
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322403403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

Motion Planning for Mobile Robots Via
Sampling-Based Model Predictive Optimization

Damion D. Dunlap1, Charmane V. Caldwell2, Emmanuel G. Collins2,
Jr. and Oscar Chuy2

1Naval Surface Warfare Center - Panama City Division
2Center for Intelligent Systems, Control and Robotics (CISCOR)

FAMU-FSU College of Engineering
U.S.A

1. Introduction

Path planning is a method that determines a path, consecutive states, between a start state
and goal state, LaValle (2006). However, in motion planning that path must be parameterized
by time to create a trajectory. Consequently, not only is the path determined, but the time the
vehicle moves along the path. To be successful at motion planning, a vehicle model must be
incorporated into the trajectory computation. The motivation in utilizing a vehicle model is
to provide the opportunity to predict the vehicle’s motion resulting from a variety of system
inputs. The kinematic model enforces the vehicle kinematic constraints (i.e. turn radius, etc.),
on the vehicle that limit the output space (state space). However, the kinematic model is
limited because it does not take into account the forces acting on the vehicle. The dynamic
model incorporates more useful information about the vehicle’s motion than the kinematic
model. It describes the feasible control inputs, velocities, acceleration and vehicle/terrain
interaction phenomena. Motion planning that will require the vehicle to perform close to
its limits (i.e. extreme terrains, frequent acceleration, etc.) will need the dynamic model.
Examples of missions that would benefit from using a dynamic model in the planning are
time optimal motion planning, energy efficient motion planning and planning in the presence
of faults, Yu et al. (2010).
Sampling-based methods represent a type of model based motion planning algorithm. These
methods incorporate the system model. There are current sampling-based planners that
should be discussed: The Rapidly-Exploring Random Tree (RRT) Planner, Randomized
A⋆ (RA⋆) algorithm, and the Synergistic Combination of Layers of Planning (SyCLoP)
multi-layered planning framework. The Rapidly-Exploring Random Tree Planner was one
of the first single-query sampling based planners and serves as a foundation upon which
many current algorithms are developed. The RRT Planner is very efficient and has been used
in many applications including manipulator path planning, Kuffner & LaValle. (2000), and
robot trajectory planning, LaValle & Kuffner (2001). However, the RRT Planner has the major
drawback of lacking any sort of optimization other than a bias towards exploring the search
space. The RA⋆ algorithm, which was designed based on the RRT Planner, addresses this
drawback by combining the RRT Planner with an A⋆ algorithm. The SyCLoP framework is

11

www.intechopen.com

2 Will-be-set-by-IN-TECH

presented because it not only represents a very current sampling-based planning approach,
but the framework is also one of the few algorithms to directly sample the control inputs.
Originally, this research began by applying nonlinear model predictive control (NMPC),
implemented with sequential programming, to generate a path for an autonomous
underwater vehicle (AUV), Caldwell et al. (2006). As depicted in Fig. 1, NMPC was attractive
because it is an online optimal control method that incorporates the system model, optimizes
a cost function and includes current and future constraints all in the design process. These
benefits made planning with NMPC promising, but there were weaknesses of NMPC that
had to be addressed. Since MPC must solve the optimization problem online in real-time,
the method was limited to slow systems. Additionally, even though models were used in
the design process, linear models where typically used in order to avoid the local minima
problem that accompany the use of nonlinear models. In order to exploit the benefits of MPC
these issues had to be addressed.

Fig. 1. The stages of the MPC algorithm.

Since the robotics and AI communities had the same goal for planning but have different
approaches that tend to yield computationally efficient algorithms, it was decided to integrate
these various concepts to produce a new enhanced planner called Sampling Based Model
Predictive Control (SBMPC). The concept behind SBMPC was first presented in Dunlap et al.
(2008). Instead of utilizing traditional numerical methods in the NMPC optimization phase in
Fig. 1, Sampling Based Model Predictive Optimization (SBMPO) uses A⋆ type optimization
from the AI community. This type of graph search algorithm results in paths that do not
become stuck in local minima. In addition, the idea of using sampling to consider only a
finite number of solutions comes from robotic motion planning community. Sampling is the
mechanism used to trade performance for computational efficiency. Instead of sampling in
the output space as traditional sampling based planning methods, SBMPC follows the view
of traditional MPC and SyCLoP, which samples the input space. Thus, SBMPC draws from
the control theory, robotics and AI communities.
Section 2 of this chapter will present the novel SBMPC algorithm in detail and compare
Sampling Based Model Predictive Optimization and traditional Sampling based methods.
Section 3 provides simulation results utilized on an AUV kinematic model. Section 4 presents

212 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 3

results of both an AUV and an unmanned ground vehicle (UGV) that perform steep hill
climbing. An evaluation of SBMPO tuning parameters on the computation time and cost
is presented in Section 5. Finally, Section 6 concludes and presents future work.

2. SBMPC algorithm

This section provides the SBMPC Algorithm and the comparison of SBMPO to other
traditional sampling based methods. However, first the variables used in the algorithm are
described. The SBMPO algorithm and terms follow closely with Lifelong Planning A⋆ (LPA⋆),
Koenig et al. (2004). However, the variation is in the Generate Neighbor algorithm which
generates the next state by integrating the system model and considering constraint violations.
All the components of SBMPC are described in this Section, but the later simulation results in
Section 3 and 4 utilize only the SBMPO and Generate Neighbors algorithms.

