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1. Introduction

In the process of investigating the filamentation of a power femtosecond (fs) laser pulse
many new physical effects have been observed, such as long-range self-channeling (1–3),
coherent and incoherent radial and forward THz emission (4–6), asymmetric pulse shaping,
super-broad spectra (7–11; 30) and others. The role of the different mechanisms in near zone
(up to 1 − 2 m from the source) has been investigated experimentally and by numerical
simulations, and most processes in this zone are well explained (12–15). When a fs
pulse with power of several Pcr = π(0.61λ0)

2/(8n0n2) starts from the laser source a
slice-by-slice self-focussing process takes place (16). At a distance of one-two meters the pulse
self-compresses, enlarging the kz spectrum to super-broad asymmetric spectrum △kz ≈ k0.
The process increases the core intensity up to tens of 1013W/cm2, where different types of
plasma ionization, multi-photon processes and higher-order Kerr terms appear (17). Usually,
the basic model of propagation in near the zone is a scalar spatio-temporal paraxial equation
including all the above mentioned mechanisms (12; 13; 17). The basic model is natural in
the near zone because of the fact that the initial fs pulse contains a narrow-band spectrum
△kz << k0. Thus, the paraxial spatio-temporal model gives a good explanation of nonlinear
phenomena such as conical emission, X-waves, spectral broadening to the high frequency
region and others. In far-away zone (propagation distance more than 2 − 3 meters) plasma
ionization and higher-order Kerr terms are admitted also as necessary for a balance between
the self-focussing and plasma defocussing and for obtaining long range self-channeling in
gases.
However, the above explanation of filamentation is difficult to apply in far-away zone.
There are basically two main characteristics which remain the same at these distances - the
superbroad spectrum and the width of the core, while the intensity in a stable filament drops
to a value of 1012W/cm2 (12; 17). The plasma and higher-order Kerr terms are too small
to prevent self-focussing. The observation of long-range self-channeling (18–20) without
ionization also leads to change the role of plasma in the laser filamentation.
In addition, there are difficulties with the physical interpretation of the THz radiation as a
result of plasma generation. The plasma strings formed during filamentation should emit
incoherent THz radiation in a direction orthogonal to the propagation axis. The nature of the
THz emission, measured in (6) is different. Instead of being emitted radially, it is confined
to a very narrow cone in the forward direction. The contribution from ionization in far-away
zone is negligible (17) and this is the reason to look for other physical mechanism which could
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2 Laser Pulses book 1

cause THz or GHz radiations. Our analysis on the third order nonlinear polarization of pulses
with broadband spectrum indicates that the nonlinear term in the corresponding envelope
equation oscillates with frequency proportional to the group and phase velocity difference
Ωnl = 3(k0vph − vgr△kz). Actually, this is three times the well-known Carrier-to Envelope
Phase (CEP) difference (21). This oscillation induces THz generation, where the generated
frequency is exactly ΩTHz = 93GHz for a pulse with superbroad spectrum △kz ≈ k0 with
carryier wavelength 800 nm.
Physically, one dimensional Schrödinger solitons in fibers appear as a balance between the
Kerr nonlinearity and the negative dispersion (22–24). On the other hand, if we try to find
2D+1 and spatio-temporal solitons in Kerr media, the numerical and the real experiments
demonstrate that there is no balance between the plane wave paraxial diffraction - dispersion
and the Kerr nonlinearity. This leads to instability and self-focusing of a laser beam or initially
narrow band optical pulse. Recently Serkin in (25) suggested stable soliton propagation and
reducing the 3D soliton problem to one dimensional, with introducing trapping potential in
Bose - Einstein condensates.
In this paper we present a new mathematical model, on the basis of the Amplitude Envelope
(AE) equation, up to second order of dispersion, without using paraxial approximation. In
the non-paraxial zone the diffraction of pulses with superbroad spectrum or pulses with
a few cycles under the envelope is closer to wave type (26). For such pulses, a new
physical mechanism of balance between nonparaxial (wave-type diffraction) and third order
nonlinearity appears. Exact analytical three-dimensional bright solitons in this regime are
found.

2. Linear regime of narrow band and broad band optical pulses

The paraxial spatio-temporal envelope equation governs well the transverse diffraction and
the dispersion of fs pulses up to 6 − 7 cycles under the envelope. This equation relies on one
approximation obtained after neglecting the second derivative in the propagation direction
and the second derivative in time from the wave equation (27) or from the 3D + 1 AE equation
(28). In air, the series of k2(ω) are strongly convergent up to one cycle under the envelope and
this is the reason why the AE equation is correct up to the single-cycle regime.
The linearized AE, governing the propagation of laser pulses when the dispersion is limited
to second order, is:

− 2ik0

(

∂A

∂z
+

1

vgr

∂A

∂t

)

