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1. Introduction

Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults
(American Cancer Society, 2010) however overall survival rate remain poor despite
advancement in treatment modality.

Since the last 50 years, systemic chemotherapy has greatly improved outcome in many types
of cancers. The use of continuous infusion Arabinosylcytosine (Ara-C) combined with
another agent, usually an anthracycline or anthracenedione, the “3+7” regimen, has been the
backbone of induction therapy for AML cases (Yates et al., 1973). An attempt to add other
drugs (Preisler et al., 1987) and intensification of the Ara-C dose (Schiller et al., 1992; Weick
et al., 1996) to this approach has achieved some degree of success. Currently more work is
attempted at improving patient outcome by intensifying the doses of anthracyclines
(Lowenberg et al., 2010a) or by adding targeted therapies like gemtuzumabozogamicin
(Lowenberg et al., 2010b; Nabhan et al., 2005).

For consolidation therapy, the use of Ara-C with or without other agents has been
employed to maintain remission and cure. Allogeneic hematopoietic cell transplantation
(HCT) based on initial cytogenetic (Cornelissen et al., 2007; Koreth et al., 2009) and
molecular studies (Castaigne et al.,, 2004) have been proposed as an alternative
consolidation therapies.

Induction therapy aims to produce complete remission (CR) defined as a marrow with
less than 5% blast, a neutrophil count greater than 1000/mm?3 and a platelet count greater
than 100,000/mm3 (Cheson et al., 2003). Majority of younger patients (65-75%) will
achieve CR after receiving induction treatment while CR in elderly group is much lower
(40-50%).

Patients who do not respond to induction treatment display chemotherapy resistance (Estey
et al., 1996). In trials done by the Southwest Oncology Group (SWOG), resistant disease was
found in about 33% (patients younger than 56 ) out of 404 patients” enrolled into the studies,
62% for patients in between 56-65 year old, 61% for patients between 66-75 years old and
57% for age more than 75 year old (Frederick et al., 2006).

Resistance is also common at relapse (Estey et al.,, 1996). Relapse itself could be due to
resistance to treatment in a subgroup of leukaemic cells which survived induction therapy
despite CR. Patients usually relapse within two to three years after achieving CR.
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410 Myeloid Leukemia — Basic Mechanisms of Leukemogenesis

2. Multi-drug resistance protein as a mechanism of drug resistance

Development of drug resistance is a major problem in AML therapy. It will eventually occur
in most haematological malignancies treated with chemotherapy. Classically, drug
resistance is divided into extrinsic and intrinsic (Jean-Pierre et al., 2003). Extrinsic resistance
(host factors) refers to the inability of the drug to reach the tumour cell. It occurs when the
bioavailability of the oral form varies from patient to patient like poor absorption resulting
in low serum levels.

Intrinsic (cellular) resistance is due to properties of the tumour cell. It can be classified as
simple resistance, when cells are resistant to only one particular drug, or as multidrug
resistance (MDR) when cross resistance is observed among chemotherapeutic drugs with
different biochemical targets. Multidrug resistance is more common than simple resistance
and it can be due to several mechanisms. The most common pharmacological mechanism
involved is due to an active efflux of drugs from the tumour cells or enhanced drug
metabolism which prevented the drug from reaching its target in the nucleus.

The most important protein described in MDR cells is P-glycoprotein (P-gp), a
transmembrane energy-dependent drug efflux pump, which is most efficient at transporting
naturally occurring substances. It is encoded by the MDR1/ABCB1 gene and belongs to a
superfamily of ABC (ATP binding cassette) transporters. P-gp expression in AML at initial
presentation has been reported to be 20% to 40% (Motoji T et al., 2000). Increase in P-gp
expression in leukaemic cells causes reduced intracellular concentration of cytotoxic drugs.
There are many drugs used in AML that are transported by P-gp including anthracyclines
and anthracenediones like daunorubicin and mitoxantrone, the vinca alkaloids (vincristine
and vinblastine) and the epipodophyllotoxins (etoposide and teniposide).

Other ABC transport proteins that have been implicated in MDR include the multi-drug
resistance associated proteins (MRP1/ABCC1) and the breast cancer resistance protein
(BCRP/ABCG2). All these proteins are not unique to drug resistance cells but expressed in
tissue with excretory and secretory functions. However, many studies have found that
overexpression of these proteins correlate with poor treatment response (Damiani et al.,
2010; Bendarra et al., 2005).