2.1 SBMPC variables

SBMPC operates on a dynamic directed graph G which is a set of all nodes and edges currently
in the graph. SUCC(n) represents the set of successors (children) of node n ∈ G while
PRED(n) denotes the set of all predecessors (parents) of node v ∈ G. The cost of traversing
from node n′ to node n ∈ SUCC(n′) is denoted by c(n′, n), where 0 < c(n′, n) < ∞. The
optimization component is called Sampling Based Model Predictive Optimization and is an
algorithm that determines the optimal cost (i.e. shortest path, shortest time, least energy, etc.)
from a start node nstart ∈ G to a goal node ngoal ∈ G.
The start distance of node v ∈ G is given by g⋆(v) which is the cost of the optimal path
from the given start node vstart to the current node v. SBMPC maintains two estimates of
g⋆(v). The first estimate g(v) is essentially the current cost from vstart to the node v while the
second estimate, rhs(v), is a one-step lookahead estimate based on g(v′) for v′ ∈ PRED(v)
and provides more information than the estimate g(v). The rhs(v) value satisfies

rhs(v) =

{

0, if v = vstart

minv′∈PRED(v)(g(v′) + c(v′, v)), otherwise.
(1)

A node v is locally consistent iff g(v) = rhs(v) and locally inconsistent iff g(v) �= rhs(v). If all
nodes are locally consistent, then g(v) satisfies (1) for all v ∈ G and is therefore equal to the
start distance. This enables the ability to trace the shortest path from vstart to any node v by
starting at v and traversing to any predecessor v′ that minimizes g(v′) + c(v′, v) until vstart is
reached.
To facilitate fast re-planning, SBMPC does not make every node locally consistent after an
edge cost change and instead uses a heuristic function h(v, vgoal) to focus the search so that
it only updates g(v) for nodes necessary to obtain the optimal cost. The heuristic is used to
approximate the goal distances and must follow the triangle inequality: h(vgoal , vgoal) = 0 and

h(v, vgoal) ≤ c(v, v′) + h(v′, vgoal) for all nodes v ∈ G and v′ ∈ SUCC(s). SBMPO employs the
heuristic function along with the start distance estimates to rank the priority queue containing
the locally inconsistent nodes and thus all the nodes that need to be updated in order for them
to be locally consistent. The priority of a node is determined by a two component key vector:

key(v) =

(

k1(v)
k2(v)

)

=

(

min(g(v), rhs(v)) + h(v, vgoal)
min(g(v), rhs(v))

)

(2)

213Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

4 Will-be-set-by-IN-TECH

where the keys are ordered lexicographically with the smaller key values having a higher
priority.

2.2 SBMPC algorithm

The SBMPC algorithm is comprised of three primary methods: Sampling Based Model
Predictive Control, Sampling Based Model Predictive Optimization and Generate Neighbor.
The main SBMPC algorithm follows the general structure of MPC where SBMPC repeatedly
computes the optimal path between the current state xcurrent and the goal state xgoal . After a
single path is generated, xcurrent is updated to reflect the implementation of the first control
input and the graph G is updated to reflect any system changes. These steps are repeated until
the goal state is reached.
The second algorithm SBMPO is the optimization phase of SBMPC that provides the
prediction paths. SBMPO repeatedly generates the neighbors of locally inconsistent nodes
until vgoal is locally consistent or the key of the next node in the priority que is not smaller than
key(vgoal). This follows closely with the ComputeShortestPath algorithm of LPA⋆ Koenig et al.
(2004). The node, vbest, with the highest priority (lowest key value) is on top of the priority que.
The algorithm then deals with two potential cases based on the consistency of the expanded
node vbest. If the node is locally overconsistent, g(v) > rhs(v), the g-value is set to rhs(v)
making the node locally consistent. The successors of v are then updated. The update node
process includes recalculating rhs(v) and key values, checking for local consistency and either
adding or removing the node from the priority que accordingly. For the case when the node is
locally underconsistent, g(v) < rhs(v), the g-value is set to ∞ making the node either locally
consistent or overconsistent. This change can affect the node along with its successors which
then go through the node update process.
The Generate Neighbor algorithm determines the successor nodes of the current node. In the
input space, a set of quasi-random samples are generated that are then used with a model
of the system to predict a set of paths to a new set of outputs (nodes) with xcurrent being
the initial condition. The branching factor B (sampling number) determines the number of
paths that will be generated and new successor nodes. The path is represented by a sequence
of states x(t) for t = t1, t1 + ∆t, · · · , t2, where ∆t is the model step size. The set of states
that do not violate any state or obstacle constraints is called X f ree. If x(t) ∈ X f ree, then the
new neighbor node xnew and the connecting edge can be added to the directed graph, G. If
xnew ∈ STATE_GRID, then the node currently exists in the graph and only the new path to
get to the existing node needs to be added.

