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Hospital, College of Medicine, National Taiwan University, Taipei,  
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1. Introduction 

Acute myeloid leukemia (AML) is a hematologic malignancy with great variability in the 
pathogenesis, clinical features, and treatment outcomes. Advances in molecular research 
have greatly improved our understanding of the leukemogenesis in AML. A two-hit model 
proposes that the development of AML requires the cooperation between at least two 
classes of gene mutations.(Frohling, et al 2005, Gilliland 2002) Class I mutations, such as 
RAS, FLT3, KIT, PTPN11 and JAK2 mutations, involve genes in the kinase signaling 
pathways leading to cell survival and proliferation and Class II mutations, such as 
t(15;17)/PML-RARA, inv(16)/CBFB-MYH11 and t(8;21)/RUNX1-RUNX1T1 fusions, and 
MLL/PTD, and CEBPA and AML1/RUNX1 mutations, involve transcription factors or 
cofactors resulting in impaired hematopoietic differentiation. In addition to genetic 
abnormalities, increasing evidences show that epigenetic deregulations are also critical to 
the pathogenesis of AML.(Chen, et al 2010) Compatible with these findings, several novel 
mutations involving genes related to epigenetic modifications, such as isocitrate 
dehydrogenase 1 (IDH1), IDH2, ten-eleven translocation 2 (TET2), additional sex comb-like 1 
(ASXL1), and DNA methyltransferase 3A (DNMT3A) were detected in AML recently.(Chou, 
et al 2010b, Delhommeau, et al 2009, Gelsi-Boyer, et al 2009, Ley, et al 2010, Mardis, et al 2009, 
Metzeler, et al 2011) 
Risk-adapted treatment may not only improve the prognosis, but also reduce the toxicity 
from the therapy in patients with AML. In addition to the conventional risk factors, such as 
age, white blood cell (WBC) counts and cytogenetics, molecular genetic alterations, such as 
mutations of NPM1, CEBPA, AML1/RUNX1, WT1, FLT3, TET2, and DNMT3A etc., are also 
important prognostic factors in AML patients. Furthermore, the gene mutations which are 
stable during treatment courses can also be used as biomarkers to monitor minimal residual 
disease (MRD). Herein, we will review the gene mutations in AML and discuss their clinical 
implications.  

2. Class I mutations that lead to cell survival and proliferation  

2.1 FLT3 mutations 

FMS-like tyrosine kinase 3 (FLT3), mapped at 13q12, encodes a receptor tyrosine 
kinase.(Kiyoi, et al 1998) FLT3-internal tandem duplication (FLT3-ITD) mutation, one of the 
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most common mutations in AML, was found by Nakao et al in 1996.(Nakao, et al 1996) The 
mutation occurs as a duplication of nucleotide sequences of variable lengths in exons 14 and 
15, leading to addition of repeated peptide in the juxtamembrane domain in the cytoplasm. 
Another activating FLT3 mutation occurs in tyrosine kinase domain (FLT3-TKD), causing 
point mutations, small deletions or insertions mainly at codon 835 or 836 within the 
activation loop of the second kinase domain.(Bacher, et al 2008, Yamamoto, et al 2001) The 
FLT3 mutant protein constitutively activates the cascade of FLT3 signaling in the absence of 
FLT3 ligand promoting cell proliferation and decreased apoptosis.  
FLT3-ITD occurs in about 25% of adult AML and shows association with normal karyotype 
and NPM1 mutation. The patients with this mutation have higher WBC counts, shorter 
disease-free survival (DFS) and overall survival (OS), and increased relapse rate.(Kottaridis, et 
al 2001, Kottaridis, et al 2002) While mutant size may not be related to prognosis, higher 
mutant levels are associated with higher relapse rate and shorter survival.(Gale, et al 2008) 
Absence of FLT3-ITD combined with NPM1 mutation is regarded as a favorable prognostic 
genotype.(Gale, et al 2008, Schlenk, et al 2008) Up to one third of AML patients with FLT3-ITD 
can lose the mutation at disease relapse, indicating that this mutation is much less stable than 
NPM1 mutation, and is not a good marker for disease monitoring.(Chou, et al 2011b, 
Kottaridis, et al 2002, Palmisano, et al 2007, Shih, et al 2002) FLT3-TKD occurred in about 4%-
10% of AML patients.(Yamamoto, et al 2001, Bacher, et al 2008) AML with this mutation also 
shows specific clinical and biologic features, such as elevated WBC counts at diagnosis, higher 
frequency of normal karyotype and mutations in NPM1, CEBPA, and NRAS. However, the 
prognostic significance is still inconclusive.(Bacher, et al 2008, Whitman, et al 2008)   

2.2 RAS mutations  

The RAS proteins are a large superfamily of low molecular-weight guanine nucleotide-

binding proteins, which are activated by cytokine receptors in response to ligand 

stimulation and therefore control cell proliferation and survival of hematopoietic 

progenitors.(Downward 2003, Reuther and Der 2000, Shields, et al 2000, Wittinghofer 1998) 