A non-ABC protein, found widely expressed in P-gp negative multidrug resistant cancer cell
termed initially as lung resistance related protein (LRP) and now known as major vault
protein (MVP) also has been implicated in drug resistance mechanism (Izquierdo et al., 1996;
Huh et al., 2006). This protein is involved in bidirectional transportation of a variety of
substrates between nucleus and cytoplasm. It is present in many cells and seems to be
upregulated in cancer cells and has been found to be an adverse prognostic factor in AML
(Styczynski et al., 2007). The expression of P-gp (Leith et al., 1999), MRP and LRP in AML
was also found to correlate with advanced age (>60 years) and high white cell count (van
delHeuvel et al., 2007). It also correlates with high risk of relapse (Daniela et al., 2007).

There have been extensive trials conducted on AML therapy to circumvent drug resistance
like reversion of P-gp, targeted agents against DNA replication and repair, cell cycling and
apoptosis.

With the extensive knowledge on P-gp efflux mechanism and its contribution to drug
resistance in AML, quinine and cyclosporine were tested to reverse the P-gp action.
However, these substances did not significantly improve the response rate in AML (Eric et
al., 2003; Solary et al., 1996; Liu et al., 1998; Tallman et al., 1995). Combination of tetrandrine,
a potent inhibitor of the MDR-1 efflux pump, with induction therapy also showed no
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significant difference in response between P-gp positive and P-gp negative patients (Wen et
al., 2006). Nevertheless, an early study revealed by using P-gp reversal modulators, the
emergence of drug resistance could be prevented (Futscher et al., 1996). However, a recent
randomized phase III trial involving 302 newly diagnosed AML patients, evaluated the
effect of P-gp inhibitor valspodar (PSC-833) showed no difference in overall disease survival
(Jonathan et al., 2010). Similar result was obtained in another phase III randomized trial
involving poor risk AML patients when valspodar was added in the induction therapy
(Peter et al., 2004)

3. Molecular ‘signatures’ in AML

AML is characterized by a high degree of heterogeneity with respect to chromosome
abnormalities, gene mutations and expression of multiple genes. The heterogeneous nature
of AML has significant clinical impact as there are marked differences in survival following
intensive chemotherapy (explained in detail elsewhere in this book). The World Health
Organization (WHO) classifies AML by cytogenetics, morphology, immunophenotype and
clinical features (Swerdlow et al., 2008). Diagnostic karyotype emerges as the most
significant prognostic factor as determined in multivariable analyses that take into account
age, type of AML (de novo or secondary) and presenting white blood cell count (WBC), and
accordingly provides the framework for current risk stratified treatment approaches
(Grimwade, 2007). Nevertheless as cytogenetic and molecular genetic aberrations are not
mutually exclusive the expression of downstream target genes that encode proteins
involved in complex biologic networks are affected (Mrozek et al.,, 2009) and may alter
predictability of standard prognostic markers. Microarray genome-wide gene-expression
profiling (GEP) and microRNA-expression profiling assays have revealed AML signatures
and may be readily applicable for diagnosis and outcome class prediction in AML (Mrozek
et al., 2009). Many of the molecules involved are known mediators of signal transduction
pathways and apoptosis.

4. Apoptotic molecules in AML

Apoptosis occurs principally via two separate yet interlinked signaling mechanisms: the
extrinsic pathway, activated by proapoptotic receptor signals at the cellular surface
(members of tumor necrosis factor, TNF, family), and the intrinsic pathway (members of
Bcl-2 family), activated by mitochondrial signals from within the cell. These pathways
converge through “effector” caspases, which orchestrate the apoptotic program.
Nevertheless, each requires different initiation caspases to begin the process. The extrinsic
pathway is activated by engagement of death receptors on the cell membrane. The death
receptors involved in the extrinsic apoptotic pathway belong to the TNF receptor
superfamily that include Fas (CD95 or Apol), TNFR1 (TNF receptor 1), death receptor 3
(DR3/Wsl-1/ APO-3/TRAMP/LARD), death receptor 4 (DR4/TRAIL-R1), death receptor 5
(DR5/TRAIL-R2) and DR6. These receptors are characterized by an intracellular death
domain. There are also decoy receptors (i.e. DcR1 and DcR2) that contain no death domain
or a truncated death domain and can bind ligand but cannot signal. Therefore, these decoy
receptors function as antagonists to inhibit death ligand/death receptor-induced apoptosis.
Binding of ligands, such as FasL, tumor necrosis factor-alpha (TNF-alpha) and TNF-related
apoptosis-inducing ligand (TRAIL) to their respective membrane receptors Fas, TNF-R and
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TRAIL-R induces trimerization of the receptors and recruitment of adaptor proteins such as
the Fas-associated death domain (FADD) to the death domain. This then recruits
procaspase-8 which then leads to the formation of the oligomeric death-induced signaling
complex (DISC). DISC in turn promotes activation of caspase-8 and a cascade of other
caspase enzymes that culminates with cell death (reviewed in Elrod and Sun, 2008).