Algorithm 1 Sampling Based Model Predictive Control

1: xcurrent ⇐ start
2: repeat
3: SBMPO ()
4: Update system state, xcurrent

5: Update graph, G
6: until the goal state is achieved

2.3 Comparison of SBMPO and traditional sampling based methods

This section discusses the conceptual comparison between SBMPO and traditional
Sampling-based methods. Similar to many other planning methods, there have been many
variants of the sampling based methods that seek to improve various aspects of their

214 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 5

Algorithm 2 SBMPO ()

1: while PRIORITY.TopKey() < vgoal .key ‖ vgoal .rhs �= vgoal .g do
2: vbest ⇐ PRIORITY.Top()
3: Generate_Neighbors (vbest, B)
4: if vbest.g > vbest.rhs then
5: vbest.g = vbest.rhs
6: for all v ∈ SUCCvbest

do
7: Update the node, v
8: end for
9: else

10: vbest.g = ∞

11: for all v ∈ SUCC(vbest) ∪ vbest do
12: Update the node, v
13: end for
14: end if
15: end while

Algorithm 3 Generate_Neighbors (Vertex v, Branching B)

1: for i = 0 to B do
2: Generate sampled input, u ∈ R

u ∩ U f ree

3: for t = t1 : dtinteg : t2 do
4: Evaluate model: x(t) = f (v.x, u)
5: if x(t) �∈ X f ree(t) then
6: Break
7: end if
8: end for
9: xnew = x(t2)

10: if xnew ∈ STATE_GRID and xnew ∈ X f ree then
11: Add Edge(v.x, xnew) to graph, G
12: else if xnew ∈ X f ree then
13: Add Vertex(xnew) to graph, G
14: Add Edge(v.x, xnew) to graph, G
15: end if
16: end for

performance. It is not possible to cover every variant, but the purpose of this section is to
put in perspective how SBMPO is a variant of the traditional sampling-based method.

2.3.1 Traditional sampling based methods

Examples of traditional sampling based motion planning algorithms include RRTs, LaValle
(1998), and probability roadmaps,. A common feature of each of these algorithms is they
work in the output space of the robot and employ various strategies for generating samples
(i.e., random or pseudo-random points). In essence, as shown in Fig. 2, sampling based
motion planning methods work by using sampling to construct a tree that connects the root
(initial state) with a goal region.
Most online sampling based planning algorithms follow this general framework:

215Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

6 Will-be-set-by-IN-TECH

Fig. 2. A tree that connects the root with a goal region.

1. Initialize: Let G(V; E) represent a search graph where V contains at least one vertex (i.e.,
node), typically the start vertex and E does not contain any edges.

2. Vertex Selection Method (VSM): Select a vertex u in V for expansion.

3. Local Planning Method (LPM): For some unew ∈ C f ree (free states in the configuration
space) and attempt to generate a path τs : [0, 1] →: τ(0) = u and τ(1) = unew. The path
must be checked to ensure that no constraints are violated. If the LPM fails, then go back
to Step 2.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from u to unew. Insert unew into V
if it does not already exist.

5. Check for a Solution: Check G for a solution path.

6. Return to Step 2: Repeat unless a solution has been found or a failure condition has been
met.

The model is part of the local planning method (LPM), which determines the connection
between the newly generated sample and the existing graph. Essentially, it is a two-point
value boundary problem.

2.3.2 Similarities of SBMPO and traditional sampling based methods

There are some similarities that both SBMPO and traditional sampling methods share.

2.3.2.1 Sampling

As its name implies, SBMPC is dependent upon the concept of sampling, which has arisen as
one of the major paradigms for robotic motion planning community, LaValle (2006). Sampling
is the mechanism used to trade performance for computational efficiency. SBMPO employs
quasi-random samples of the input space. Properly designed sampling algorithms provide

216 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 7

theoretical assurances that if the sampling is dense enough, the sampling algorithm will find
a solution when it exists (i.e. it has some type of completeness).

2.3.3 Differences of SBMPO and traditional sampling based methods

Since SBMPO is the outgrowth of both MPC and graph search algorithms, there are some
fundamental differences in SBMPO and traditional sampling based methods.

2.3.3.1 Input sampling

There are two primary disadvantages to using output (i.e., configuration space) sampling as
is commonly done in traditional sampling based methods. The first limitation lies within the
VSM, where the algorithm must determine the most ideal node to expand. This selection
is typically made based on the proximity of nodes in the graph to a sampled output node
and involves a potentially costly nearest neighbor search. The LPM presents the second and
perhaps more troublesome problem, which is determining an input that connects a newly
sampled node to the current node. This problem is essentially a two-point boundary value
problem (BVP) that connects one output or state to another. There is no guarantee that
such an input exists. Also, for systems with complex dynamics, the search itself can be
computationally expensive, which leads to a computationally inefficient planner. A solution
to the problem is to introduce input sampling. The concept of input sampling is not new and
has been integrated into methods like the SyCLoP algorithm, Plaku et al. (2010). When the
input space is sampled as proposed in this chapter, the need for a nearest-neighbor search is
eliminated, and the LPM is reduced to the integration of a system model, and therefore, only
generates outputs that are achievable by the system. Sampling the control inputs directly
also prevents the need to determine where to connect new samples to the current graph and
therefore avoid costly nearest-neighbor searches.
In order to visualize this concept, consider an Ackerman steered vehicle at rest that has
position (x, y) and orientation θ, which are the outputs of the kinematic model. The model
restricts the attainable outputs. All the dots in Fig. 3 are output nodes obtained from sampling
the output space even though only the dots on the mesh surface can physically be obtained
by the vehicle. There are a larger number of dots (sampled outputs) in the output space that
do not lie in the achievable region (mesh surface). This means those sampled outputs are
not physically possible, so traditional sample based methods would have to start the search
over. This leads to an inefficient search that can substantially increase the computational
time of the planner. The intersection of the grid lines in Fig. 3 correspond to the points in
output space generated by a uniform sampling of the model inputs, the left and right wheel
velocities. In essence, sampling in the input space leads to more efficient results since each of
the corresponding dots in the output space is allowed by the model.