Three members of the RAS family, HRAS, KRAS and NRAS, are found to be activated by 

mutations in human cancers.(Bos 1989, Downward 2003) Almost all RAS mutations occur by 

single nucleotide substitutions in codons 12, 13 and 61.(Bos, et al 1987, Farr, et al 1988, Senn, 

et al 1988, Toksoz, et al 1989) NRAS and KRAS mutations are found in approximately 12-30% 

and 9-14%, respectively, of AML patients. In a large cohort study of 2502 AML patients, the 

mutations were found much prevalent in patients with inv(16)/t(16;16) and inv(3)/t(3;3), 

but seldom found in those with t(15;17) and complex karyotype.(Bacher, et al 2006)  

The prognostic relevance of RAS mutation in AML has not been firmly established. Some 
studies showed RAS mutation predicted poor prognosis(De Melo, et al 1997, Kiyoi, et al 
1999, Meshinchi, et al 2003), some showed no impact on clinical outcome,(Bacher, et al 2006, 
Bowen, et al 2005, Radich, et al 1990, Ritter, et al 2004) whereas others found RAS mutations 
were associated with a favorable prognosis.(Coghlan, et al 1994, Neubauer, et al 1994) 
However, higher dose of cytarabine may decrease the relapse rate in RAS-mutated AML 
patients.(Neubauer, et al 2008) 

2.3 KIT mutations 

KIT, a member of type III receptor tyrosine kinase family, is important for the development 
of hematopoietic progenitor cells and also crucial in leukemogenesis.(Blume-Jensen and 
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Hunter 2001, Bowen, et al 2005, Radich, et al 1990) High expression of KIT (CD117) is a 
common finding in AML,(Ikeda, et al 1991, Reuss-Borst, et al 1994) and activation mutations 
of KIT, most commonly affecting exons 8 and 17 can be identified in 20–45% of AML with 
inv (16) and 12.8–46.8% of AML with t(8;21), but infrequently found in other AML 
types.(Beghini, et al 2000, Beghini, et al 2004, Care, et al 2003) Most, though not all, 
studies,(Boissel, et al 2006, Care, et al 2003, Schnittger, et al 2006) showed KIT mutation was 
associated with inferior outcome in the core binding factor (CBF) AML, especially KIT-D816 
mutations in t(8;21)/RUNX1-RUNX1T1–positive AML.  

2.4 JAK2 mutations 

JAK2 is a nonreceptor tyrosine kinase. The JAK2 V617F mutation induces the activation of 
JAK2-STAT5 signal transduction pathway and then substantially alters the proliferation and 
self-renewal of hematopoietic precursors.(Liu, et al 1999, Walz, et al 2006) Although the JAK2 
V617F mutation is a common genetic event in the patients with myeloproliferative 
neoplasms (MPN),(Baxter, et al 2005, Goldman 2005, Kralovics, et al 2005, Levine, et al 2005b) 
it is seldom found (<1%-2%) in de novo AML patients.(Frohling, et al 2006, Illmer, et al 2007, 
Lee, et al 2006, Levine, et al 2005a) Illmer et al showed 3.6% of patients with CBF AML had 
JAK2 V617F mutation and these patients had an aggressive clinical course and poor 
outcome.(Illmer, et al 2007)  

2.5 PTPN 11 mutations 

SHP-2 is encoded by PTPN11 which is located on chromosome 12q24. The protein is a non-

receptor tyrosine phosphatase participating in intracellular signaling elicited by a number of 

growth factors, cytokines, hormones and adhesion molecules.(Neel, et al 2003, Tartaglia, et al 

2004) Germline PTPN11 mutations were first reported by Tartaglia et al in patients afflicted 

with Noonan syndrome.(Tartaglia, et al 2002, Tartaglia, et al 2001) Subsequently, somatic 

PTPN11 mutations were also found in patients with juvenile myelomonocytic leukemia, and 

myelodysplastic syndrome (MDS).(Chen, et al 2006, Loh, et al 2004b, Tartaglia, et al 2003) The 

PTPN11 mutation is not a frequent molecular event (4-5%) in AML.(Hou, et al 2008, Loh, et al 

2004a, Tartaglia, et al 2005) In a study of 272 primary AML patients, we found this gene 

mutation was closely associated with older age, French-American-British (FAB) M4/M5 

subtype, CD14 expression, normal karyotype and NPM1 mutation.(Hou, et al 2008) Loh et al 

and Tartaglia et al revealed that the PTPN11 mutation had no prognostic implication for 

pediatric patients with AML;(Loh, et al 2004a, Tartaglia, et al 2005) however, this mutation 

may be a poor-risk factor for OS in adult AML patients without NPM1 mutations.(Hou, et al 

2008) 

3. Class II mutations that impair hematopoietic differentiation 

3.1 CEBPA mutations 

CCAAT/enhancer binding protein  (C/EBP) is a 42-kDa transcription factor that 

possesses a DNA-binding basic leucine zipper domain (bZIP) in the COOH terminus and 

two transactivation domains TAD 1 and TAD 2 in the NH2 terminus.(Friedman and 

McKnight 1990) As a transcription factor, it plays a crucial role in granulocytic 

differentiation and diminished C/EBP activity contributes to myeloid progenitor 

transformation.(Cammenga, et al 2003, Oelgeschlager, et al 1996, Smith, et al 1996) CEBPA 
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mutations are observed in 7% to 18% of patients with AML.(Frohling, et al 2004, Lin, et al 