The intrinsic pathway is triggered by various extracellular and intracellular stresses,
including growth factor deprivation, DNA damage, oncogene induction, hypoxia and
cytotoxic drugs. Cellular signals originated by various mechanisms by these different
stresses converge on a cellular target represented by mitochondria. Mitochondrial
membrane permeability is controlled by pro-apoptotic (Bax, Bak, Bad, Bid, Bim, Bmf,
NOXA, PUMA, Bok, Bcl-G, Bfk) and anti-apoptotic (Bcl-2, Bcl-L, Mcl-1, Bcl-w, A1) members
of the Bcl-2 family, inducing or preventing heterodimerization of pro-apoptotic members. A
series of biochemical events is induced that lead to damage of the outer mitochondrial
membrane, with the consequent release of cytochrome c and other pro-apoptotic molecules,
such as Smac/DIABLO, from the inner membrane into the cytosol enabling the formation of
the apoptosome, a large molecular complex formed by cytochrome c, apoptotic protease
activating factor 1 (APAF-1) and caspase-9, and massive activation of caspases. These
proteins all play crucial roles for cell survival and the loss of any of these proteins causes
major deregulation of survival of some cell types (reviewed in Ashkenazi and Herbst, 2008).
Dysregulation of apoptosis plays an important role in the development of a variety of
human pathologies, including cancer and particularly leukemia. The evasion of
programmed cell death has been regarded as one of the six essential alterations in cellular
physiology that dictate the growth of cancer cells and is a hallmark of virtually all cancers.
Moreover, tumors that have alterations in proteins involved in cell death signaling are very
frequently resistant to chemotherapy and are difficult to treat with chemotherapeutic agents
that primarily act by inducing apoptosis (Testa et al., 2007).

Fas, DR4 and DR5 are generally expressed in both normal and malignant cells. An
examination of patients with de novo AML revealed Fas was expressed on eight of nine
(89%) patients tested (Tourneur et al., 2004). Another study showed expression of Fas on
62% of 29 AML patients (Min et al., 2004). Fas mutation was observed in 4/28 CML cases
and none of the six AML cases tested (Rozenfeld-Granot et al., 2001). DR4 and DR5
mutations detected in cancers including chronic myelogenous leukemia were very low (0-
10.6%) (Liu et al., 2005). On the other hand, DR4 and DR5 receptors were positive in 20
(69%) and 29 (100%) patients, respectively. This study also showed, relapse—free survival
was significantly prolonged in patients with CD95-positive AML cells compared with
patients with CD95-negative AML cells (73% versus 38% at 3 years; p = 0.047) using
univariate analysis (Min et al., 2004). This was however not supported by another study on
99 AML patients where multivariate analysis showed no correlation with overall survival
and disease free survival (Brouwer et al., 2001).

Three ligands (TNF-a, FasL and TRAIL) of the TNF-family and their respective four
receptors (TNF-R1, Fas, TRAIL-R1 and TRAIL-R2) are potentially important as anti-cancer
therapeutics. The demonstration that TNF-a selectively kills tumor cells but not normal
cells, set it up for the first molecules to be studied. Unfortunately, marked pro-inflammatory
effects precluded its systemic administration (Buzzoni and Butler, 1996). Fas was also
excluded as agonistic antibodies triggering Fas activation was highly hepatotoxic causing
death in mouse models (Ogasarawa et al., 1993). In contrast, TRAIL and agonistic anti-
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TRAIL-R1/TRAIL-R2 antibodies appear to be well tolerated in wvivo. TRAIL/Apo-2L
exhibited potent anti-tumor activity and induces little cytotoxic effects in immunodeficient
mice xenograft models implanted with several human tumor cell lines (Ashkenazi et al.,
1999). However, the in vivo half-life of the TRAIL-ligand is very short (<4 minutes) (Kelley et
al.,, 2001). Agonistic TRAIL-R1 and TRAIL-R2 antibodies do not bind to TRAIL decoy
receptors, TRAIL-R3 and TRAIL-R4, which are frequently expressed on the membrane of
tumor cells.
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Fig. 1. Extrinsic and intrinsic pathways in apoptosis (see text for further details).

