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The Role of WAC in the Mobile Apps Ecosystem 

Zeiss Joachim, Davies Marcin and Pospischil Günther 
FTW. Telecommunications Research Center Vienna 

Austria 

1. Introduction 

The Wholesale Applications Community (WAC) was founded to change the overall market 
for mobile applications. WAC intends to achieve this by introducing open standardized 
technologies based on W3C widgets and/or OneAPI definitions. In addition, WAC provides 
complimentary commercial models. This will allow developers to deploy an application 
across multiple devices and across multiple operators. Developers should not need to 
negotiate with each of them. WAC provides the commercial prerequisites. 
WAC’s objective is to commercialize products for its member companies. Open Web 
standards are utilized in support of this commercialization effort as long as such adoption 
does not impact the required time to market. The WAC widget specification is therefore 
based on W3C and OMTP standards to the greatest extent possible.  
As already mentioned, WAC widgets utilize Web technologies. If a developer understands 
HTML and CSS to design a good looking website and has used JavaScript to create 
functionality and services for a user, he/she will also be able to write mobile apps in WAC. 
The widget packaging format is based on the W3C Widget Packaging specification and 
introduces some extensions to meet WAC requirements, such as specifications for billing. 
WAC widgets can optionally utilize a comprehensive handset API. A code-signing security 
system ensures that widgets can only access APIs that are suitable to their level of trust. 
This chapter gives an understanding of WAC and compares it to existing mobile app eco-
systems and technologies. We investigate the details of WAC regarding its API definition, 
runtime implementation, technologies used, and SDK-based development. We answer the 
questions on what makes the difference about developing WAC apps and how developers 
and users can both benefit. Finally, recommendations are given to industry on how to use 
WAC and how to further develop WAC in upcoming releases of the standard. 

2. Mobile app development overview 

The current mobile platform space suffers a lot of fragmentation. Developing software for 
mobiles generally can happen in a native way (like Objective C for iOS) or by using a virtual 
platform that offers (theoretical) portability. 
Today, the most relevant native development approaches are: 
 iOS using Objective-C, Xcode and Interface Builder 

 Native Qt libraries and SDK from Nokia: may survive only for embedded systems but 
not for app development, they are still too complicated although much better than the 
basic Symbian APIs 
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 Java based virtual machine programming in Android based on the Dalvic VM, Linux 
kernel and Eclipse Plugin SDK 

NET or Silverlight type of development for Windows Phone 7 which didn’t gain 
momentum yet 
 

 

Fig. 1. Mobile Platform space (source: Fraunhofer Fokus)1 

Virtual development approaches include: 

 Web based development, WebOS: the scene and stage based paradigm in conjunction 
with a W3C DOM compliant model and Javascript development is promising and 
innovative. The Mojo framework provides access to device functionality, but native 
development is offered as well 

 Java ME, has become a runtime for apps on middle to low-end mobile devices 

 Flash: its future on mobile devices is unclear and technology might become obsolete in 
turn of HTML5 supporting browsers and web runtimes 

 Desktop based web development (widgets): Yahoo! widgets on Windows (former 
Konfabulator runtime) and Dashboard on Mac OS X show the importance of including 
graphics to coding activities 

 Other widget systems: Standardization as with W3C widgets, Opera Widgets, etc. 

2.1 Frameworks 

WAC needs to compete with the following frameworks for native or web-based mobile app 
design and implementation: 

 COCOA and Quartz for iOS, or OpenGL ES 

 Android Java APIs 

 W3C widget based runtimes 

 Generic Javasscript libraries: jQuery, ExtJs, jqTouch, SenchaTouch 

                                                 
1 Linux-A and Linux-B denote different Linux Variants/Distributions 
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 HTML5 supporting runtimes 

 WebGL supporting runtimes 

 PhoneGap or Titanium apps (see Section 3) 
For the iPhone, Apple offers a series of well known frameworks grown and proved in years 

of software design for Desktop computers and notebooks running the OS X operating 

system. Cocoa APIs for operating system task interaction and Quartz for GUI 

implementation have been adapted to the needs of mobile devices (iPhone and iPad), 

especially for multi touch events (a feature WAC does not support as of today). Although 

Objective-C as the used programming language is not so common, the frameworks are very 

well designed, easy to use, and the MVC (Model View Controller) software design pattern 

has been excellently implemented. The latter is one of the main reasons of the huge success 

of iPhone apps. Also the backwards compatibility to the C language and the support for 

Open GL allows rather easy porting of existing game software to the iOS platform. 