= ∆A − 1 + β

v2
gr

∂2 A

∂t2
, (1)

where β = k”k0v2
gr is a number representing the influence of the second order dispersion. In

vacuum and dispesionless media the following Diffraction Equation (DE) (v ∼ c ) is obtained:

− 2ik0

(

∂V

∂z
+

1

v

∂V

∂t

)

= ∆V − 1

v2

∂2V

∂t2
. (2)

We solve AE (1) and DE (2) by applying spatial Fourier transformation to the amplitude
functions A and V. The fundamental solutions of the Fourier images Â and V̂ in (kx, ky,△kz, t)
space are:
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Â = Â(kx, ky,△kz, t = 0)×

exp

{

i
vgr

β + 1

(

k0 ±
√

k2
0 + (β + 1)

(

kx
2 + ky

2 +△kz
2 − 2k0△kz

)

)

t

}

, (3)

V̂ = V̂(kx, ky,△kz, t = 0) exp

{

iv

(

k0 ±
√

kx
2 + ky

2 + (△kz − k0)2

)

t

}

, (4)

respectively. In air β ≃ 2.1 × 10−5, AE (1) is equal to DE (2), and the dispersion is
negligible compared to the diffraction. We solve analytically the convolution problem (4)
for initial Gaussian light bullet of the kind V(x, y, z, t = 0) = exp

(

−(x2 + y2 + z2)/2r2
0

)

. The
corresponding solution is:

V(x, y, z, t) =
i

2r̂
exp

[

− k2
0r2

0

2
+ ik0(vt − z)

]

×
{

i(vt + r̂) exp

[

− 1

2r2
0

(vt + r̂)2

]

er f c

[

i√
2r0

(vt + r̂)

]

(5)

−i(vt − r̂) exp

[

− 1

2r2
0

(vt − r̂)2

]

er f c

[

i√
2r0

(vt − r̂)

]

}

,

where r̂ =
√

x2 + y2 + (z − ir2
0k0)2. On the other hand, multiplying the solution

(5) with the carrier phase, we obtain solution of the wave equation E (x, y, z, t) =
V (x, y, z, t) exp (i(k0z − ω0t)), where ω0 and k0 are the carrier frequency and carrier wave
number in the wave packet:

∆E =
1

v2

∂2E

∂t2
, (6)

E(x, y, z, t) =
i

2r̂
exp

(

− k2
0r2

0

2

)

×
{

i(vt + r̂) exp

[

− 1

2r2
0

(vt + r̂)2

]

er f c

[

i√
2r0

(vt + r̂)

]

(7)

−i(vt − r̂) exp

[

− 1

2r2
0

(vt − r̂)2

]

er f c

[

i√
2r0

(vt − r̂)

]

}

.

A systematic study on the different kinds of exact solutions and methods for solving wave
equation (6) was performed recently in (29). Here, as in (26) we suggest another method:
Starting with the ansatz E (x, y, z, t) = V (x, y, z, t) exp (i(k0z − ω0t)), we separate the main
phase and reduce the wave equation to 3D + 1 parabolic type one (2). Thus, the initial value
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4 Laser Pulses book 1

problem can be solved and exact (5) (or numerical) solutions of the corresponding amplitude
equation (2) can be obtained. The solution (5), multiplied by the main phase, gives an exact
solution (7) of the wave equation (6). To investigate the evolution of optical pulses at long
distances, it is convenient to rewrite AE (1) equation in Galilean coordinate system t′ = t; z′ =
z − vgrt:

− i
2k0

vgr

∂A

∂t′
= ∆⊥A − β

∂2 A

∂z′2
− 1 + β

v2
gr

(

∂2 A

∂t′2
− 2vgr

∂2 A

∂t′∂z′

)

. (8)

Pulses governed by DE (2) move with phase velocity and the transformation is t′ = t; z′ =
z − vt:

− i
2k0

v

∂V

∂t′
= ∆⊥V − 1

v2

(

∂2V

∂t′2
− 2v

∂2V

∂t′∂z′

)

. (9)

Here, ∆⊥ = ∂2

∂x2 + ∂2

∂y2 denotes the transverse Laplace operator. The corresponding

fundamental solution of AE equation (8) in Galilean coordinates is:

ÂG(kx , ky,△kz, t) = ÂG(kx, ky,△kz, t = 0)×
(10)

exp

{

i
vgr

β + 1

[

k0 − (β + 1)△kz ±
√

(k0 − (β + 1)△kz)
2 + (β + 1)(k2

x + k2
y − β△k2

z)

]

t

}

,

while the fundamental solution of DE (9) becomes:

V̂G = V̂G(kx , ky,△kz, t = 0)×
(11)

exp

{

iv

[

k0 −△kz ±
√

(k0 −△kz)
2 + k2

x + k2
y

]

t

}

.

The analytical solution of (11) for initial pulse in the form of Gaussian bullet is the same as (5),

but with new radial component r̂ =
√

x2 + y2 + (z + vt − ir2
0k0)2 translated in space and time.