Antisense therapies involved the use of sequences of single-stranded DNA to complement and
bind specific coding regions on mRNA hence forming DNA-mRNA which is then degraded
by a ribonuclease, therefore gene expression and translation are prevented. Most widely
studied were with XIAP (X-linked inhibitor of apoptosis) and antiapoptotic proteins Bcl-2.

Sufficient evidence exists to show that Bcl-2 was overexpressed in AML patients and
predictive of worst outcome (Campos et al., 1993; Andreef and Konopleva, 2002). It seemed
conceivable that Bcl-2 downregulation might lower the apoptotic threshold of leukemic cells
and, through this mechanism, favor response to chemotherapy. Much success has been
achieved. A phase I study using oblimersen, an antisense to Bcl-2, added during induction
and then consolidation therapy, in elderly AML patients, induced remission in 14/27
patients, of which seven relapsed within 12.6 months (Marcucci et al., 2005); In a multicenter
phase II trial, 12/39 relapsed AML patients treated with oblimersen and gentuzamab (anti-
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CD33) achieved complete remission of which 10/12 survived for more than 6 months
(Moore et al., 2004).

XIAP binds and inhibits caspases 3, 7, and 9, mediators of the apoptotic cascade.
Downregulation of XIAP using multiple approaches (e.g., antisense, RNAi, knock-out
animals and cell lines, immuno-depletion) in vitro and in vivo conditions resulted in
increased caspase activation and/or cell death. Antitumor activity was also observed with
the use of second generation anti-sense compound, AEG35156, in xenograft models of
cancer (Lacasse et al., 2005) Results from clinical trials however, have been variable. While
one study on five phase 1 (12-350mg/m2 AEG35156) and eight phase 2 (350 mg/m?2
AEG35156) patients showed increased apoptotic cells and increase response (Bing et al.,
2011) another study on 27 patients randomized to receive high dose Ara-C and idarubicin
with or without AEG35156 (650 mg) found a lower overall response rate in the group which
received the anti-XIAP drug (Schimmer et al., 2011).

The analysis of Mcl-1 protein expression in AML showed great heterogeneity, but the levels
of the protein do not seem to correlate with response to standard chemotherapy (Kaufmann
et al.,, 1998). Bad and Bcl-xL have been shown to be expressed in normal and leukemic
hematopoietic precursor cells. Immature hematopoietic cells do not express Bcl-2 but do
express Bcl-xL. CD34 positive cells express Bcl-2, Bel-xL and Bad. Bcl-2 expression is higher
on CD34 positive cells than on AML cells. Phosphorylated Bad was expressed in AML
(Andreef et al., 1999).

Potential abnormalities of the various initiator caspases in AML have been explored. Levels
of caspase-8, caspase-2 and caspase-3 are heterogeneous in AML. AML with an immature
phenotype (i.e., MO and M1 AML) predominantly express caspase-8L (Mohr et al., 2005).The
significance of caspases as prognostic indicators in AML are unclear as current reports are
still controversial may be due to the different format of molecules examined (Svingen et al.,
2000; Estrov et al., 1998; Holleman et al., 2005).

Expression of pro- and anti-apoptotic molecules continues to be studied in AML to correlate
its mutated state, expression, activity or methylated state with treatment outcome (Testa et
al., 2007). At present, the prognostic utility of measurements of pro- and antiapoptotic
molecules for predicting clinical outcome and response to chemotherapy is uncertain.