Android decided for using Java as the main implementation language including most of the 

standard SDK APIs known for desktop computers. In addition, apps benefit from garbage 

collection and a virtual machine called Dalvik has been designed to fulfil the particular 

needs and to cope with performance restrictions of mobile devices. The use of Java attracts a 

huge designer community familiar with Java programming on the desktop and encourages 

the switch from designing Java programs on the PC to implementing apps for Android 

phones and tablets.  

WAC is based on the W3C widget standard with all its good and bad implications. Being 

standardized, it can be easily implemented for all runtime programs and sandboxes already 

supporting W3C, e.g. the Opera browser or widget runtimes. However, there is more to be 

done — libraries like jqtouch or SenchaTouch need to be supported or integrated to allow 

for a state of the art user experience known from native apps. HTML5 is partially, WebGL 

not supported at all for WAC runtimes. This means that game development and 

sophisticated graphical user interfaces are hard or even impossible to implement with WAC. 

2.2 App stores 

Currently industry experiences a tremendous growth of the mobile application market. 

While mobile applications were distributed via individual channels in the past, developers 

and users now clearly turned to centralized catalogues of software offerings for their devices 

that are managed and provided by trusted entities. 

The WAC store and distribution platform may compete with the following prominent 
stores: 

 AppStore form Apple 
The Apple AppStore is designed to meet the various application requirements of iPhone and 

iPod users. Being a storehouse with mobile applications that can be downloaded and 

installed, the AppStore also recommends related applications that can be rated by users. 

Apps are tested and certified by Apple before they are included in the AppStore catalogue. 

Except for developer testing, there is no (official) alternative way to install apps on the 

iPhone. Thereby Apple ensures a consistent user experience and avoids security issues. As 

of July 2011 there are 425,000 apps available with 15 billion downloads since the AppStore’s 

inception. Due to its success, Apple recently started an Application store for desktop 

computers as well. 
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 Android market 
The Google Android Market allows users to browse through and download third party 
applications for Android mobile phones. The store has grown from 2,300 applications in 
2003 to 80,000 applications in 2010 with over 1 billion downloads in total. As there is no 
centralized testing of apps, Android systems currently suffer a little from poor quality apps 
and the fact that developers can make money mostly out of in-app advertisements but not 
with selling them in the store as such. 

 OVI from Nokia 
Although the destiny of Symbian remains unclear, the download rate has reached 5 million 
per day in July 2011. It seems to be successful for emerging markets like India, China or 
Turkey. 

 Blackberry App World 
Developed by Research In Motion (RIM), the Blackberry App world is all about BlackBerry 
and the various applications. It was previously known as the BlackBerry Application 
Storefront. Although RIM initially announced that the store would only be available in the 
United States, United Kingdom, and Canada, it is available across 70 countries today. The 
store has around 25,000 applications in its catalogue and over 2 million applications are 
downloaded daily. The store is offered in multiple languages (English, French, Italian, 
German, etc.) and allows the user to download free and paid applications. Unlike other 
application stores it offers latest news as well as a support system to take care of one’s 
questions and concerns. 

2.3 Software development kits 

The following SDKs may be considered for Web-based app development: 

 Eclipse plugins, e.g. for Android and JIL, WAC 

 Online SDKs such as ARES for WebOS 

 Standalone target specific SDKs (Xcode, Interface Builder, Visual Studio) 

 Widget specific SDKs (template based with graphical tools) like Dashcode 

 WebDesign SDKs such as DreamWeaver 
These SDKs are considered in the following section regarding the differentiation of WAC 
from its competitors. 