The numerical and analytical solutions of AE (1) and DE (2) are equal to the solutions of the
equations AE (8) and DE (9) in Galilean coordinates with only one difference: in Laboratory
frame the solutions translate in z-direction , while in Galilean frame the solutions stay in the
centrum of the coordinate system.
The basic theoretical studies governed laser pulse propagation have been performed in so
called "local time" coordinates z = z; τ = t − z/vgr . In order to compare our investigation
with these results, we need to rewrite AE equation (1) for the amplitude function A in the
same coordinate system. Thus Eq. (1) becomes:

− 2ik0
∂A

∂z
= ∆⊥A +

∂2 A

∂z2
− 2

vgr

∂2 A

∂τ∂z
− β

v2
gr

∂2 A

∂τ2
. (12)
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Since this is a parabolic type equation with low order derivative on z, we apply Fourier
transform to the amplitude function in form: Â

(

kx , ky,△ω, z
)

= FFF [A (x, y, z, t)], where
FFF denotes 3D Fourier transform in x, y, τ space and △ω = ω − ω0; △kz = △ω/vgr are
the spectral widths in frequency and wave vector domains correspondingly. The following
ordinary differential equation in

(

kx , ky,△ω, z
)

space is obtained:

− 2i

(

k0 −
△ω

vgr

)

∂Â

∂z
= −

(

k2
x + k2

y −
β△ω2

v2
gr

)

Â +
∂2 Â

∂z2
. (13)

As can be seen from (13), if the second derivative on z is neglected,then the paraxial
spatio-temporal approximation is valid. Equation (13) is more general and we will estimate
where we can apply spatio-temporal paraxial optics (PO), and where PO does not works. The
fundamental solution of (13) is:

Â
(

kx, ky,△ω, z
)

= Â
(

kx, ky,△ω, 0
)

×

exp

⎧

⎨

⎩

i

⎡

⎣

(

k0 −
△ω

vgr

)

∓

√

√

√

√

(

k0 −
△ω

vgr

)2

+ k2
x + k2

y −
β△ω2

v2
gr

⎤

⎦ z

⎫

⎬

⎭

. (14)

The analysis of the fundamental solution (14) of the equation (13) is performed in two basic
cases:
a: Narrow band pulses - from nanosecond up to 50 − 100 femtosecond laser pulses, where the
conditions:

β△ω2

v2
gr

≤ k2
x ∼ k2

y << k2
0; △kz =

△ω

vgr
<< k0 (15)

are satisfied, and the wave vector’s difference k0 −△ω/vgr can be replaced by k0. Using the
low order of the Taylor expansion and the minus sign in front of the square root from the
initial conditions, equation (14) is transformed in a spatio - temporal paraxial generalization
of the kind:

Â
(

kx , ky,△ω, z
)

= Â
(

kx, ky,△ω, 0
)

exp

⎡

⎢

⎣
i

⎛

⎜

⎝

k2
x + k2

y − β△ω2

v2
gr

2k0

⎞

⎟

⎠
z

⎤

⎥

⎦
. (16)

From (16) the evolution of the narrow band pulses becomes obvious: while the transverse
projection of the pulses enlarges by the Fresnel’s law, the longitudinal temporal shape will
be enlarged in the same away, proportionally to the dispersion parameter β. Such shaping
of pulses with initially narrow band spectrum is demonstrated in Fig.1, where the typical
Fresnel diffraction of the intensity profile (spot (x, y) projection) is presented. The numerical
experiment is performed for 100 femtosecond Gaussian initial pulse at λ = 800 nm, ∆kz <<

k0, z0 = 30µm, r0(x, y) = 60µm, with 37.5 cycles under envelope propagating in air (β =
2.1 × 10−5). The result is obtained by solving numerically the inverse Fourier transform of the
fundamental solution (14) of the AE equation in the local time frame (12). The spot enlarges
twice at one diffraction length zdi f f = r2

0k0. Fig. 2 presents the intensity side (x, τ) projection
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6 Laser Pulses book 1

Fig. 1. Plot of the waist (intensity’s) projection |A(x, y)|2 of a 100 f s Gaussian pulse at
λ = 800 nm, with initial spot r0 = 60 µm, and longitudinal spatial pulse duration z0 = 30 µm,
as solution of the linear equation in local time (12) on distances expressed by diffraction
lengths. The spot deformation satisfies the Fresnel diffraction law and on one diffraction
length z = zdi f f the diameter of the spot increases twice, while the maximum of the pulse
decreases with the same factor.