2.3.3.2 Implicit state grid

Although input sampling avoids two of the primary computational bottle-necks of
sampling-based motion planning, there is also a downside of input sampling. Input sampling
has not been used in most planning research, because it is seen as being inefficient. This type
of sampling can result in highly dense samples in the output space since input sampling does
not inherently lead to a uniformly discretized output space, such as a uniform grid. This
problem is especially evident when encountering a local minimum problem associated with
the A⋆ algorithm, which can occur when planning in the presence of a large concave obstacle
while the goal is on the other side of the obstacle. This situation is considered in depth for
discretized 2D path planning in the work of Likhachev & Stentz (2008), which discusses that

217Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

8 Will-be-set-by-IN-TECH

Fig. 3. Illustration of the potential inefficiency of sampling in the output space.

the A⋆ algorithm must explore all the states in the neighborhood of the local minimum, shown
as the shaded region of Fig. 4, before progressing to the final solution. The issue that this
presents to input sampling methods is that the number of states within the local minimum is
infinite because of the lack of a discretized output space.

Goal

Fig. 4. Illustration of the necessity of an implicit state grid.

The second challenge resulting from the nature of input sampling as well as the lack of a grid
is that the likelihood of two outputs (states) being identical is extremely small. All A⋆-like

218 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 9

algorithms utilize Bellman’s optimality principle to improve the path to a particular output
by updating the paths through that output when a lower cost alternative is found. This feature
is essential to the proper functioning of the algorithm and requires a mechanism to identify
when outputs (states) are close enough to be considered the same. The scenario presented in
Fig. 5 is a situation for which the lack of this mechanism would generate an inefficient path.
In this situation, node v1 is selected for expansion after which the lowest cost node is v3. The
implicit state grid then recognizes that v2 and v3 are close enough to be considered the same
and updates the path to their grid cell to be path c since c < a + b.

Goala

c b

start
v1

v2 v3

Fig. 5. Illustration of the necessity of an implicit state grid.

The concept of an implicit state grid, Ericson (2005), is introduced as a solution to both of the
challenges generated by input sampling. The implicit grid ensures that the graph generated
by the SBMPC algorithm is constructed such that only one active output (state) exists in each
grid cell, limiting the number of nodes that can exist within any finite region of the output
space. In essence, the implicit state grid provides a discretized output space. It also allows
for the efficient storage of potentially infinite grids by only storing the grid cells that contain
nodes, which is increasingly important for higher dimensional problems, Ericson (2005). The
resolution of the grid is a significant factor in determining the performance of the algorithm
with more fine grids in general requiring more computation time, due to the increased number
of outputs, with the benefit being a more optimal solution. Therefore, the grid resolution is
a useful tuning tool that enables SBMPC to effectively make the trade off between solution
quality and computational performance.

2.3.3.3 Goal directed optimization

There is a class of discrete optimization techniques that have their origin in graph theory and
have been further developed in the path planning literature. In this study these techniques
will be called goal-directed optimization and refer to graph search algorithms such as Dijkstra’s
algorithm and the A⋆, D⋆, and LPA⋆ algorithms Koenig et al. (2004); LaValle (2006). Given a
graph, these algorithms find a path that optimizes some cost of moving from a start node to

219Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

10 Will-be-set-by-IN-TECH

some given goal. In contrast to discrete optimization algorithms such as branch-and-bound
optimization Nocedal & Wright (1999), which “relaxes" continuous optimization problems,
the goal-directed optimization methods are inherently discrete, and have often been used for
real-time path planning.
Generally, sampling based methods such as RRTs do not incorporate any optimization and
terminate when an initial feasible solution is determined. In essence, instead of determining
an optimal trajectory, traditional sampling based methods only attempt to find feasible
trajectories. To remedy these problems, the Randomized A⋆ (RA⋆) algorithm was introduced
in Diankov & Kuffner. (2007), as a hybrid between RRTs and the A⋆ search algorithm. Similar
to RA⋆, SBMPO incorporates a goal directed optimization to ensure the trajectory is optimal
subject to the sampling.
Although not commonly recognized, goal-directed optimization approaches are capable of
solving control theory problems for which the ultimate objective is to plan an optimal
trajectory and control inputs to reach a goal (or set point) while optimizing a cost function.
Hence, graph search algorithms can be applied to terminal constraint optimization problems
and set point control problems. To observe this, consider the tree graph of Fig. 2. Each node of
this tree can correspond to a system state, and the entire tree may be generated by integrating
sampled inputs to a system model. Assume that the cost of a trajectory is given by the sum of
the cost of the corresponding edges (i.e., branches), where the cost of each edge is dependent
not only on the states it connects but also the inputs that are used to connect those states. The
use of the system model can be viewed simply as a means to generate the directed graph and
associated edge costs.

3. 3D motion planning with kinematic model

In order to demonstrate SBMPO capabilities, two local minima scenarios will be considered: 1)
a concave obstacle and 2) a highly cluttered area. The purpose is to test how SBMPO handles
these types of local minima environments. In this section, the kinematic model of an AUV is
used for the motion planning simulations.