3. Differentiation of WAC 

All technologies integrated in WAC have been used before by other initiatives, e.g. the 
usage of web design features by WebOS, offering widgets as apps by Opera, Apple or 
Yahoo. Application stores are already out there as well.  
So what makes the difference? 
Well, it’s the combination of all of that, the device and network operator independence, the 
billing methods and in that sense the possibility to integrate network operator assets like 
network based GPS, call control, in-app billing or identity management. This is what the 
WAC consortium should focus on. Unfortunately, WAC 3.0 supporting OneAPI standards is 
not finished yet. 
Properties of the WAC API and runtime are: 
 Based on W3C widget standards 
 Detailed certification based app functionality management (maybe a bit too complex / 

over engineered) 
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 Integration of remote APIs and Telco assets (based on GSMA OneAPI specifications) 

 Operator independence 

 Device/Manufacturer independence 

 Entirely web based, i.e. apps run in a HTML rendering engine supporting CSS and 
Javascript, based on W3C Standardization; WAC specific JavaScript APIs are 
additionally available. 

 Integration of Telco assets, remote APIs: e.g. for identity management 
Two of the main competitors in web-based mobile cross-platform development are 

PhoneGap and Titanium mobile, which are discussed briefly in the following sections. 

3.1 PhoneGap 

PhoneGap (for details please see reference PhoneGap) is an open-source mobile framework 

that supports the following important platforms: 

 iOS 

 Android 

 Blackberry 

 Palm webOS 

 Symbian WRT 
As in WAC, developers write code in HTML/CSS/JS and deploy it to their target 

platform(s) (HTML5/CSS3 supported). However, no native code is produced, the final 

app is wrapped into a native “web view’”object (like in the desktop projects Fluid or 

Prism). 

The currently supported API features of the PhoneGap platform can be found under 

reference (PhoneGap). 

3.2 Appcelerator titanium mobile 

Titanium mobile from Appcelerator is another open-source mobile framework for 

iOS/Android (Blackberry RIM to come). Developers use web technology (HTML5/CSS3 

support) but Titanium’s plug-in architecture also allows coding modules natively (Objective 

C or Java) to extend the app with native functionality. Titanium offers an integrated IDE and 

one of the biggest advantages is that native code is generated, so apps are faster and can 

make use of native UI controls. Another useful feature is that apps can also be ported to the 

desktop with the Titanium desktop edition. 

3.3 Comparison with WAC 

Table 1 compares PhoneGap and Titanium Mobile with WAC in terms of platform 

support, SDKs, UI controls, documentation & community, and whether a runtime is 

needed. It should be noted that native UI controls can be „emulated“ in PhoneGap and 

WAC by using Javascript libraries such as SenchaTouch. Finally, the performance of all 

three is most likely best with Titanium (as native code is produced), however no hands-on 

test was performed. 

Although WAC claims to be platform independent in the future, right now only Android 

based runtimes exist. Other platforms like PhoneGap or Titanium mobile are already there 

and well accepted by the web design community. Additionally, as WAC claims its own 

application store it is currently unclear if WAC apps could be offered on iOS devices, 
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because of licensing issues. Developing under PhoneGap or Titanium mobile does not create 

this issue as these SDKs integrate into the platform specific stores. 