Fig. 2. Side (x, τ) projection of the intensity |A(x, τ)|2 for the same optical pulse as in Fig. 1.
The (x, y) projection of the pulse diffracts considerably following the Fresnel law, while the
(τ) projection on several diffraction lengths preserves its initial shape due to the small
dispersion. The diffraction - dispersion picture, presented by the side (x, τ) projection, gives
idea of what should happen in the nonlinear regime: the plane wave diffraction with a
combination of parabolic type nonlinear Kerr focusing always leads to self-focusing for
narrow-band (△kz << k0) pulses.

of the same pulse. We should note that while the spot ((x, y) projection) enlarges considerably
due to the Fresnel law, the longitudinal time shape (the τ projection) remains the same on
several diffraction lengths from the small dispersion in air. The diffraction - dispersion picture,
presented by the side (x, τ) projection of the pulse, gives idea of what should happen in the
nonlinear regime: the plane wave diffraction with a combination of parabolic type nonlinear
Kerr focusing always leads to self-focusing for narrow-band (∆kz << k0) pulses. The same
Taylor expansion for narrow band pulses can be performed to fundamental solutions of the
equation in Laboratory (3) and Galilean (10) frames.
b: broad band pulses - from attosecond up to 20 − 30 femtosecond pulses, where the
conditions:

△ω2

v2
gr

∼ k2
0 ∝ k2

x ∼ k2
y (17)
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Fig. 3. Side (x, z) projection of the intensity |A(x, z′)|2 for a normalized 10 fs Gaussian initial
pulse at λ = 800 nm, △kz ≃ k0/3, z0 = r0/2, and only 3 cycles under the envelope
(large-band pulse △kz ≈ k0), obtained numerically from the AE equation (8) in Galilean
frame. At 3 diffraction lengths a divergent parabolic type diffraction is observed. In
nonlinear regime a possibility appear: the divergent parabolic type diffraction for large-band
pulses to be compensated by the converged parabolic type nonlinear Kerr focusing.

are satisfied. In this case we can not use Taylor expansion of the spectral kernels in Laboratory
(3), Galilean (10) and local time (14) frames. The spectral kernels are in square root and we
can expect evolution governed by wave diffraction. That why for broadband pulses we can
expect curvature (parabolic deformation) of the intensity profile of the (x, z) or (x, τ) side
projection. Fig 3. present the evolution of the intensity (side (x, z) projection) of a normalized
10 fs Gaussian initial pulse at λ = 800 nm; ∆kz ≃ k0/3; z0 = r0/2; and only 3 cycles under the
envelope (broadband pulse), obtained numerically from AE equation (8) in Galilean frame.
The solution confirms the experimentally observed parabolic type diffraction for few cycle
pulses. And here appears the main physical question for stable pulse propagation in nonlinear
regime: Is it possible for the divergent parabolic intensity distribution due to non-paraxial
diffraction to be compensated by the converged parabolic type nonlinear Kerr focusing? If
this is the case, then a stable soliton pulse propagation exists. As we show below, only for
broadband pulses one-directional soliton solution of the corresponding nonlinear equations
can be found.

3. Self-focusing of narrow band femtosecond pulses. Conical emission and

spectral broadening

The laser pulses in a media acquire additional carrier -to envelope phase (CEP), connected
with the group-phase velocity difference. In air the dispersion is a second order phase effect
with respect to the CEP. In linear regime the envelope equations contain Galilean invariance,
and thus CEP does not influence the pulse evolution. Taking into account the CEP in the
expression for the nonlinear polarization of third order, a new frequency conversion in THz
and GHz region takes place. In Laboratory frame, the nonlinear polarization of third order for
a laser beam or optical pulse, without considering CEP, can be written as follows:

n2E3 (x, y, z, t)�x = �xn2 exp
[

i(k0(z − vpht)
]

×
(18)

{

3

4
|A|2A +

1

4
exp

[

2i(k0(z − vpht)
]

A3

}

+�xc.c.,
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while in Galilean coordinates (z′ = z − vgrt; t′ = t) the CEP, being an absolute phase (21), is
present in the phase of the Third Harmonic (TH) term

n2E3 (x, y, z, t)�x = �xn2 exp
[

i
(

k0(z
′ − (vph − vgr)t

′
)]

×
(19)

{

3

4
|A|2A +

1

4
exp

[

2i
(

k0(z
′ − (vph − vgr)t

′
)]

A3

}

+�xc.c..

Note that we transform the TH term to a frequency shift of ωnl = 3k0(vph − vgr) ∼= 93GHz in
air of the carrying wave number λ0 = 800nm. The nonlinear amplitude equations for power
near the critical one for self-focusing in Laboratory and Galilean frame are:

− 2ik0

(

∂A

∂z
+

1

vgr

∂A

∂t

)

= ∆A − 1 + β

v2
gr

∂2 A

∂t2
+

(20)

n2k2
0

{

3

4
|A|2A +

1

4
exp

[

2i(k0(z − vpht)
]

A3

}

+ c.c.,

and

− i
2k0

vgr

∂V

∂t′
= ∆⊥V − 1 + β

v2
gr

(

∂2V

∂t′2
− 2vgr

∂2V

∂t′∂z′

)