5. Drug modulation of signaling, differentiation and apoptotic pathways

The study of cancer cell biology in predicting treatment outcome cannot stop at the
presentation stage as cells continue to be modified by the microenvironment and are
ultimately subjected to chemotherapy. While remarkable progress have been achieved in
targeted therapies, for most tumors chemo- or radiotherapy is likely to remain in the near
future. Both chemo- and radiotherapy are designed to kill cancer cells by damaging nuclear
DNA. DNA damage triggers the DNA damage response (DDR) which have three critical
goals: (i) halting cell cycle progression and division to prevent transfer of DNA damage to
progeny cells; (ii) increasing accessibility of the damage sites to- and engagement of- the
DNA damage repair machinery, and (iii) triggering apoptosis to exterminate cells whose
damaged DNA cannot successfully be repaired (reviewed in Darzynkiewicz et al., 2009).

Chemotherapeutic drugs such as cisplatin, mitomycin, methotrexate, mitoxantrone,
adriamycin, and bleomycin induce Fas expression in human cancer cells, primarily through
a p53-dependent mechanism (Muller et al., 1998). Adriamycin, etoposide, Ara-C, cisplatin
and camptosar were shown to induce the expression of DR4 and DR5 or only DR5

www.intechopen.com



Apoptosis and Apoptosis Modulators in Myeloid Leukemia 415

expression, through either p53-dependent, or p53-independent mechanisms (Wu et al.,
1997; Guan et al., 2001; Sheikh et al., 1998). Etoposide was shown to induce DR5 expression
in human acute leukemia cells (Wen et al., 2000).

To complete induction of cell death, chemotherapeutic drugs have to suppress survival
mediators in activated signaling pathways. Paclitaxel treatment of transfected MDA MB-435
human breast carcinoma cell line was observed to downregulate phosphorylated Akt (Klos
et al., 2003). Nevertheless, chemotherapy induction of cell death is not equal in all cells.
Adriamycin produced differential responses in Akt phosphorylation and kinase activity in a
panel of breast cancer cell lines. While MCF7, MDA468 and T47D cells showed a dose
dependent increase in p-Akt levels; in contrast, SKBR3 and MDA231 cells showed a dose-
dependent decrease and no or minimal change was detected in MDA361, MDA157 and
BT474 cells (Li et al.,, 2005). The diversity in response may also be predictive of a
heterogeneity in treatment outcome.

Other signaling molecules are activated by chemotherapeutic drugs leading to cell death.
Ara-C induced apoptosis in HL-60 cell lines through the activation of p38 (Stadheim et al.,
2000). Adriamycin was shown to activate Jnk in a T cell leukemia cell line (Yu et al., 1999).
Leukemia cell lines (TF-1 and K562) primed for apoptosis were also revealed to stimulate
Jnk and p38 phosphorylation (Tucker et al., 2004)

Certain cytokines have apoptotic activity. TNF-alpha and IFN-gamma induced the
expression of DR5 in a number of cancer cell lines (Meng and El-Deiry, 2000). IFN-gamma
had differential effect on induction of death receptors in colon carcinoma cell lines. While it
raised the levels of CD95 membrane 6 - 8-fold, it had no effect on the TRAIL-receptors (DR4,
DR5, DcR1 and DcR2) (van Geelan et al., 2003). Interferon-alpha was also reported to
increase DR5 expression in human hepatoma (Shigeno et al., 2003).

In contrast some cytokines exert protective effect from chemotherapeutic drug induced cell
death, decreasing the effectiveness of cancer radiotherapy and chemotherapy. Normal
hematopoietic cells, like other normal cell types, die by the process of apoptosis when
deprived of viability inducing cytokines that include colony stimulating factors (CSFs) and
various other cytokines. Induction of apoptosis by cancer chemotherapy such as vincristine,
adriamycin, methotrexate and Ara-C was suppressed by IL (interleukin)-6, IL-3,
granulocyte-CSF (G-CSF), granulocyte-monocyte CSF (GM-CSF) and IFN-gamma in
myeloid leukemia cells (reviewed in Lotem and Sachs, 2002). These cytokines upregulate
pro-survival molecules such as Bcl-2 [IL-2, IL-3, stem cell factor (SCF), IFN-gamma], Bcl-xL
[IL-3, IL-6, IL-7, IL15, GM-CSF, IFN-gamma and erythropoietin (EPO)] and other apoptosis
suppressing genes such as Survivin (Carter et al.,, 2001), X-linked inhibitor of apoptosis
protein (XIAP) and cellular inhibitor of apoptosis 2 (cIAP2) (Digicylioglu and Lipton, 2001)
that are caspase inhibitors and FLICE-like inhibitory protein (FLIP), that may disrupt the
ability of cell surface molecules such as Fas to activate apoptosis (Kovalovich et al., 2001)
Some myeloid leukemic cells are autonomous and do not require an exogenous source of
cytokines for viability (Griffin and Lowenberg,1986), while others do. Thus, it is possible to
suppress leukemia not only by cytotoxic agents or by induction of terminal differentiation,
but also by decreasing the in vivo supply of apoptosis suppressing cytokines or the response
of leukemic cells to these cytokines (reviewed in Sachs, 1996).