 

 WAC PhoneGap 
Appcelerator 

Titanium 

Platforms 

n/a (depending 

on runtime 

support) 

5 (6) 2 (3) 

SDKs Eclipse-based 
Platform-

specific 
Integrated 

Runtime 

needed 
Yes No No 

Native UI 

controls 
No No Yes 

Documentation 

& Community 
Fair Good Good 

Table 1. Comparison of WAC, PhoneGap and Titanium Mobile 

4. Analysis of WAC APIs and SDKs 

At the time of writing, there are three different SDKs for WAC widgets. One is provided 

directly by the WAC consortium, the two others are from Obigo (see reference Obigo) and 

Aplix (see reference Aplix). All three runtimes are similar tools that are based on the Eclipse 

platform and run on Android devices. In our opinion Eclipse may not be the best platform 

though. Being certainly a very powerful platform, it might be too complex for relatively 

simple widget projects and for standard web developers (which should also be attracted by 

the WAC initiative). A simpler and more tailored, graphical editor like for the ARES project 

(see reference ARES) might be better suited.   

4.1 WAC standardization timeline 

WAC 1.0 (December 2010) 

 Based on subset of JIL 1.2.2 

 Supports following W3C standards: 
- HTML 4.01, xHTML 1.1, CSS 2.1, SVG Tiny 1.2, Widget Packaging and Configuration, 

MediaQueries 
- Javascript 

 Widget Security: based on W3C Widgets 1.0 (Digital Signatures) 

 Handset APIs: 
- Accelerometer, Address Book, Application Launcher, Audio, Camera, Messaging 

(sending only) and Location 
WAC 2.0 (aka “Waikiki”, Jan 2011) 

 Supports following W3C standards: 
- HTML 5 content parsing plus input element, canvas element, canvas 2D context, audio 

element, video element, contenteditable attribute 
- Javascript 1.5 (and JSON) 
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- CSS 2.1 and parts of CSS 3 (transforms, transitions, ...) 
- DOM, XMLHttpRequest 

 Support for popular libraries, e.g. jQuery 

 Improved Security:  
- Multi-level authentication/signatures: AppStores, Clients, Runtimes, Widgets... 
- Policy-based access control 

 Handset API enhancements:  
- more methods per API, orientation, filesystem, calendar, tasks... 
WAC 3.0 planned features (Sep 2011) 

 Extended range of developer tools 

 Billing support (+ in-widget billing) 

 User identification 

 Network APIs according to OneAPI specifications 

 Advertising 

 Feature phones 
Technical details on WAC 3.0 are not available at the time of document writing (July 2011). 
Regarding user identification, Aepona presented a Message flow including prototype at the 
Mobile World Congress 2011 in Barcelona (based on OneAPI), but did not clearly identify 
the API, as the GSMA OneAPI suggests OAUTH. 
Media transport or streaming is out of scope of WAC, SQLite is not supported and also 
ciphering is left to the developer to implement (not considering the possibility of 
communication with https, which is supported by the runtime). Cooperative multitasking is 
a must for WAC 2.0 runtimes but limited to the capabilities of the host system. 

4.2 Creating a WAC widget 

In the following we would like to go through the necessary steps to create a small widget 
that displays a camera preview window and offers taking pictures by pressing a button. 
A simple WAC widget basically consists of three files, namely a HTML file that is the entry 

point of the widget and defines the layout, a Javascript file defining the logic, and, finally, a 

CSS file that specifies the visual properties of the widget.  

We would like to start first with editing the HTML file (shown in Figure 2): 
 

 

Fig. 2. HTML code for a WAC widget 
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The head of the file points to the CSS and Javascript files we will edit later. In the body we 

define the preview() method to be loaded upon runtime. We also define a preview windows 

and a camera button that launches a takePicture() method. 

Figure 4 shows the Javascript code for the widget. The preview() method uses the WAC API 

to create a camera object. The window of that object is then assigned to the preview window 

defined in the HTML file before. The takePicture() method finally captures the image and 

stores it on the device. It makes use of a helper function generateFileName() that creates a 

unique filename based on the current DateTime. This was needed because the picture could 

not be stored if a file with the same name already exists. 

 

 

Fig. 3. CSS code for a WAC widget 

Finally, the CSS file (Figure 3) is relatively straightforward and just defines the styles for the 
button and the background. The SDK would now pack these three files together with 
content information in a zip file with filename extension wgt. The WAC app is finished and 
ready to be deployed (however, it should be noted, that a Publisher ID/certificate is needed 
for distribution in application stores). 