⎡

⎣

ẋ
ẏ
ż

⎤

 =

⎡

⎣

cθcψ sφsθcψ − cφsψ cφsθcψ − sφsψ
cθsψ sφsθsψ − cφcψ cφsθsψ − sφcψ

sθ sφcθ cφcθ

⎤

⎡

⎣

u
v
w

⎤

⎡

⎣

φ̇

θ̇
ψ̇

⎤

 =

⎡

⎣

1 sφtθ cφtθ
0 cφ −sφ
0 sφsθ cφsθ

⎤

⎡

⎣

p
q
r

⎤

 , (3)

where u, v, w are linear velocities in the local body fixed frame along the x, y, z axes,
respectively and p, q, r are the angular velocities in the local body fixed frame along the x, y, z
axes, respectively. The AUV posture can be defined by six coordinates, three representing the
position x1 = (x, y, z)T and three corresponding to the orientation x2 = (φ, θ, ψ)T , all with
respect to the world frame. The constraints for the vehicle is given in Table 1.
The basic problem in each of these scenarios is to use the kinematic model to plan a minimum
distance trajectory for the AUV from a start posture to a goal position while avoiding the
obstacles. A 2.93 GHz Intel Core 2 Duo desktop was used for simulations in this Section.

3.1 AUV concave obstacle

As previously stated, SBMPO can handle local minimum problems that other path planning
methods have difficulties handling. A local minima problem is a possible scenario a vehicle

220 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 11

Inputs min max States min max

u 0 m/s 2 m/s x -5 m 30 m

v -0.1 m/s 0.1 m/s y -5 m 30 m

w -0.1 m/s 0.1 m/s z -20 m 0 m

p −5◦/s 5◦/s φ −15◦ 15◦

q −5◦/s 5◦/s θ −15◦ 15◦

r −15◦/s 15◦/s ψ −360◦ 360◦

Table 1. Simulation Constraints for the 3D Kinematic Model

can be presented with that has a set of concave obstacles in front of the goal. Note that
whenever a vehicle is behind an obstacle or group of obstacles and has to increase its distance
from the goal to achieve the goal, it is in a local minimum position.
The simulations were run with a sampling number of 25 and grid resolution of 0.1m. The
vehicle has a start posture of (5m, 0m,−10m, 0◦) and a goal position of (5m, 10m,−10m). As
shown in Fig. 6, SBMPO does not get stuck behind the obstacles, but successfully determines
a trajectory in 0.59s. The successful traversal is largely due to the optimization method used in
SBMPO. The goal-directed optimization allows a more promising node (lower cost) to replace
a higher cost node as shown in the the example in Fig 7. Goal-directed optimization can
accomplish this because they compute each predicted control input separately and backs up
when needed as illustrated by the iterations corresponding to the 3rd, 4th, and 5th arrays.
This feature enables it to avoid local minima. It converges to the optimal predicted control
sequence {u∗(k)} (denoted by the right-most array), which is the optimal solution subject to
the sampling, whereas a nonlinear programming method may get stuck at a local minimum.
In addition, these results show that SBMPO’s implementation of the implicit state grid helps
prevent the issues with input sampling discussed in Section 2.3.3.2. Since the implicit grid is
applied, it does not require significant time to explore the area around the concave obstacles.

3.2 AUV cluttered multiple obstacles

In Section 3.1, there was one local minimum in the scenario. However, some underwater
environments will require the AUV to navigate around multiple cluttered obstacles. This
can produce a more complex situation because now there are multiple local minima . The
simulations in this section assume there were random start, goal and obstacle locations in
order to represent 100 different multiple obstacle underwater environment configurations.
The start locations X, Y, Z and ψ were chosen randomly in the respective ranges [0 20]m,
[0 1]m, [−12 − 8]m, [30◦ 150◦], and the goal was chosen randomly in the respective ranges
[0 20]m, [19 20]m, [−12 − 8]m. In addition, there were 40 randomly generated obstacles. The
100 simulation runs had a sampling number of 25. Fig. 8 exemplifies one random scenarios
generated. In the scenarios SBMPO was capable of allowing the AUV to maneuver in the
cluttered environment successfully reaching the goal.
For a vehicle to be truly autonomous, it must be capable of determining a trajectory that will
allow it to successfully reach the goal without colliding with an obstacle. In these simulations
SBMPO was 100% successful in assuring the vehicle accomplished this task. It is important
to consider both SBMPO’s mean computation time of 0.43s and median computation time of
0.15s to compute these trajectories. Since the scenarios generated were random, there were a
few scenarios created that were more cluttered which caused a larger CPU time. This is the
reason for the discrepancy between the mean and median computation times.

221Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

12 Will-be-set-by-IN-TECH

Fig. 6. A local minima scenario.

Fig. 7. Example of goal-directed optimization.

4. 3D motion planning with dynamic model

In some scenarios it is sufficient to plan using the kinematic model. However, in cases where
the vehicle is pushed to an extreme, it is necessary to consider the vehicles dynamic model
when planning.

4.1 Steep hill climbing

In this section, two different types of vehicles, an AUV and an UGV, consider steep hill motion
planning using their respective dynamic model. The vehicle must be capable of acquiring a
certain amount of momentum to successfully traverse the hill. In order to determine if the
vehicle can produce the correct amount of momentum, a dynamic model is not physically
capable of traversing.

4.1.1 AUV

The AUV dynamic model used for these simulations can be found in Healey & Lienard (1993).
The model constraints are given in Table 2. The SBMPO parameters are in Table 3. The steep

222 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 13

Fig. 8. A random start, goal and obstacle scenario.

hill was constructed utilizing 6 sphere obstacles constraints stacked to give a peak at 8m. The
AUV’s start location was (−4m 17m − 18m 0◦ 0◦ 0◦) and goal was (19m 7m − 14m).