A characteristic abnormality of leukemia cells is that they are blocked at an early stage of
their development. Myeloid leukemic cells however can be induced to differentiate to non
dividing mature granulocytes and macrophages by different cytokines, including cytokine
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independent myeloid leukemic cells that were induced to differentiate with IL-6. Different
myeloid leukemic clones however have different blocks and ability to undergo
differentiation by cytokines. Our own work on in vitro cultured AML blasts exhibited
different degrees of spontaneous apoptosis. Univariate analysis of 13 AML patients
revealed blasts with lower levels of cell viability after 72h culture was significantly
correlated with a longer disease free survival . Within a smaller number of samples (n=7)
we observed blasts with lower levels of cell viability were associated with reduced levels
CD34 and higher levels of CD16, indicating an increased level of cell differentiation (Maha
et al., 2008). The observations may indicate an abnormal developmental program in
leukemic cells which may be reprogrammed epigenetically by appropriate differentiation
inducing cytokines. Constitutive expression of transcription factors such as c-myc, c-myb
and E2F1 (Gonda and Metcalf, 1984; Blatt et al., 1992; Melamed et al., 1993) as well as
others such as the homeobox gene Hox B8 (Hox 2.4) (Blatt et al., 1992) or GATA-1 (Tanaka
et al.,, 2000), disrupted the ability of cells to undergo cytokine induced differentiation
(reviewed in Lotem and Sachs, 2002)

Cytokines as a differentiation treatment against leukemia however has been disappointing.
Hematopoietic leukemia cell lines of myeloid origin such as K562, U937, HL-60, CS-1, KG-1,
MUTZ-3, or ex vivo AML or chronic myeloid leukemia (CML) blasts were modestly
permissive to induction of in vitro differentiation by EPO, G-CSF, GM-CSF, IL-4, IL-6, SCF,
or synergistic combinations of several cytokines (Leung et al., 2005; Koss et al., 1996; Goliaei
et al. 1998; Kamano et al., 1994; Kamijo et al., 1990). A niche for hematopoietic cytokines in
differentiation therapy exists in the treatment of congenital neutropenia disorder. The
administration of G-CSF to patients has overcome a block of myeloid differentiation leading
to a substantial prolongation of their survival (Berliner, 2008).

Clinically, differentiation therapy has been most successful in acute promyelocytic leukemia
(APL) using all-trans-retinoic acid (ATRA) as the inducer. This targeted APL cells carrying
the chromosomal translocation between chromosomes 15 and 17 [t(15;17)(q22;q21)].
Subsequently, APL therapy was improved with the combination regimen of ATRA with
cytotoxic chemotherapy. Currently, complete remission rates of up to 90% to 95% are
achievable using ATRA/ATO (arsenic trioxide) and anthracycline-based chemotherapy
(Niu et al., 1999; Soignet et al., 2001; Raffoux et al., 2003; Ghavamzadeh et al., 2006; Mathews
et al., 2006; Estey et al., 2006; Sanz et al., 2008).

Another targeted treatment with tyrosine kinase inhibitor (TKI) imatinib for the treatment of
CMLalso achieved better success. Gefinitib and erlotinib which inhibit the intracellular
tyrosine kinase activity of epidermal growth factor receptor (EGFR), induce a differentiation
program in myeloid leukemia cells that corresponds to neutrophil maturation (Stegmaier et
al., 2005; Boehrer et al., 2008a; Boehrer et al., 2008b).

These results together emphasize further not only the heterogeneity of leukemias but also
complexity of host-cancer interaction and its influence on outcome in survival and also
during induction of cell death.