4.3 Comparison with native App development frameworks 
4.3.1 iOS 

The primary programming language is Objective-C, the primary SDK is Xcode in 
combination with Interface builder. The SDK is free, but development is only possible on 
Mac Computers. iOS was designed to meet the needs of mobile environment, where users’ 
needs are different than for a desktop system. 
The iOS SDK contains the code, information, and tools needed to develop, test, run, debug, 
and tune applications for iOS. Xcode tools provide the basic editing, compilation, and 
debugging environment for code writing. Xcode is also the launching point for testing 
applications on an iOS device, and in iOS Simulator, a platform that mimics the basic iOS 
environment but runs on a local Macintosh computer. 
In the meantime, iOS has become a mature mobile runtime environment for apps. This also 
applies to Xcode, which is very well tailored to the needs of developing function rich, highly 
appealing and simple to use mobile applications for the user. The possibilities of graphical 
user interface editing while separating the functional implementation in Objective-C gives 
some advantages compared to WAC widgets. This is because Xcode addresses the true 
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nature and power of Objective-C and COCOA UI libraries whereas the WAC SDKs try to 
mimic code writing development where they should address rather graphical oriented 
widget design. 
 

 

Fig. 4. Javascript code for a WAC widget 

4.3.2 Android 
The architecture of Android is based on the Linux kernel 2.6. It is responsible for memory 
management, process management and network communications. It also provides the 
hardware abstraction layer for the rest of the software and device drivers for the system. 
Other important components are based on the architecture developed by Sun Microsystems 
(now Oracle), namely, the Java technology-based virtual machine Dalvik and its Android 

www.intechopen.com



 
Recent Developments in Mobile Communications – A Multidisciplinary Approach 

 

70

Java class libraries. In order to program Android applications, the development system (m3-
rc20a, published in November 2007) contains 1448 Java classes and 394 interfaces, of which 
511 classes and 128 interfaces are Android-specific. 
Applications for the Android platform are written exclusively in Java, taking advantage of 

the wide spread expertise on Java within the designer community. For speed-critical tasks 

Android apps may take advantage of many C or C++ written, native libraries under the 

hood. The catalogue includes codecs for media playback, a web browser based on WebKit, a 

database (SQLite) and an OpenGL based 3D graphics library. 

In order to develop programs for Android, a recent Java SDK and also the Android SDK is 

required (e.g. Eclipse). First, the source code written in Java is translated with a normal Java 

compiler and then adapted by a cross-assembler for the Dalvik VM. For this reason, 

programs can in principle be created with any Java development environment. 

4.3.3 WebOS 

WebOS is a multitasking operating system for smart phones with a Linux-based kernel. 

Multiple applications may open and run simultaneously and can be browsed via a live 

preview, even videos may run in this preview mode. As iOS and Android, it is operated by 

finger gestures on a touch screen. 

PIM data is not only stored on the device, but always synchronized with Internet services 

like, e.g. Gmail. Using a technology called Synergy, all information, e.g. from different 

calendar systems such as Exchange and Google Calendar, is summarized in a single 

application. Synergy links contacts, calendar events and e-mails from various sources 

(including the above-mentioned Exchange, GMail, Hotmail, Yahoo, Facebook). 

With the HP app catalogue, the manufacturer offers (similar to iPhones and Android 
phones) an online service that allows to download and/or buy applications (Apps) for 
WebOS phones. 
Palm HP offers several ways to develop applications for WebOS: 

 SDK 

The Mojo Application Framework SDK allows applications to be developed with HTML5, 
CSS and JavaScript. The SDK needs to be installed on a desktop computer. 

 Ares 

Ares is a new development environment for HP WebOS, which is now released in 

version 1.0. With Ares it is possible to develop applications directly in the browser. An 

installation of the SDK is no longer necessary. To test the applications in Ares, an 

emulator is integrated. Ares works with current Web browsers such as Firefox, Safari 

and Chrome. 