States min max States min max Inputs min max

x -30 m 130 m u 0 m/s 2 m/s δr −22◦ 22◦

y -30 m/s 130 m v -2 m/s 2 m/s δs −22◦ 22◦

z -20 m 5 m w -2 m/s 2 m/s δb −22◦ 22◦

φ −15◦ 15◦ p −5◦/s 5◦/s δbp −22◦ 22◦

θ −85◦ 85◦ q −5◦/s 5◦/s δbs −22◦ 22◦

ψ −360◦ 360◦ r −15◦/s 15◦/s n 0 rpm 1500 rpm

Table 2. The simulation constraints for the AUV dynamic model.

Model Time Steps 0.5s

Control updates 10s

No. of Input Samples 20

Grid Resolution 0.5

Table 3. The simulation parameters for the AUV dynamic model.

A dynamic model was utilized to determine the path over a steep hill. The AUV was not able
to determine a path because the vehicle starts too close to the steep hill to gain momentum.
As depicted in Fig. 9, the dynamic model was able to predict that there was not enough
momentum to overcome the hill in such a short distance. Note the vehicle constraints do
not allow this type of AUV to have a negative velocity which would allow the vehicle to be
able to reverse in order to acquire enough momentum. As a result of the vehicle constraint,
Fig 9 shows the unsuccessful path. It is not the SBMPO algorithm that cannot successfully

223Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

14 Will-be-set-by-IN-TECH

determine a path, but the vehicle constraint (dynamic model) that predicts there was not
enough momentum to overcome the hill in such a short distance. In order to demonstrate
this consider the same scenario using the kinematic model in Fig 10. SBMPO does determine
a path, but this is only because the kinematic model utilized does not provide all the vehicle
information to correctly predict the vehicle motion. This further shows the importance of
using the proper model when motion planning. The trajectory determined by the planner is
only as accurate as the model used.

Fig. 9. The AUV dynamic model steep hill scenario.

4.1.2 UGV

This section discusses momentum-based motion planning applied to UGV steep hill climbing.
Note that steep hill climbing capability of UGVs is very important to aid the completion of
assigned tasks or missions. As an additional requirement, the motion planning is constrained
such that the UGV has a zero velocity at the goal (e.g. top of the hill) and this has a unique
application, such as reconnaissance, where UGV needs to climb and stop at the top of the hill
to gather information. In this section, the momentum-based motion planning is implemented
using SBMPO with UGV’s dynamic model and a minimum time cost function. The minimum
time cost function is employed to achieve zero velocity at the goal.
Figure 11 shows a scenario where a UGV is at the bottom of a steep hill and the task is to climb
to the top of the hill. The general approach is to rush to the top of the hill. However, if the
torque of the UGV and the momentum are not enough, it is highly possible that the UGV will
fail to climb as shown in Fig. 11(a). An alternative approach for the UGV is to back up to gain
more momentum and rush to the top of the hill as shown in Fig 11(b). The aforementioned
approaches can be done using SBMPO with UGV’s dynamic model. SBMPO can generate a
trajectory for successful steep hill climbing, and it can also determine if the UGV needs to back
up or how far the UGV needs to back up to successfully climb the hill.

224 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 15

Fig. 10. The AUV kinematic model steep hill scenario.

(a) (b)

Fig. 11. A steep hill climbing scenario for a UGV (a) the UGV rushes to the top of the hill
without enough momentum and torque and leads to unsuccessful climb (b) the UGV backs
up to gain momentum and leads to a successful climb.

A minimum time cost function is used to implement steep hill climbing with zero velocity at
the goal. To formulate the minimum time, consider a system described by

q̈ = u; q(0) = q0, q̇(0) = ω0, (4)

where u is bounded by −a ≤ u ≤ b. The state space description of (4) is given by

q̇1 = q2, q̇2 = u; q1(0) = q0
∆
= q1,0, q2(0) = ω0

∆
= q2,0, (5)

where q1 = q and q2 = q̇. It is desired to find the minimum time needed to transfer the system

from the original state (q1,0, q2,0) to the final state (q1, f , 0), where q1, f
∆
= q f . Since the solution

for transferring the system from (q1,0, q2,0) to the origin (0, 0) is easily extended to the more
general case by a simple change of variable, for ease of exposition it is assumed that

q1, f = 0. (6)

225Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

16 Will-be-set-by-IN-TECH

The minimum time control problem described above can be solved by forming the
Hamiltonian and applying the “Minimum Principle” (often referred to as “Pontryagin’s
Maximum Principle”) as described in Bryson & Ho (1975). In fact, the above problem is solved
in Bryson & Ho (1975) for the case when the parameters a and b are given by a = b = 1.
Generalizing these results yields that the minimum time is the solution t f of

t2
f −

2q2,0

a t f =
q2

2,0+2(a+b)q1,0

ab , if q1,0 +
q2,0|q2,0|

2b < 0,

t2
f +

2q2,0

b t f =
q2

2,0−2(a+b)q1,0

ab , if q1,0 +
q2,0|q2,0|

2a > 0.

(7)

The minimum time (t f) computed using (7) corresponds to a “bang-bang” optimal controller
illustrated by Fig. 12, which shows switching curves that take the system to the origin using
either the minimum or maximum control input (i.e., u = −a or u = b). Depending on the
initial conditions, the system uses either the minimum or maximum control input to take the
system to the appropriate switching curve. For example, if (q1,0, q2,0) corresponds to point p1

in Fig. 12, then the control input should be u = −a until the system reaches point p2 on the
switching curve corresponding to u = b. At this point the control is switched to u = b, which
will take the system to the origin.