2005, Pabst, et al 2001b, Preudhomme, et al 2002) Two major types of CEBPA mutations have 

been identified; one alters COOH terminal bZIP of CEBPA, resulting in decreased DNA-

binding and/or dimerization activity and the other disrupts translation of the C/EBP NH2 

terminus, thereby up-regulates an alternative 30-kDa isoform with dominant-negative effect 

on the full-length wild-type C/EBP.(Koschmieder, et al 2009, Lin, et al 1993, Pabst, et al 

2001b) Most patients with CEBPA mutations harbored biallelic mutations involving both the 

NH2-terminal TAD region and the COOH-terminal bZIP domain.(Hou, et al 2009, Lin, et al 

2005, Pabst, et al 2009, Renneville, et al 2009a) CEBPA mutations occur most frequently in 

patients with FAB subtype M2, and are closely associated with CD7, CD15, CD34, and HLA-

DR expression on the leukemic cells, higher circulatory blasts and normal 

cytogenetics.(Frohling, et al 2004, Lin, et al 2005, Pabst, et al 2001a, Zhang, et al 1997) This 

mutation seems quite stable during AML evolution and may be a potential marker to 

monitor MRD. The fact that none of the AML patients who do not have CEBPA mutations at 

diagnosis acquire the mutation at relapse suggests that this mutation may not play a major 

role in the progression of AML.(Lin, et al 2005, Tiesmeier, et al 2003) Several studies have 

shown mutant CEBPA predicts favorable outcome in AML patients with intermediate or 

normal cytogenetics.(Barjesteh van Waalwijk van Doorn-Khosrovani, et al 2003, Bienz, et al 

2005, Frohling, et al 2004, Preudhomme, et al 2002) The favorable impact of CEBPA 

mutations in the AML patients is only observed in the absence of FLT3/ITD or other 

associated cytogenetic abnormalities.(Renneville, et al 2009a) Moreover, only double CEBPA 

mutations, but not single CEBPA mutation, are associated with better prognosis and define a 

distinct genetic entity.(Dufour, et al 2010, Hou, et al 2009, Pabst, et al 2009, Wouters, et al 

2009)         

3.2 MLL -PTD 

The MLL partial tandem duplication (MLL-PTD) most commonly results from a duplication 

of a genomic region encompassing exon 5 through exon 11/12 and insertion of the 

duplicated segment into intron 4 of the full-length MLL gene.(Caligiuri, et al 1994, 

Schichman, et al 1994, Whitman, et al 2005) The duplication involves a portion of the gene 

corresponding to the amino terminus of the MLL protein which contains the AT hook and a 

region of homology to DNA methyltransferase motifs.(Schichman, et al 1995) The 

mechanism by which MLL-PTD contributes to leukemic phenotype is not clear, but may be 

through silencing of the wild-type MLL by epigenetic mechanisms.(Dimartino and Cleary 

1999, Whitman, et al 2005) This mutation is found in 5-12% of patients with cytogenetically 

normal AML (CN-AML),(Dohner, et al 2002, Munoz, et al 2003, Schnittger, et al 2000, Shiah, 

et al 2002) and up to 54% of AML patients with trisomy 11.(Rege-Cambrin, et al 2005) 

Compared with patients without MLL-PTD, patients with this mutation more often have 

FAB M2 subtype, CD11b expression, wild-type NPM1 and high BAALC expression, but 

lower WBC counts, less frequently extramedullary involvement and FAB M4/M5 subtype at 

diagnosis.(Shiah, et al 2002, Whitman, et al 2007) The presence of MLL-PTD predicts shorter 

remission duration and worse OS;(Dohner, et al 2002, Munoz, et al 2003, Shiah, et al 2002) 

however, more intensive consolidation therapy that includes hematopoietic stem cell 

transplantation (HSCT) during first complete remission (CR) may reverse the poor 

prognosis conferred by this mutation.(Whitman, et al 2007)  

www.intechopen.com



 
Genetic Alterations and Their Clinical Implications in Acute Myeloid Leukemia 

 