 Plug-in Development Kit 

Since March 2010 a "Plug-In Development Kit" offers the possibility of using C or C++ 

code in applications, which should ease porting of external applications from other 

platforms.  

WebOs is a very modern and well thought through approach, which - in contrast to WAC – 

is taking full advantage of the introduced web technologies. It uses HTML5, CSS and 

Javascript to interact and synchronize with cloud and Web2.0 services whereas WAC simply 

offers HTML GUI rendering facilities, which are not even the strength of HTML. WAC 

should follow WebOS as it does with its Mojo application framework. 
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5. Recommendations for industry 

The stakeholders to be kept in mind while offering application frameworks, SDKs, app 
stores and runtimes are mainly: 

 Application developers 

 Mobile device users 

 Network operators 
WAC has well considered the needs of network operators and partially the need of potential 
users, but so far it does not optimally attract and support app developers. As WAC is not 
primarily a platform for coding experts it should focus on the needs of web designers: a 
graphical toolset, a simple to use Javascript library for multi touch UIs, dpi resolution based 
GUIs, etc. 
The registration process for becoming a WAC designer is currently rather cumbersome and 
introduces administrational hurdles not known for designers who signed up as an app 
developer at Apple or Google Android. With the App Market you simply sign up with your 
Google account and pay a minimal amount for the permission to submit apps. There is no 
need to fax or mail paper documents as required for WAC. Admittedly Apple or Google 
Android apps are limited with respect to using network APIs, hence some overhead on 
WAC-side for this additional functionality is understandable. Still the processes should be 
simplified. 
In short, we summarize the key aspects that should be considered for the future WAC 
roadmap: 

 Provide an SDK including a graphical toolset, like Dreamweaver or the like 

 Integrate a framework á la SenchaTouch 

 Offer an online SDK including development life-cycle support, like it is done for 
WebOS 

 And in addition to the bullet above: Offer network functionality testing via network 
sandbox once WAC 3.0 is out 

 Introduce user controlled device functionality access policies: In addition to 
certificate/configuration based functionality and privacy control interactive means of 
allowing or rejecting access to user data should be enabled 

 Support for SQLite  

 Support a dpi based solution for screen resolution scaling should be introduced. If this 
is not possible an automatic CSS adaptation by the device runtime should be applied. 
Currently it is not possible for WAC widgets to automatically adapt to different screen 
resolutions on different devices. In the worst case this means that for each resolution 
format a different widget needs to be written, which would be inacceptable for 
developers. How should this be represented in the WAC store? 

And last but not least, in the times of cloud computing it should be considered to integrate 
the WAC APIs to any browser runtime so that the widgets (and their date) can be stored in 
the cloud and downloaded and executed on demand just as it is done for plain web sites or 
Web 2.0 services. This “running in the cloud” mechanism could be the main differentiator to 
prefer WAC widgets over native app development like its done on iOS, Android or 
Blackberry. 
Finally, WAC runtimes need to be offered for all major platforms not only for Android. 
Simply because it is so easy to develop and deploy such software on Android phones, other 
platforms such as Blackberry and WebOS (and iOS?) should be supported as well. 
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The WAC activity is a promising start to enter the application market place. The operator 
and device agnostic approach together with the opportunity to offer Telco assets in 
applications might be very attractive to developers, users and network operators. 
In our opinion the WAC activity in its current form (April 2011), however, will need some 
tuning to become successful. Currently it is not as innovative as its competitors (AppStore 
and Android Market) and does not fully leverage additional opportunities a Telco operator 
could give to users and developers. 
The WAC 3.0 specification (due in September 2011), however, that supports network APIs 
for widget development may be an important differentiator from its competitors. Additional 
focus should be put on: A more tailored and user-friendly web-design type of SDK, a 
simpler sign up process for developers, more supported platforms or even the deployment 
of WAC APIs via mobile browsers and better support for state of the art user interface 
technologies.  
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