+

(21)

n2k2
0

{

3

4
|V|2V +

1

4
exp

[

2i
(

k0(z
′ − (vph − vgr)t

′
)]

V3

}

+ c.c.,

respectively. We use AE equations (20) and (21) to simulate the propagation of a fs pulse,
typical for laboratory-scale experiments: initial power P = 2Pkr, center wavelength λ = 800
nm, initial time duration t0 = 400 f s, corresponding to spatial pulse duration z0 = vgrt0

∼= 120
µm, and waist r0 = 120 µm.
Fig.4 presents the evolution of the spot |A(x, y|2 of the initial Gaussian laser pulse at distances
z = 0, z = 1/2zdi f f , z = zdi f f , z = 3/2zdi f f . As a result, we obtain the typical self-focal
zone (core) with colored ring around, observed in several experiments (12–14). The 3D + 1
nonlinear AE equation (21) gives an additional possibility for investigating the evolution of
the side projection of the intensity |A(x, z′|2 profile. The side projection |A(x, z′|2 of the same
pulse is presented in Fig.5. The initial Gaussian pulse begins to self-compress at about one
diffraction length and it is split in a sequence of several maxima with decreasing amplitude.
Fig. 6 presents the evolution of the Fourier spectrum of the side projection |A(kx, kz′ |2. At
one diffraction length the pulse enlarges asymmetrically towards the short wavelengths (high
wave-numbers). It is important to point here, that similar numerical results for narrow band
pulses are obtained when only the self-action term in AE equation (21) is taken into account.
The TH or THz term (the second nonlinear term in the brackets) practically does not influence
the intensity picture during propagation. In conclusion of this paragraph, we should point
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Linear and Nonlinear Femtosecond Optics in Isotropic Media. Ionization-Free Filamentation. 9

Fig. 4. Nonlinear evolution of the waist (intensity) projection |A(x, y)|2 of a 400 f s initial
Gaussian pulse (a1) at λ = 800 nm, with spot r0 = 120 µm, and longitudinal spatial pulse
duration z0 = vgrt0

∼= 120 µm at a distance z = 2zdi f f (a2), obtained by numerical simulation
of the 3D+1 nonlinear AE equation (20). The power is above the critical for self-focusing
P = 2Pkr . Typical self-focal zone (core) surrounded by Newton’s ring is obtained. (b)
Comparison with the experimental result presented in (12).

Fig. 5. (a) Experimental result of pulse self compression and spliting of the initial pulse to a
sequence of several decreasing maxima (30). (b) Numerical simulation of the evolution of
(x,t=z) projection |A(x, z′)|2 of the same pulse of Fig. 4 at distances z = 0, z = zdi f f , governed
by the (3D+1) nonlinear AE equation (20) and the ionization-free model.
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10 Laser Pulses book 1

Fig. 6. (a) Fourier spectrum of the same side (x, z) projection of the intensity |A(kx, kz)|2 as in
Fig.5. At one diffraction length the pulse enlarges asymmetrically forwards the short
wavelengths (high kz wave-numbers),(b) a spectral form observed also in the experiments
(12).

out that our non-paraxial ionization-free model (20) and (21) is in good agreement with the
experiments on spatial and spectral transformations of a fs pulse in a regime near the critical
P ≥ Pcr. Such transformation of the shape and spectrum of the fs pulse is typical in the
near zone, up to several diffraction lengths, where the conditions for narrow-band pulse are
satisfied △kz << k0.

4. Carrier-to-envelope phase and nonlinear polarization. Drift from THz to GHz

generation

In nonlinear regime the spectrum of the amplitude function becomes large due to different
nonlinear mechanisms. The Fourier expression Â

[

kx, ky, k0 − kz, ω0 − ω
]

is a function of
arbitrary ∆kz = k0 − kz and ∆ω = ω0 − ω, which are related to the group velocity
∆ω/∆kz = vgr (here, we do not include the nonlinear addition to the group velocity - it is
too small for power near the critical one). Let ∆kz denote an arbitrary initial spectral width
of the pulse. In the nonlinear regime ∆kz(z) enlarges considerably and approaches values
∆kz(z) ≃ k0. To see the difference between the evolution of narrow-band ∆kz << k0 and
broadband ∆kz ≃ k0 pulses, it is convenient to rewrite the amplitude function in Laboratory
coordinates (the dispersion number β ≃ 2.1 × 10−5, being smaller than the diffraction in air,
is neglected):

A (x, y, z, t) = B0B (x, y, z, t) exp
(

−i(△kz(z − vgrt)
)

, (22)

while in Galilean coordinates it is equal to:

V
(

x, y, z′, t′
)

= B0G
(

x, y, z′, t′
)

exp
(

−i△kzz′
)

. (23)

The Nonlinear Diffraction Equation (NDE) (20) in Laboratory frame becomes:
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− 2i(k0 −△kz)