167 

3.3 AML1/RUNX1  

The AML1/RUNX1 gene(Ito 2008), consisting of 10 exons (exons 1-6, 7A, 7B, 7C and 8), is one 
of the most frequently deregulated genes in leukemia through chromosomal translocations 
and point mutations.(Friedman 2009, Niebuhr, et al 2008, Osato 2004, Yamagata, et al 2005) 
Monoallelic germ-line mutation of the RUNX1 gene occurs in rare cases of familial platelet 
disorder with predisposition to AML (FPD/AML).(Michaud, et al 2002) Acquired RUNX1 
mutation was frequently reported in therapy-related MDS or MDS/AML.(Harada, et al 
2004) The incidence of RUNX1 mutation in AML varies from 2.9% to 46% depending on the 
population selected, the regions of RUNX1 screened, and the methods used.(Dicker, et al 
2007, Preudhomme, et al 2000, Tang, et al 2009) In a large cohort study of 470 adult patients 
with de novo non-M3 AML, we detected RUNX1 mutation in 13.2% of cases. The RUNX1 
mutation is closely associated with older age, immature FAB subtypes (M0/M1) and specific 
cytogenetic abnormalities such as trisomy 8 (+8), +13, or +21.(Dicker, et al 2007, Schnittger, et 
al 2011, Tang, et al 2009) None of the patients with t(8;21), inv(16), t(15;17) or 11q23 
translocation shows RUNX1 mutation.(Tang, et al 2009) One half of RUNX1-mutated 
patients have concurrently other gene mutations, mostly (83.9%) Class I mutations, 
especially FLT3/ITD, FLT3/TKD and N-RAS mutations(Tang, et al 2009) which all result in 
hyperactivation of the receptor tyrosine kinase (RTK)-RAS signalling pathways.(Niimi, et al 
2006) This finding is consistent with the two-hit model of leukemogenesis.(Frohling, et al 
2005, Gilliland 2002) Further, the RUNX1 mutation is mutually exclusive with CEBPA and 
NPM1 mutations, but closely associated with MLL/PTD.(Schnittger, et al 2011, Tang, et al 
2009) The mutation may be lost at relapse in RUNX1-mutated patients, but none of the 
patients who do not harbor RUNX1 mutation at diagnosis acquire novel mutation at 
relapse.(Tang, et al 2009) RUNX1 mutation is an independent poor-risk factor for DFS and 
OS in de novo AML patients.(Gaidzik, et al 2011, Schnittger, et al 2011, Tang, et al 2009) In 
addition, HSCT seems to ameliorate the poor survival impact of RUNX1 
mutations.(Gaidzik, et al 2011, Tang, et al 2009) 

4. Other mutations  

4.1 NPM1 mutations 

NPM1 mutation in AML was first identified by Dr. Falini’s group, who noticed that some 
AML patients’ leukemia cells exhibited aberrant cytoplasmic localization of NPM1 protein, 
which normally located in nucleoli in non-mitotic cells.(Falini, et al 2005) Subsequent 
investigation revealed a tetra-nucleotide insertion near the C-terminal end of the coding 
sequence of NPM1. The most frequent form of mutation is duplication of TCTG (type A, 
c.860_863dupTCTG), resulting in alteration of the peptide sequence from DLWQWRKSL* to 
DLCL AVEEVSLRK*. NPM1 mutation occurs in about 30% of AML, more frequently in 
elder patients,(Falini, et al 2011, Falini, et al 2005) and is highly associated with normal 
karyotype, and FLT3/ITD, but significantly exclusive with CEBPA mutation, favorable 
karyotype, and expression of CD34 and HLA-DR.(Boissel, et al 2005, Chou, et al 2006, 
Dohner, et al 2005, Falini, et al 2005, Schnittger, et al 2005, Suzuki, et al 2005, Verhaak, et al 
2005)  NPM1 mutation generally renders better prognosis,(Falini, et al 2005) especially when 
FLT3-ITD is absent.(Schlenk, et al 2008, Thiede, et al 2006) Further refinement of patient 
groups disclosed 3 groups with distinct prognosis: good (NPM1+/FLT3-ITD-), intermediate 
(NPM1+/FLT3-ITD+ or NPM1-/FLT3-ITD-), and poor (NPM1-/FLT3-ITD+).(Gale, et al 2008) 
NPM1 mutation seems quite consistent with disease status.(Chou, et al 2007, Schnittger, et al 
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2009) Serial analyses of NPM1 mutations showed the mutation disappeared at CR, but the 
same mutation usually reappeared at relapse. This feature makes NPM1 mutation an ideal 
marker for MRD monitoring. Studies have shown NPM1 mutant levels reflect disease status, 
predict impending relapse, and bring prognostic implication.(Chou, et al 2007, Gorello, et al 
2006, Kronke, et al 2011, Schnittger, et al 2009) 

4.2 WT1 mutations  

The Wilms’ Tumor 1 (WT1) gene, encoding a zinc-finger transcription factor, is 

physiologically expressed in hematopoietic stem cells and involved in regulation of cellular 

growth and differentiation.(Baird and Simmons 1997, Ellisen, et al 2001) WT1 was initially 

identified as a tumor suppressor gene,(Haber, et al 1990) but was later found to be 

overexpressed in AML as well as other cancers and thus was suggested to be an 

oncogene.(Bergmann, et al 1997, King-Underwood, et al 1996, Miwa, et al 1992) Mutations in 

WT1 gene are found in about 7-13% of CN-AML patients with hotspots in the four Cys-His 

zinc finger domains on exons 7 and 9.(Gaidzik, et al 2009, Hou, et al 2010, King-Underwood, 

et al 1996, Paschka, et al 2008, Virappane, et al 2008) The precise role of WT1 mutations in the 

leukemogenesis remains to be defined. The majority of WT1 mutations are frame-shift 

mutations occurring in exon 7, followed by single amino acid substitutions in exon 9; 

whereas frame-shift mutations in exon 9 are rare. WT1 mutations occur with similar 

frequencies in patients with normal karyotype and those with abnormal cytogenetics.(Hou, 

et al 2010) Chromosomal abnormality t(7;11)(p15;15), a translocation resulting in 

NUP98/HOXA9 fusion, is closely associated with WT1 mutation.(Hou, et al 2010) WT1 

mutations are positively associated with FLT3/ITD and CEBPA mutations.(Gaidzik, et al 