6. In vivo drug induced molecular profiles: Potential predictor of drug
resistance

The in vivo molecular changes in acute myeloid leukemia cells early after start of
conventional genotoxic chemotherapy are incompletely understood, and it is not known if
early molecular modulations reflect clinical response. As increasing evidence is proposing
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tumor-host mechanisms as important for effective chemotherapy, there is an immediate
need to investigate these issues in vivo in human cancer (Oyan et al., 2009)

For that purpose, blasts from patients undergoing chemotherapy were collected as a
‘natural” and rich source to study response of these cells to the myriad of signals they were
subjected to. Even though cells undergo cell death, as white blood cell counts may decline at
early stages of chemotherapy, very low percentages of apoptotic cells were detected. Oyan
et al. (2009) comparing treated (‘3+7’, idarubicin + Ara-C ) with untreated AML cells from
seven patients, observed upregulation of 113 genes (23 of unknown function) at early time
points (2 - 4 hours) and 108 genes at late time points (18 - 24 hours). Among the 113 genes a
substantial number (31 genes) were related to the tumor suppressor p53 (Oyan et al., 2009).
p53 is implicated to affect a variety of cellular processes, the most undisputed roles of p53
are to induce growth arrest and to induce apoptosis (Bates and Vousden, 1996). p53 is the
most commonly mutated gene in a variety of human cancers (Greenblatt et al., 1994). In
AML however, mutations of p53 are rare, occurring in approximately 5% to 10% (Fenaux et
al., 1992) but in these cases it correlates with worse outcome (Wattel et al., 1994). Wild-type
P53 appears to change the balance in expression of apoptosis-inducing versus apoptosis-
suppressing genes in favor of the former and thus induce apoptosis.

In tune with the above, a significant increase in gene expression of the apoptosis facilitators
PUMA and Bax and a decrease in the Bcl-2 /Bax ratio as well as Bcl-2 /PUMA were
observed for most of the AML samples. The mRNA profile of three other pro-apoptotic
mediators Bad , Bakl and Bim did not change significantly during the first hours, but the
level of gene expression varied across patients. Altogether five tumor necrosis factor-related
receptor genes were modulated 2-4 h after induction therapy (Oyan et al., 2009).

Induction of ligand to death receptor during chemotherapy was also supported by Devemy
et al. (2001) who observed increased TNF transcripts in treated AML cells. We also studied
molecular changes in paired AML samples at diagnosis and during chemotherapy ( Ara-C +
daunorubicin). We showed increased TNF-alpha was significantly higher in chemo-sensitive
patients. Thus, expression of TNF-alpha early during chemotherapy may be a marker to
predict good treatment outcome. In chemo-resistant cases, a higher, though not significant,
percentage of cases expressed IL-1beta and IL-18 (Maha et al., 2009).

We observed a significantly higher percentage of chemo-responsive AML patients with
blasts cells increased for the expression of IL-6. This was consistent with Devemy et al (2001)
who reported that increase of IL-6 transcripts during remission induction therapy of AML
patients was accompanied by a fall in blood count and bone marrow cellularity. The role of
cytokines in the induction of cell differentiation is well established. Oyan et al (2009) also
observed several receptors expressed on monocytic/macrophage lineage cells were
upregulated, probably related to chemotherapy induced differentiation of the leukemic
cells. Thus, induction of cytokines expression in drug responsive AML patients may be due
to induction of cell differentiation.

Comparing blasts profiles before and during early chemotherapy also revealed upregulation
of genes potentially involved in interaction between AML blasts and the host
microenvironment. Chemokine receptors CXCR4 and CX3CR1 were upregulated in the late
phase after start of chemotherapy indicating intention to home into a microenvironment that
favours their growth and survival. This supports the hypothesis that the host response in
chemotherapy is crucial for persistent remission (Oyan et al., 2009).
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We further examined activation of signaling molecules in AML blasts. Chemotherapy
increased the percentage of cases showing phosphorylation of the Akt molecules and
Forkhead transcription factor (FKHR) but no significant differences were observed between
chemo-resistant and chemo-sensitive cases. We however, observed a significantly higher
percentage of chemo-resistant cases showing phosphorylation and inactivation of the pro-
apoptotic Bad molecule. A higher percentage of chemo-sensitive cases were phosphorylated
for p38, and Jnk (Maha et al., 2009). In summary, we were able to show in chemo-sensitive
cases, chemotherapy stimulated IL-6, induced apoptosis by up-regulating TNF-alpha and
downregulated phosphorylated Bad. In reverse, in chemo-resistant cases, cells survived by
maintaining high levels of phosphorylated Bad maybe through protective role of IL-1b and
IL-18 cytokines (Maha et al., 2009).