(

∂B

∂z
+

1

vgr

∂B

∂t

)

= ∆B − 1

v2
gr

∂2B

∂t2
+

(24)

n2k2
0B2

0

{

3

4
|B|2B +

1

4
exp

[

2i
(

(k0 −△kz)z − (k0vph − vgr△kz)t
)]

B3

}

+ c.c.,

and in Galilean frame, the equation (21) is:

− i
2(k0 −△kz)

vgr

∂G

∂t′
= ∆⊥G − 1

v2
gr

(

∂2G

∂t′2
− 2vgr

∂2G

∂t′∂z′

)

+

(25)

n2k2
0B2

0

{

3

4
|G|2G +

1

4
exp

[

2i
(

(k0 −△kz)z
′ − k0(vph − vgr)t

′
)]

G3

}

+ c.c.,

where △kz can get arbitrary values. It can be seen that the nonlinear phases in both coordinate
systems are equal after the transformation z′ = z − vgrt; t′ = t:

(k0 −△kz)z − (k0vph −△kzvgr)t = (k0 −△kz)z
′ − k0(vph − vgr)t

′. (26)

On the other hand, the corresponding frequency conversions are different. In Laboratory
frame the frequency conversion depends on the spectral width △kz:

ωLab
nl = k0vph −△kzvgr, (27)

while in Galilean frame the nonlinear frequency conversion is fixed to the offset frequency

ωGal
nl = k0(vph − vgr) = 31GHz; (λ = 800nm) (28)

in air. The expression of the nonlinear frequency shift in Laboratory frame (27) explains the
different frequency arising from pulses with different initial spectral width. When the laser is
in ns or ps regime, △kz << k0 and the nonlinear frequency shift is equal to the third harmonic
3ωLab

nl = 3ω0. In this case (spectral width of the pulse much smaller than the spectral distance
to the third harmonic), the phase matching conditions can not be met. Thus, the nonlinear
polarization is transformed into a self-action term. The fs pulses on the other hand have
initial spectral width of the order △ω f s ≃ 1013−14 Hz and for such pulses at short distances in
nonlinear regime the condition △ω f s ≃ ωLab

nl can be satisfied. Thus, the nonlinear frequency
shift lies within the spectral width of a fs pulse, and from (27) follows the condition for THz
and not for TH generation. The self-action enlarges the spectrum up to values △kz ≃ k0 and
thus, following (27), the nonlinear frequency conversion in far field zone drifts from THz to
∼ 93 GHz (18). Note that we consider a single pulse propagation, while the laser system
generates a sequences of fs pulses. The different pulses have different nonlinear spectral
widths when moving from the source to the far field zone. One would detect in an experiment
a mix of frequencies from THz up to GHz.
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5. Nonlinear sub-cycle regime for △kz ≈ k0

The separation of the nonlinear polarization to self-action and TH, THz or GHz generated
terms is appropriate for fs pulses up to several cycles under envelope. For fs narrow-band
pulses, as mentioned in the previous section, the pulse shape is changed by the self-action
term, while the CEP frequency depending at the spectral width of the pulse △kz leads to
different type of frequency conversion drifts from THz to GHz region. However, when
supper-broad spectrum occurs (△kz ≈ k0), the time width of the pulse △t becomes smaller
than the period of the nonlinear oscillation ωLab

nl . In this nonlinear sub-cycle regime, the

nonlinear term starts to oscillate with ωLab
nl and separation of the self-action and the frequency

conversion terms becomes mathematically incorrect, due to the mixing of frequencies (32; 33).
For the first time such possibility was discussed in (32), where a correct expression of the
nonlinear polarization, including Raman response is presented. In the sub-cycle regime the
nonlinear polarization at a fixed frequency and Laboratory frame becomes:

n2E3 (x, y, z, t) = n2 exp
[

i
(

(k0 −△kz)z − (k0vph −△kzvgr)t
)]

]×
(29)

{

exp
[

2i
(

(k0 −△kz)z − (k0vph −△kzvgr)t
)]

B3

}

,

and in Galilean frame it is

n2E3
(

x, y, z′, t′
)

= n2 exp
[

i
(

(k0 −△kz)z
′ − k0(vph − vgr)t

′
)]

]×
(30)

{

exp
[

2i
(

(k0 −△kz)z
′ − k0(vph − vgr)t

′
)]

B3

}

.