2009, Renneville, et al 2009b) Paschka et al showed patients with WT1 mutations had higher 

expression of ERG and BAALC than patients without.(Paschka, et al 2008) WT1 mutation is 

an independent poor prognostic factor in CN-AML as well as total AML patients.(Hou, et al 

2010, Paschka, et al 2008, Renneville, et al 2009b, Virappane, et al 2008), though different 

results have been reported.(Gaidzik, et al 2009, Santamaria, et al 2009)   

5. Mutations of genes that involve epigenetic modifications 

Different from genetic abnormalities which result in DNA sequence changes, epigenetic 
dysregulation causes aberrant gene expression without alteration of gene sequences.(Baylin 
and Ohm 2006, Chen, et al 2010, Jones and Baylin 2002) Epigenetic regulation includes DNA 
methylation, histone modifications, such as methylation, acetylation and phosphorylation, 
etc, and microRNA expression. (Baylin and Ohm 2006, Chen, et al 2010, Jones and Baylin 
2002) The recent findings that mutations of genes related to epigenetic modifications, such 
as IDH1, IDH2, TET2, ASXL1 and DNMT3A, are detected in AML patients provide new 
insights into mechanisms of epigenetic deregulation in the leukemogenesis.  

5.1 TET2 mutations  

TET2 protein can catalyze the conversion of 5-methylcytosine (5-mC) of DNA to 5-
hydroxymethylcytosine (5-hmC), with ferrous iron and α-ketoglutarate (α-KG) as cofactors, 
indicating a role of TET2 in DNA methylation.(Ito, et al 2010) Mutations of TET2 result in 
global DNA hypermethylation.(Figueroa, et al 2010) TET2 mutation was originally identified 
in myeloid malignancies via single nucleotide polymorphism and comparative genomic-
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hybridization array, which revealed common deletion of this gene in chromosome 
4q.(Delhommeau, et al 2009) Subsequent studies confirmed this mutation in MDS, MPN, 
MDS/MPN, and secondary AML, with frequencies around 10% to 26%, 7% to 13%, 22% to 
58% and 24% to 32%, respectively.(Bacher, et al 2010, Couronne, et al 2010, Flach, et al 2010, 
Jankowska, et al 2009, Kosmider, et al 2009a, Kosmider, et al 2009b, Langemeijer, et al 2009, 
Saint-Martin, et al 2009, Schaub, et al 2010, Smith, et al 2010, Tefferi, et al 2009a, Tefferi, et al 
2009b) TET2 mutation occurs in 18.0% to 23% of CN-AML patients.(Chou, et al 2011a, 
Metzeler, et al 2011) It is closely associated with older age, higher WBC count, but mutually 
exclusive with IDH mutation.(Chou, et al 2011a, Metzeler, et al 2011) In our study of AML 
patients with and without chromosomal abnormalities, TET2 mutation was also found to be 
positively associated with normal karyotype, intermediate-risk cytogenetics, isolated 
trisomy 8, NPM1 mutation, and ASXL1 mutation.(Chou, et al 2011a) In European 
LeukemiaNet (ELN) favorable-risk group (patients with CN-AML with mutated CEBPA 
and/or mutated NPM1 without FLT3-ITD),(Dohner, et al 2010) but not intermediate-1 risk 
group (CN-AML with wild-type CEBPA and wild-type NPM1 and/or FLT3-ITD), TET2-
mutated patients were found to have a lower CR rate, shorter DFS and OS, compared with 
TET2-wild type patients.(Metzeler, et al 2011) However, we did not have the same finding, 
but found that TET2 mutation was an unfavorable prognostic factor in patients with 
intermediate-risk cytogenetics, and its negative impact was further enhanced when the 
mutation was combined with FLT3-ITD, NPM1-wild, or unfavorable genotypes (other than 
ELN favorable-risk group).(Chou, et al 2011a) More studies are needed to clarify the 
prognostic implication of TET2 mutations in AML. 

5.2 IDH mutations  

IDH1 and IDH2 genes encode two isoforms of isocitrate dehydrogenase which catalyzes the 

carboxylation of isocitrate to α-KG. IDH1 and IDH2 mutations were first detected in patients 

with brain tumors.(Parsons, et al 2008) Later, IDH1 mutations (Mardis, et al 2009) and then 

IDH2 mutations were discovered in AML patients, too.(Abbas, et al 2010, Marcucci, et al 

2010, Ward, et al 2010) IDH1 mutations affect arginine residue in position 132 (R132) and 

IDH2 mutations, in R140 and R172 of exon 4. IDH mutations occur at low frequencies (3.6% 

to 5%) in MDS,(Kosmider, et al 2010) and in chronic-phase MPN (about 1.8%)(Pardanani, et 

al 2010), but obviously increased as these diseases progress to AML (7.5% to 

21%),(Kosmider, et al 2010, Pardanani, et al 2010) indicating a role of IDH mutations in 

leukemogenesis. In de novo AML, IDH2 mutations occur more frequently than IDH1 

mutations, with frequencies of 11% vs. 6% in patients younger than 60 years,(Abbas, et al 

