseline instrumental 
activities of daily living, or APOE genotype. The neuropsychological assessment of these 
patients show involvement of executive functions associated to memory deficits, and the 
presence of severe apathy. No other behavioural symptoms do occur in these cases. CSF 
analysis show low levels of Aβ42, and very high levels of t-Tau (> 800 ng/L). Gross 
morphology remains unaltered in neuro-imaging assessment, although changes of grey 
matter volumes in frontal-temporal areas were recently described (Serra et al., 2010). It is 
interesting to note that such transition from responder to non responder state coincide with 
described changes occurring in MCI converters (Hansson et al., 2009; Mattsson et al., 2009; 
Blom et al., 2009; Palmer et al., 2010), and also in a subset of AD patients with moderate AD 
showing rapidly progressive rate of cognitive decline (van Der Vlies et al., 2009; Kester et al., 
2009; Wallin et al., 2010; Musicco et al., 2011; Stepaniuk et al., 2011). Thus, from these results 
appear that the efficacy of current pharmacological treatment with AchEIs could depend on 
the rate of progression of cognitive decline (fast or slow), which in turn appear as to be 
associated to signs of frontal lobe dysfunction (indicative of faster decline), hence with the 
appearance of severe apathy and of executive functions alterations.  
Impairment of executive functions and also neurobehavioral symptoms are often observed 
in course of AD. Their occurrence is typical of more advanced stages and is associated to 
greater impairment of daily activities in these patients (Boyle et al., 2003; Marshall et al., 
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2011; Carter et al., 2011). In this view non responders might represent a clinico-pathological 
variant of AD (as identified by Back-Madruga et al., 2002), not rare, in which frontal lobe 
degeneration prevails. Moreover, the reason why the cognitive decline become faster may 
reside in the interaction between Aβ42 and Tau. Yet at intracellular level Aβ42 has been 
demonstrated to induce tau fragments formation, which are particularly toxic for 
mitochondria, leading rapidly to cell dysfunction (Amadoro et al., 2010; 2011). Such 
interaction would happen also at post-synaptic site leading to cell death via excitotoxic 
mechanisms (Ittner et al., 2010; Roberson et al., 2011). Such condition could be sufficient to 
explain the reason of AchEIs treatment un-effectiveness. As alternative hypothesis, it may be 
supposed that the frontal lobe dysfunction could be due to the direct interaction of Aβ 
peptides with neurotransmitters system, leading to impairment of cross-talk between 
transmitters (Palop et al., 2010). 
From the patho-physiological point of view, frontal lobe function depends on the anatomical 
integrity of neurotransmitters network and cross-talk (acetylcholine, dopamine, glutamate, 
GABA) which function regulating memory, behaviour and emotions (see Martorana et al., 
2010). Recent experimental evidences show that such modulatory role is played by 
interaction between acetylcholine, and other major transmitters like glutamate or dopamine 
(Moore et al., 2009; Gulledge et al., 2009; Dasari et al., 2011; Livingstone et al., 2010). Thus, 
frontal lobe dysfunction, particularly in cases of AD would be the result of an impairment 
among transmitters, particularly of acetylcholine, glutamate, and dopamine, thus likely 
responsible for faster cognitive decline. Interestingly, recent papers showed marked changes 
of glutamatergic as well as of dopaminergic systems in frontal lobe of AD brains (Kashani et 
al., 2008; Kirvell et al., 2007; Kumar and Patel, 2007), suggesting also that involvement of 
frontal lobe in AD might occur earlier than supposed. Moreover recent transcranial 
magnetic stimulation studies showed that in AD central cholinergic transmission was 
restored by L-dopa administration (Martorana et al., 2009), and further showed that L-dopa 
was unable to modulate neural plasticity mechanisms in AD patients (Koch et al., 2011-b). 
Within these perspectives it is conceivable to suppose that impaired neurotransmitter 
systems could account for lack of response to AchEIs.  
Remain to be established whether frontal lobe dysfunction represent a reversible condition, 
and whether alternative treatments, like memantine or dopamine agonists could interfere 
with this event. 
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