Fig. 12. Illustration of bang-bang minimum time optimal control which yields the minimum
time solution t f of (7).

To demonstrate steep hill climbing, the UGV starts at (0,0,0)[m] and the goal is located at
(2.5,0,0.76)[m]. As shown in Fig. 13, the hill is described with the following parameters:
R = 1m, l = 0.75m, d = 0.4m and θ = 30o. A UGV dynamic model discussed in Yu et al.
(2010) is used and it is given by

Mq̈ + C(q̇, q) + G(q) = τ, (8)

where
− τmax < τ < τmax (9)

and τmax = 10Nm. q̈, q̇, and q are respectively the wheel angular acceleration, velocity, and
position, M is the inertia, C(q̇, q) is the friction term, and G(q) is the gravity term. Based on
the parameters of the hill and the UGV, the maximum required torque to climb quasi-statically
the hill is 14.95Nm. This clearly shows that the UGV cannot climb without using momentum.

226 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 17

Fig. 13. The UGV steep hill parameters.

The results of the motion planning using SBMPO with the UGV’s dynamic model and
minimum time cost function are shown in Fig. 14. Fig. 14(a) shows the desired X-Z position
of the UGV and Figs. 14(b)-(d) show respectively the desired wheel angular position, velocity,
and acceleration, which are the trajectory components of the UGV’s. In practice, the resulting
trajectory is fed to the UGV’s low-level controller for tracking. In Fig. 14(b), the desired wheel
angular position starts at zero, and it goes negative (UGV backs up) before it proceeds to the
goal. Fig. 14(c) shows the desired angular velocity of the wheel, and it is negative before the
UGV accelerates to climb the hill. It also shows that the angular velocity at the goal is zero.
The results clearly show that the UGV backs up to increase momentum, which is automatically
done by SBMPO.

5. Tuning parameters

Similar to other algorithms, SBMPO has parameters that have to be tuned to guarantee
optimal results. SBMPO has two main tuning parameters, the sampling number (branching
factor) and grid resolution (size). Each tuning parameter has an effect on the computation
time and cost. In this Section, one of the random scenarios from Section 3.2 was investigated.

5.1 Sampling number

The sample number is the number of samples that are selected to span the input space. In
order to determine how the sample number effects the computation time of SBMPO the grid
resolution was held constant at 0.1m, and the sample number was varied from 10 to 40 by
increments of 2. Fig. 15 shows that the effect of the sampling number is nonlinear, so there
is no direct relationship between the sample number and computation time. Originally it
was thought that an increase in sample number would cause an increase in computation time
because there would be more nodes to evaluate. However, as shown in Fig. 15 this is not
completely true.
The reason for the nonlinear trend is threefold. First as shown in Fig. 15 by samples 10 and 12
, when there are not enough samples (the sample number is too low) to span the space, it can

227Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

18 Will-be-set-by-IN-TECH

(a) (b)

(c) (d)

Fig. 14. (a) X-Z position of the UGV (b) wheel angular position (c) wheel angular velocity (d)
wheel angular acceleration.

also increase the CPU time, because it takes more iterations (i.e. steps in SBMPO) to determine
the solution. A good tuning of the parameter occurs at 14 samples which results in a smaller
computation time. The second trend, as shown in Fig. 15 between samples 14 and 22, is that
after a good tuning of the parameter, increasing the number of samples also increases the
computation times which corresponds to the original hypothesis that an increase in sample
number will result in an increase in CPU time. Lastly, a factor that contributes to the effect of
the sample number on the computation time is the path produced by SBMPO. It is possible for
a larger sample number to have a lower computation time when the path SBMPO generates to
the goal encounters a smaller cluster of obstacles. Figs. 16a and 16b show the paths generated
respectively using 26 and 36 samples. The path of Fig. 16a which has the lower sampling
number takes the AUV through a cluster of obstacles, whereas the path of Fig. 16b which
has the larger sample number takes a path that largely avoids the obstacles. Even though
Fig. 16b corresponds to a sample number of 36, referring to Fig. 15, its computation time of
0.29s is smaller than that for Fig. 16a, which corresponds to a sample number of 26 and has a
computation time of 0.5s.

228 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 19

Fig. 15. The effect of sample size on computation time.

(a) (b)

Fig. 16. (a) Scenario with sample number = 26, (b) Scenario with sample number = 36.

Fig. 17 depicts how varying the sample number effects the cost (i.e. distance). The cost is
larger in the smaller sample numbers 10 and 12. Afterwards, the variation in the cost is small,
which leads to more of an optimal solution.

5.2 Grid size

The grid size is the resolution of the implicit state grid. To evaluate how this tuning parameter
effects the computation time, the sampling number was held constant at 25, and the grid
resolution was varied between 0.02 to 0.5. Again this tuning parameter is not monotonic
with respect to the computation time as depicted in Fig. 18. This shows the importance of
properly tuning the algorithm. It may be thought that increasing the grid size would cause

229Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

20 Will-be-set-by-IN-TECH

Fig. 17. The effect of sample size on path cost.

less computation. However, the opposite is true. The larger the grid size, the higher the
possibility that two nodes are considered as the same state, which leads to the need for more
sampling of the input space and an increased computation time. When choosing the grid
resolution, it is important to recognize that increasing the grid size tends to lead to higher cost
solutions as depicted in Fig. 19.