2010) 15.4% vs. 7.7% in total patients,(Ward, et al 2010) and 19% vs. 14% in adults with 

normal karyotype.(Marcucci, et al 2010) The underlying mechanism of IDH mutations in the 

leukemogenesis of AML remains to be determined, but several implications of IDH1/2 

mutations in AML have been generated. First, IDH mutations are loss-of-function 

mutations, as mutant IDH proteins show decreased enzyme activities,(Zhao, et al 2009) and 

have dominant-negative effects on wild type IDH upon homodimerization.(Zhao, et al 2009) 

Secondly, IDH mutations are also gain-of-function mutations because the mutant proteins 

can convert α-KG to 2-hydroxyglutarate (2-HG), a metabolite that may contribute to tumor 

growth through activating hypoxia-inducing factor-1α (HIF-1α).(Dang, et al 2009, Reitman, 

et al 2010, Ward, et al 2010) Thirdly, IDH mutations reduce production of α-KG, a cofactor of 

TET2, thus impair catalytic function of TET2 resulting in global DNA hypermethylation, 
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similar to the effect of TET2 mutations. 2-HG converted from α-KG in IDH-mutated cells is 

also shown to inhibit TET2-mediated hydroxymethylation of cytosine, indicating 

overlapping effects of these two mutations.(Xu, et al 2011) Compatible with this, IDH and 

TET2 mutations are mutually exclusive in AML patients.(Figueroa, et al 2010, Metzeler, et al 

2011) 

Studies have shown similar clinical features between AML with IDH1 and IDH2 mutations, 

including strong association of both mutations with normal karyotype and isolated 

monosomy 8, but inverse correlation with expression of HLA-DR. However, some 

differences exist. IDH1 mutation shows strong correlation with NPM1 mutation, and FAB 

M1 subtype, but is inversely associated with FAB M4 subtype and expression of CD13 and 

CD14. On the other hand, mutation of IDH2 is associated with higher platelet counts, but is 

inversely correlated with expression of CD34, CD15, CD7, and CD56, and is mutually 

exclusive with WT1 mutation and chromosomal translocations involving CBF. While there is 

no impact of IDH1 mutation on patient survival, multivariate analysis reveals IDH2 

mutation as an independent favorable prognostic factor,(Chou, et al 2010a, Chou, et al 

2011c,) but different results have also been reported.(Marcucci, et al 2010, Thol, et al 2010) 

More intriguing are the differences of clinical presentations between patients with R140 and 

R172 mutations. Compared with IDH2 R140 mutation, IDH2 R172 mutation is associated 

with younger age, lower WBC count and LDH level, and is mutually exclusive with NPM1 

mutation. Recent studies also reported worse prognosis in AML patients bearing IDH2 

R172Q,(Boissel, et al 2010, Marcucci, et al 2010) while IDH2 R140Q, in the contrary, conferred 

a better prognosis.(Green, et al 2010) Why mutations in different isoforms or loci of the same 

gene render distinct clinical and prognostic features remains to be investigated. Serial 

analyses of IDH1/2 mutations at both diagnosis and relapse confirmed high stability of these 

two mutations.(Chou, et al 2010a, Chou, et al 2011c)   

5.3 ASXL1 mutations  

Recently, mutations in exon 12 of Additional sex comb-like 1 (ASXL1) gene were found in 
various types of myeloid malignances, including MDS, MPN, MDS/MPN, and 
AML.(Abdel-Wahab, et al 2010, Boultwood, et al 2010, Carbuccia, et al 2009, Carbuccia, et al 
2010, Gelsi-Boyer, et al 2009) ASXL1, a human homologue of the Additional sex combs (Asx) 
gene of Drosophila, mapped to chromosome 20q11, a region commonly involved in 
cancers.(Fisher, et al 2003) It consists of an N-terminal ASX Homology (ASXH) domain and a 
C-terminal plant homeodomain (PHD) zinc finger region.(Fisher, et al 2003, Fisher, et al 
2006) In human, the exact function of ASXL1 mutation remains to be defined, but it is 
involved in regulation of histone methylation by cooperation with heterochromatin protein-
1 (HP1) to modulate the activity of LSD1, a histone demethylase for H3K4 and H3K9.(Dange 
and Colman 2010, Wang, et al 2009) ASXL1 mutations in exon 12 are found with an 
incidence of 10.8%, 8.9% and 12.9% among total cohort of patients with de novo AML, those 
with normal karyotype and abnormal cytogenetics, respectively.(Chou, et al 2010b)  Most of 
the mutations appear to be either non-sense or frame-shift mutations, leading to disruption 
of the plant hoemodomain (PHD) at the C terminal of ASXL1, which is well conserved 
among different species and can recognize methylated H3K4.(Abdel-Wahab, et al 2010, 
Fisher, et al 2003, Pena, et al 2006, Shi, et al 2006, Wysocka, et al 2006) Up to two thirds of 
mutations occurred at c.1934dupG (an extra G after 1934th nucleotide of the coding sequence 
of ASXL1) causing G646WfsX12 (change of glycine to tryptophan at amino acid 646, with a 
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premature stop codon after another 11 amino acid).(Chou, et al 2010b) The mutation was 
closely associated with older age, male gender, isolated trisomy 8, RUNX1 mutation, and 
expression of HLA-DR and CD34, but inversely associated with t(15;17), complex 
cytogenetics, FLT3-ITD, NPM1 mutations, WT1 mutations, and expression of CD33 and 
CD15.(Chou, et al 2010b) Patients with ASXL1 mutations had a shorter OS than those 
without, but the mutation was not an independent adverse prognostic factor in multivariate 
analysis. Sequential analyses showed that the original ASXL1 mutations could disappear at 
relapse and/or refractory status in some patients.  Moreover, two out of the 109 ASXL1-wild 
patients acquired a novel ASXL1 mutation at relapse.(Chou, et al 2010b) Thus, the ASXL1 
mutation status can change during disease evolution in a few patients.  