Most anticancer drugs exert their effects by the induction of apoptosis and/or interfering
with cell cycle progression. Often these drugs give rise to specific patterns of cell death and
cell cycle arrest that vary according to the drug used and the molecular status of the target
cell. Simple in vitro methods may aid in this investigation. Drug cytotoxicity and sensitivity
of individual tumor samples was demonstrated by combining cytochrome c and propidium
iodide staining of DNA content and detected on flowcytometry. This method elucidated
mitochondprial resistance mechanisms which may prove useful in identifying the apoptosis-
sensitive cell cycle phase for a given tumor sample/anticancer drug combination. It offers
the opportunity to design personalized drug regimens and to identify new combined
treatment modalities (Mohr et al., 2004).

7. Conclusion

The heterogeneity in AML continues to elude the best methods to characterize them.
Genome and proteome-wide analysis has further revealed complexity in the makeup of the
leukemic cell. The rapid advancement in targeted therapies implied the urgent need for
alternative therapy and the readiness of the community to embrace it. Nevertheless so far,
combinatorial medicine still holds out as the best option for successful treatment. If targeted
therapies remain the way forward it will eventually bank deeply on the ability to identify
molecular signatures in the individual leading to the establishment of personalized
medicine.

In the meantime, the mechanisms in leukemogenesis, drug resistance and relapse remain an
area of much research. From cell biology to cytogenetics to molecular defects to signaling
pathways, all have contributed to a better understanding of cancer biology. New knowledge
in epigenetics and microRNA remain to be elucidated.

Current diagnostic and prognostication are based on the assumption that the phenotype of
the leukemic cell is static and thus definitive. There is much evidence that suggest
otherwise. Activation of oncogenes leads to constitutive expression of signal transduction
pathways involved in cell survival and anti-apoptotic activities. These pathways are
multiple and made up of a myriad of molecules that are receptive to the environment. The
host-cancer microenvironment is a dynamic microcosm of interacting signals and cascading
molecules that constantly respond to stimuli in the surrounding to find a balance that
maintains survival. In the course of treatment, blast cells are exposed to DNA damaging
cytotoxic agents which trigger a gamut of other signaling mediators to exert the opposite
effect. It would appear that a struggle ensues in which the strength of the victor determines
whether the blast cell would maintain life or be pushed off-balance and replaced with a new
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profile signaling cell death. This new phenotype corresponded to a sensitive response to
chemotherapy. On the other hand, cells may strengthen on pro-survival features which
corresponded with resistance to chemotherapy. A few reports, including ours, are lending
support to this hypothesis.

Unsurprisingly, chemotherapy-induce phenotype is not confined purely to either a survival
or an apoptosis profile but a complex mix of conflicting signals to survive or die in addition
to triggers to shut down cell proliferation, induce terminal differentiation or activate
inflammatory responses. Thus, further elucidation of these profiles would involve
assignment of each of the modulated molecule to its rightful pathway.

The immaturity feature in leukemias will undoubtedly be a factor that will further
compound the heterogeneity in results obtained. An example is the striking correlations
found between lower Bax/Bcl-2 ratio and higher progenitor marker expression, such as
CD34, CD117 and CD133 antigens, confirming the link between this apoptotic index and the
maturation pathways (Del Principe et al., 2005). Attempts to induce cell death by triggering
death receptors has so far achieved mix results with the use of TNF-alpha, Fas ligands and
the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (i.e., DR4 and DR5).
These molecules also selectively kill cancer cells while sparing normal cells (reviewed in
Elrod and Sun, 2008). These results indicate a preferential expression of specific death
receptors on different tissues.

Selection of lab methods for prognostication depends on the ability to identify lineage,
maturation stages, genetic aberrations and activated signal transduction pathways. This feat
may include the difficult task of combining surface markers, cytokines (secreted proteins)
and phosphorylated proteins (unstable intracellular proteins) in the same tube on the same
platform such as flowcytometry. Furthermore many of these proteins such as TNF-a, IL-6,
P38 and Jnk have dual function of pro-survival and pro-apoptosis capabilities depending on
the stimulating conditions cells are exposed to at that period of time. Precise markers will be
required to differentiate these situations. Altogether, all of these add up to an interesting
and exciting field of research for the immediate future.
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