In spite of the super-broad spectrum, the dispersion parameter in the transparency region
from 400 nm up to 800 nm continues to be small, in the range of β ≈ 10−4 − 10−5. The
nonlinear amplitude equations for pulses with super-broad spectrum in Laboratory system
become:

− 2i(k0 −△kz)

(

∂A

∂z
+

1

vgr

∂A

∂t

)

= ∆A − 1

v2
gr

∂2 A

∂t2
+

(31)

n2k2
0 exp

[

2i
(

(k0 −△kz)z − (k0vph −△kzvgr)t
)]

A3,

and in Galilean frame

− i
(k0 −△kz)

vgr

∂V

∂t′
= ∆⊥V − 1

v2
gr

(

∂2V

∂t′2
− 2vgr

∂2V

∂t′∂z′

)

+

(32)

n2k2
0 exp

[

2i
(

(k0 −△kz)z
′ − k0(vph − vgr)t

′
)]

V3.
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Fig. 7. Numerical simulations for an initial Gaussian pulse with super-broad spectrum
△kz ≈ k0 governed by the nonlinear equation (32). The power is slightly above the critical
P = 2Pkr. The side projection |V(x, z′)|2 of the intensity is plotted. Instead of splitting into a
series of several maxima, the pulse transforms its shape into a Lorentzian of the kind
V(x, y, z′) ≃ 1/[1 + x2 + y2 + (z′ + ia)2 + a2].

Fig. 7 shows a typical numerical solution of the nonparaxial nonlinear equation (31) (or (32))
for an initial Gaussian pulse with super-broad spectrum △kz ≈ k0. It is obtained by using the
split step method (4 step Runge-Kutta method for the nonlinear part). These results are the
same both in Laboratory and Galilean coordinate frames differing only by a translation. The
side projection |V(x, z′|2 of the intensity profile is plotted for different propagation distances.
Instead of splitting into to a series of several maxima, the pulse transforms its shape in a
Lorentzian type form of the kind V(x, y, z) ≃ 1/[1 + x2 + y2 + (z′ + ia)2 + a2]. Here, the
number a accounts for compression in z′ direction and a spatial angular distribution. Fig.
8 presents the evolution of the spectrum |V(kx, kz′ |2 of the side intensity projection for the
same pulse. The spectrum enlarges forwards the small kz wave-numbers (long wavelengths)
- typical for Lorentzian type profiles. To compare with Fig. 8, Fig. 9 gives a plot of the side
projection |V(kx, k′z|2 of the spectrum of a Lorentzian profile V(x, y, z′) = 1/[1 + x2 + y2 +
(z′ + ia)2 + a2], a = 2 increases toward the small wave-numbers. The numerical experiments
lead to the conclusion that a possible shape of the stable 3D + 1 soliton can be in the form of a
Lorentzian profile. Thus, if we take as an initial condition Lorentzian, instead Gaussian one, a
relative stability in the shape and spectrum can be expected. Fig. 10 shows the evolution of the
|V(x, z′|2 profile of a pulse with initial Lorentzian shape V(x, y, z′, t = 0) = 1/[1 + x2 + y2 +
(z′ + ia)2 + a2], a = 2. The pulse propagates at distance of one diffraction length, preserving
its initial shape.

6. Spectrally asymmetric 3D+1 soliton solution

The numerical simulations in the previous section for broad band spectrum pulses
demonstrate a stable soliton propagation with a specific initial Lorentzian shape. To find an
exact soliton solution, we require that △kz = k0 and △ω ∼= ω0 be satisfied. In air β ∼= 0 and
the amplitude equation (31) can be rewritten as:

221Linear and Nonlinear Femtosecond Optics in Isotropic Media – Ionization-Free Filamentation

www.intechopen.com



14 Laser Pulses book 1

Fig. 8. The evolution of the spectrum |V(kx , kz)|2 of the same side intensity projection
|V(x, z′)|2 . The spectrum enlarges towards small kz wave-numbers (long wavelengths) -
typical for Lorentzian profiles.

Fig. 9. Plot of the side projection |V(kx, kz|2 of the spectrum of a Lorentzian profile
V(x, y, z) = 1/[1 + x2 + y2 + (z + ia)2 + a2], a = 2 increasing towards the small kz

wave-numbers (compare with Fig. 8).

∆B − 1

v2
gr

∂2B

∂t2
+ k2

0n2B2
0 exp [i (2△ωnlt)]B

3 = 0. (33)

To minimize the influence of the GHz oscillation ωnl, we use an amplitude function with a
phase opposite to CEP:

B(x, y, x, t) = C(x, y, z, t) exp(−i△ωnlt). (34)

This corresponds to an oscillation of our soliton solution with frequency ωnl ≃ 31 GHz. The
equation (33) becomes:

∆C − 1

v2
gr

∂2C

∂t2
+ k2

0n2B2
0C3 = 2i

△ωnl

v2
gr

∂C

∂t
− △ω2

nl

v2
gr

C (35)
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Fig. 10. Evolution of the |V(x, z′|2 profile of a pulse with super-broad spectrum △kz ≈ k0 and
initial Lorentzian shape V(x, y, z′, t = 0) = 1/([1 + x2 + y2 + (z′ + ia)2 + a2], a = 2, governed
by the nonlinear equation (32). The pulse propagates over one diffraction length with
relatively stable form.