5.4 DNMT3A mutations  

By whole genome sequencing on a single patient with normal cytogenetics, Ley and his 
colleagues found a mutation in DNMT3A gene, which encodes the enzyme DNA 
methyltransferase 3A which belongs to the family of DNMTs that catalyze the addition of 
methyl group to cytosine of CpG dinucleotide.(Ley, et al 2010) In this seminal study, 
DNMT3A mutation was detected in 22.1% of AML patients. Most of the mutations occurred 
at R882 amino acid. Others included mis-sense, non-sense and frame-shift mutations. 
Although DNMT3A is directly related to DNA methylation, the real significance of this 
mutation to leukemogenesis remains unknown. First, the wide spreading of mutation spots 
in DNMT3A suggests a loss-of-function mutation, but the remarkable aggregate of mutation 
at R882 implies a gain of function. Reduction of DNA methylation in 182 genomic areas was 
noted in R882 mutation-harboring AML cells, however, the methylation patterns of vast 
majority of cytosine methylation regions are the same as wild type.(Ley, et al 2010)  
DNMT3A mutations are associated with intermediate or normal cytogenetics, higher WBC 

counts, FAB M4/M5 subtypes, and FLT3-ITD, NPM1, and IDH1 mutations but mutually 

exclusive with favorable karyotypes.(Ley, et al 2010, Thol, et al 2011) In our study of 500 

AML patients, DNMT3A mutations were identified in 14% of total patients and 22.9% of 

patients with CN-AML. (Hou, et al 2011) In addition to the findings shown in previous 

reports, (Ley, et al 2010, Thol, et al 2011) we for the first time identified the DNMT3A 

mutation was positively associated with PTPN11 and IDH2 mutations, but negatively 

associated with CEBPA mutation.(Hou, et al 2011) Intriguingly, the majority (97.1%) of the 

DNMT3A-mutated patients showed additional molecular alterations at diagnosis. This 

mutation renders poor OS among all AML patients, patients with a normal karyotype, and 

those with FLT3-ITD.(Hou, et al 2011, Ley, et al 2010, Thol, et al 2011) Importantly, DNMT3A 

mutation is an independent poor prognostic factor. Further, DNMT3A mutation is rather 

stable during disease progression and can be a potential biomarker for monitoring of 

MRD.(Hou, et al 2011)  

6. Gene mutations as markers to monitor Minimal Residual Disease (MRD)  

Since gene mutations are theoretically absent in healthy people and restricted in leukemia 
cells, it is reasonably to monitor MRD by detection of gene mutations. This is an advantage 
of leukemia over solid tumors in that leukemia cells are indigenous to blood and marrow, 
which are easy for access. There are two critical considerations of MRD monitoring by gene 
mutations: one is the stability of the mutations, and the other is the pattern of mutation. An 
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ideal MRD marker should be very consistent with disease status, while those that may 
disappear after disease evolution are not suitable for this purpose. Also, if the mutation 
appears as a point mutation, probably only qualitative rather than absolute quantitative 
measurement can be achieved because of inevitable background signals due to minimal 
sequence differences between wild-type and mutant alleles. Moreover, if the mutation 
occurs sporadically across the whole coding sequence without a hot spot, the absolute 
quantification techniques (usually fluorescence-based real-time PCR) would become very 
cumbersome. 
Among the mutations in AML, NPM1 mutation is perhaps the most useful and intensively 
studied marker of MRD because this mutation is quite stable, relatively prevalent, highly 
concentrated at a hot spot, and has 4 nucleotide insertion, which can be clearly 
discriminated from the wild-type allele in quantitative real-time PCR.(Chou, et al 2007, 
Schnittger, et al 2009) Studies have shown NPM1 mutant levels reflect disease status, predict 
impending relapse, and bring prognostic implication.(Chou, et al 2007, Gorello, et al 2006, 
Kronke, et al 2011, Schnittger, et al 2009) Another stable marker is IDH mutation. IDH1 and 
IDH2 mutations are stable and highly consistent with disease status.(Chou, et al 2010a, 
Chou, et al 2011c) We have developed a single-tube, highly sensitive and specific PCR 
method to detect all IDH1 mutations at R132 residue.(Chou, et al 2010c) However, the IDH 
mutation is not a good marker for MRD monitoring because the minimal difference between 
the point mutation and normal allele. 
Other gene mutations are not readily applicable in MRD monitoring.  FLT3-ITD is not stable. 

This mutation can disappear at disease relapse in a significant proportion of patients,(Chou, 

et al 2011b, Shih, et al 2002) although this length mutation can be readily and sensitively 

detected by GeneScan-based method.(Stirewalt and Radich 2003) DNMT3A mutation at 

R882, which occurs at a frequency of up to 60% of all DNMT3A mutation, can be a potential 

marker for qualitative assessment of MRD, but awaits for further testing.(Ley, et al 2010, 

Thol, et al 2011, Hou, et al 2011) ASXL1 and TET2 mutations do not have hot spots and are 

not stable during AML evolution.  Other mutations have lower incidences and have not 

been well investigated in MRD monitoring.  