Fig. 18. The effect of grid size on computation time.

230 Recent Advances in Mobile Robotics

www.intechopen.com

Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization 21

Fig. 19. The effect of grid size on path cost.

6. Conclusion

SBMPO is a NMPC method that exploits sampling-based concepts from the robotics literature
along with the LPA⋆ incremental optimization algorithm from the AI literature to achieve the
goal of quickly and simultaneously determining the control updates and paths while avoiding
local minima. The SBMPO solution is globally optimal subject to the sampling. Sampling Based
Model Predictive Optimization has been shown to effectively generate paths in the presence of
nonlinear constraints and when vehicles are pushed to extreme limits. It was determined that
SBMPO is only as good as the model supplied to predict the vehicle’s movement. Selecting
the correct model is important.
The future work is to develop the replanning feature of SBMPC. Currently, SBMPO is applied,
but the ability to replan is essential to the SBMPC algorithm. SBMPC utilizes LPA⋆ which
allows quick replanning of the path without having to completely restart the planning process
when new information is obtained or changes in the environment occur. Only the nodes
that are affected by a change in the environment must be reevaluated. This reduces the
computation time and aids the method in achieving fast computation times. Once the
replanning feature of SBMPC is in place, scenarios that include disturbance, model mismatch,
unknown obstacles and moving obstacles can be examined to test more realistic situations.
The algorithm will also be in a framework that is more comparable to traditional NMPC that
only takes the first input and replans at every time step to create a more robust controller.
Then SBMPC can be considered a general fast NMPC method that is useful for any nonlinear
system or systems subject to nonlinear constraints.

7. References

Bryson, A. & Ho, Y. (1975). Applied Optimal Control Optimization, Estimation, and Control, HPC,
New York.

Caldwell, C., Collins, E. & Palanki, S. (2006). Integrated guidance and control of AUVs using
shrinking horizon model predictive control, OCEANS Conference .

231Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization

www.intechopen.com

22 Will-be-set-by-IN-TECH

Diankov, R. & Kuffner., J. (2007). Randomized statistical path planning, Conference on Intelligent
Robots and Systems .

Dunlap, D. D., E. G. Collins, J. & Caldwell, C. V. (2008). Sampling based model predictive
control with application to autonomous vehicle guidance, Florida Conference on Recent
Advances in Robotics .

Ericson, C. (2005). Real–Time Collision Detection, Elsevier.
Healey, A. & Lienard, D. (1993). Multivariable sliding-mode control for autonomous diving

and steering for unmanned underwater vehicle, IEEE Journal of Oceanic Engineering
18(3): 327–338.

Koenig, S., Likhachev, M. & Furcy, D. (2004). Lifelong planning A⋆, Artificial Intelligence .
Kuffner, J. J. & LaValle., S. M. (2000). Rrt-connect: An efficient approach to single-query path

planning, IEEE International Conference on Robotics and Automation p. 995ï£¡1001.
LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning, Technical

report, Iowa State University.
LaValle, S. M. (2006). Planning Algorithms, Cambridge University Press.
LaValle, S. M. & Kuffner, J. J. (2001). Randomized kinodynamic planning, International Journal

of Robotics Research 20(8): 378–400.
Likhachev, M. & Stentz, A. (2008). R⋆ search, Proceedings of the National Conference on Artificial

Intelligence (AAAI) pp. 1–7.
Nocedal, J. & Wright, S. (1999). Numerical Optimization, Springer, New York.
Plaku, E., Kavraki, L. & Vardi, M. (2010). Motion planning with dynamics by synergistic

combination of layers of planning, IEEE Transaction on Robotics pp. 469–482.
Yu, W., Jr., O. C., Jr., E. C. & Hollis, P. (2010). Analysis and experimental verification for

dynamic modeling of a skid-steered wheeled vehicle, IEEE Transactions on Robotics
pp. 340 – 353.

232 Recent Advances in Mobile Robotics

www.intechopen.com

Recent Advances in Mobile Robotics

Edited by Dr. Andon Topalov

ISBN 978-953-307-909-7

Hard cover, 452 pages

Publisher InTech

Published online 14, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Mobile robots are the focus of a great deal of current research in robotics. Mobile robotics is a young,

multidisciplinary field involving knowledge from many areas, including electrical, electronic and mechanical

engineering, computer, cognitive and social sciences. Being engaged in the design of automated systems, it

lies at the intersection of artificial intelligence, computational vision, and robotics. Thanks to the numerous

researchers sharing their goals, visions and results within the community, mobile robotics is becoming a very

rich and stimulating area. The book Recent Advances in Mobile Robotics addresses the topic by integrating

contributions from many researchers around the globe. It emphasizes the computational methods of

programming mobile robots, rather than the methods of constructing the hardware. Its content reflects

different complementary aspects of theory and practice, which have recently taken place. We believe that it will

serve as a valuable handbook to those who work in research and development of mobile robots.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Damion D. Dunlap, Charmane V. Caldwell, Emmanuel G. Collins, Jr. and Oscar Chuy (2011). Motion Planning

for Mobile Robots Via Sampling-Based Model Predictive Optimization, Recent Advances in Mobile Robotics,

Dr. Andon Topalov (Ed.), ISBN: 978-953-307-909-7, InTech, Available from:

http://www.intechopen.com/books/recent-advances-in-mobile-robotics/motion-planning-for-mobile-robots-via-

sampling-based-model-predictive-optimization

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