To estimate the influence of the different terms on the propagation dynamics we rewrite
equation (35) in dimensionless form. Substituting:

t = t0t; z = z0z; x = r0x; y = r0y; (36)

r0/z0 = δ ∼ 1; z0 = vgrt0; t0
∼= 2 × 10−13 − 10−14sec, (37)

we obtain the following normalized equation:

∆C − ∂2C

∂t2
+ γC3 = iα

∂C

∂t
− βC, (38)

where γ = r2
0k2

0n2B2
0 is the nonlinear constant, α = 2△ωnlr

2
0/v2

grt0 and β = △ω2
nlr

2
0/v2

gr . For
typical fs laser pulse at carrier wavenumber 800 nm with spot r0 = 100 µm, the constants of
both terms in the r.h.s of equation (38) are very small (α ∼ 10−2 and β ∼ 10−4) and can be
neglected. Thus, equation (38) becomes:

∆C − ∂2C

∂t2
+ γC3 = 0. (39)

Furthermore, we shall assume that the new envelope wave equation (39) has solutions in the
form:

C (x, y, z, t) = C(r̃), (40)

where r̃ =
√

x2 + y2 + (z + ia)2 − (t + ia)2. From the nonlinear wave equation (39), using
(40), the following ordinary nonlinear equation is obtained:

3

r̃

∂C

∂r̃
+

∂2C

∂r̃2
+ γC3 = 0. (41)

The number a counts for the longitudinal compression and the phase modulation of the pulse.
When the nonlinear coefficient is slightly above the critical and reaches the value γ = 2,
equation (41) has exact particle-like solution of the form:

C =
sech(ln(r̃))

r̃
. (42)
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Using the fact that exp(ln(r̃)) = r̃ and exp(−(lnr̃)) = 1
r̃ , the solution (42) is simplified to the

following algebraic soliton:

C(r̃) =
2

1 + x2 + y2 + (z + ia)2 − (t + ia)2
(43)

The solution (43) gives the time evolution of our Lorentz initial form, investigated in the
previous section. As be seen from equation (39), the solution appears as a balance between
the parabolic (not paraxial) wave type diffraction of broad band pulse △kz = k0 and the
nonlinearity of third order. The maxima of this solution are at the points where r̃2 = 0. If
we turn back to standard, not normalized coordinates, and solve the second order equation
z2 + 2iaz − 2iavgrt − v2

grt2 = 0, only one real solution z = vgrt can be obtained. It corresponds
to one-directional propagation with position of the maximum on the z - coordinate z = vgrt.
As it was pointed above, Fig. 8 presents the initial kx , kz spectrum of the soliton (43). While the
kx , ky spectrum is symmetric, the kz projection is fully asymmetric, enlarging forwards to low
kz wave-numbers (long wavelengths), and has typical Lorentz shape. Recently, in experiments
with 2− 3 cycle pulses long range filaments with similar spectral profile (34) are observed. We
suppose that in this experiment a 3D + 1 Lorentz type soliton was found experimentally for
the first time.

7. Conclusions

In this paper we investigate femtosecond pulse propagation in air, governed by the AE
equation, in linear and nonlinear regime. The equation allows to solve the problem of
propagation of pulses with super-broad spectrum. Note that this problem can not be studied
in paraxial optics. In linear regime the fundamental solutions of AE (1) and DE (2) are obtained
and different regimes of diffraction are analyzed. The typical fs pulses up to 50 fs diffract by
the Fresnel law, in a plane orthogonal to the direction of propagation, while their longitudinal
shape is preserved in air or is enlarged a little, due to the dispersion. Broad-band pulses
(only a few cycles under envelope) at several diffraction lengths diffract in a parabolic form.
We solve the convolution problem of the diffraction equation DE (2) for an initial pulse in
the form of a Gaussian bullet, and obtain an exact analytical solution (5). A new method for
solving evolution problems of the wave equation is also suggested. We investigate precisely
the nonlinear third order polarization, including the CEP into account. This additional phase
transforms TH term to THz or GHz terms, depending on the spectral width of the pulse.
Thus, we suggest a new mechanism of THz and GHz generation from fs pulses in nonlinear
regime. For pulses with power a little above the critical for self-focusing, we investigate
two basic cases: pulses with narrow-band spectrum and with broad-band spectrum. The
numerical simulation of the evolution of narrow-band pulses (standard 100 fs pulses), gives
a typical conical emission and a spectral enlargement to the short wavelengths. Our study of
broad-band pulses leads to the conclusion that their propagation is governed by the nonlinear
wave equation with third order nonlinear term (39), when the THz oscillation is neglected
as small term. An exact soliton solution of equation (39), with 3D + 1 Lorentz shape is also
obtained. The soliton appears as a balance between parabolic divergent type diffraction and
parabolic convergent type of nonlinear self-focusing. Numerically, we demonstrate a relative
stability of the soliton pulse with respect to the THz oscillations.
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