7. Risk-adapted treatment according to gene mutations in AML patients 

The ultimate goal of risk stratification according to molecular alterations is to explore 

personalized therapy, thereby reduce the risk of relapse and treatment-related side effects. 

How to integrate gene mutations into clinical management is a crucial issue. The choice 

between high-dose Cytarabine (HDAC) and allogeneic HSCT as the post-remission therapy 

is traditionally based on the cytogenetic risks and the patients’ condition. The meta-analysis 

showed that allogeneic HSCT resulted in better clinical outcome in younger AML patients 

with intermediate- and unfavorable-risk cytogenetics in first CR.(Cornelissen, et al 2007, 

Koreth, et al 2009) Although allogeneic HSCT reduces the risk of relapse and is a curative 

approach for AML patients, the higher rate of transplantation related morbidity and 

mortality counterbalances its beneficial effect. Thus, allogeneic HSCT is currently 

recommended only in those patients with acceptable benefit-risk ratio. Given that AML is a 

heterogenous disease especially in intermediate-risk cytogenetics and CN-AML, increasing 

understanding of novel molecular genetic markers in AML leukemogenesis can further help 

to reassess the value of HSCT in different prognostic groups.  

www.intechopen.com



 
Genetic Alterations and Their Clinical Implications in Acute Myeloid Leukemia 

 

173 

Recently, ELN proposed a new classification to stratify AML patients into different risk 
groups according to cytogenetics and genetic alterations.(Dohner, et al 2010) In addition to 
CBF AML, CN-AML with mutated NPM1 without FLT3-ITD and those with mutated 
CEBPA are categorized as favorable-risk groups; the regimen using repetitive cycles of 
HDAC as postremission therapy is considered beneficial for this group of patients. 
Allogeneic HSCT in first CR is not beneficial for CN-AML patients with mutated NPM1 
without FLT3-ITD,(Schlenk, et al 2008) and probably neither for those with mutated CEBPA. 
Allogeneic HSCT is generally not considered in patients with CBF AML in first CR, but may 
be indicated in those who harbor KIT mutations because such patients did poorly with 
chemotherapy. For the patients with adverse-risk genotype (other than mutated NPM1 
without FLT3/ITD or mutated CEBPA), an allogeneic HSCT from a matched related donor 
or even unrelated donor in first CR is suggested.(Basara, et al 2009, Cornelissen, et al 2007, 
Slovak, et al 2000, Suciu, et al 2003, Tallman, et al 2007) Recent studies showed that allogeneic 
HSCT may be considered in patients with FLT3-ITD even if definite results of prospective 
trials are not available.(Bornhauser, et al 2007, Gale, et al 2005, Schlenk, et al 2008) Besides, 
allogeneic HSCT also ameliorates the poor survival impact of RUNX1 mutations on AML 
patients.(Gaidzik, et al 2011, Tang, et al 2009) The treatment of choice for patients with other 
recently documented poor-risk mutations, such as WT1, TET2 and DNMT3A mutations is 
currently unclear.  
In addition to chemotherapy and transplantation, targeted therapies aiming to specific 
molecular pathway are evolving as an adjunctive treatment in AML patients. FLT3/ITD and 
FLT3/TKD occur in about 20-35% of AML patients. Since FLT3 is a receptor tyrosine kinase 
and promote cancer phenotypes, it is an ideal target for therapy. Several FLT3 inhibitors, 
such as sorafenib, PKC-412 (midostaurin), sunitinib, semaxanib, tandutinib, AC220, KW-
2449, and CEP701 (lestaurtinib) have been used in clinical trials and some effects were 
noticed in relapse/refractory setting.(Levis, et al 2002, Metzelder, et al 2009, Stone, et al 2005, 
Zhang, et al 2008) An ongoing international intergroup trial (10603 RATIFY), incorporating 
midostaurin into induction, consolidation or maintenance setting is currently underway. 
All-trans retinoic acid in combination with chemotherapy was found to be beneficial for 
NPM1-mutated patients (Burnett, et al 2010); however this preliminary result was not 
confirmed by the other study done on younger patients.(Schlenk, et al 2009) Tyrosine kinase 
inhibitor, such as imatinib, might be of clinical value in treatment of patients with KIT 
mutations.(Kindler, et al 2004, Kindler, et al 2003, Kohl, et al 2005) Epigenetic modification 
through demethylation agent azacitidine or decitibine may play a role in the treatment of 
patients with MLL rearrangement,(Altucci and Minucci 2009) and those with genetic 
alterations relating to epigenetic changes, such as TET2 mutations.(Itzykson, et al 2011) 
Besides, recent report demonstrated that inhibition of glutaminase preferentially killed 
IDH1-mutated glial cells, which were more dependent on glutaminolysis pathway to supply 
α-KG, so glutaminase itself could be a potential therapeutical target.(Seltzer, et al 2010) 
Eventually, it may be reasonable to use combinations of molecularly targeted therapies and 
chemotherapy to improve the clinical outcome in AML patients. 
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