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1. Introduction 

Laser beam shaping is an active discipline in optics owing to its importance to both 
illumination and detection processes. The formation of single or multiple optical vortices in 
a laser beam has taken on recent interest in areas ranging from electron and atom optics to 
astronomy. Here we describe our efforts to create localized vortex cores using only the 
interference of several laser beams with Gaussian profile, a method that may be particularly 
suited to the application of vortex modes to intense femtosecond laser pulses.  
For many years the study of optical vortex formation has been of interest as a problem in 
itself and one typical of many linear and nonlinear optical phenomena (Nye et al., 1988) 
such as the formation of speckles, the appearance of solitons, operation of laser and 
photorefractive oscillators in transverse modes, the self-action of the laser oscillation in 
nonlinear media (Swartzlander, Jr. & Law, 1992; Kreminskaya et al., 1995); creation of 
optical vortices in femtosecond pulses (I. Mariyenko et al., 2005); investigation of atomic 
vortex beams in focal regions (Helseth, 2004), etc. The investigation and explanation of the 
pattern formation by different optical systems was activated for recent years (Karman et al., 
1997; Brambilla et al.,1991); efficient generation of optical vortices by a kinoform-type spiral 
phase plate (Moh et al., 2006; Kim et al., 1997). 
These two apparently different problems of pattern formation and vortex formation are the 
manifestation of the same phenomenon, which we explain by interference of many plane 
waves (Angelski et al., 1997; Kreminskaya et al., 1999; Masajada & Dubik, 2001). 
An optical vortex (or screw dislocation, phase defect or singularity) is defined as the locus of 
zero intensity accompanied by a jump of phase on ±2πm radians, occurring during a round-
trip (Nye & Berry, 1974; Basistiy et al., 1995; Abramochkin & Volostnikov; 1993). The integer 
m is the topological charge, the sign corresponds to the direction of the phase growth: “+” to 
counterclockwise and “-“to clockwise. In the transversal cross-section, the optical vortex 
reveals itself as a point, in the 3-D space it exists along the line. A doughnut mode of laser 
beam is the example of optical vortex. Other member of optical dislocations family is the 
edge dislocation. The phase changes here by π radians. The shape of the edge dislocation is a 
line in the transversal cross-section and a plane in 3-D space. Interference pattern of the 
Young’s experiment is the example of the edge dislocation. For the complex amplitude of 
the light, the condition of the zero intensity means simultaneous zero of the real and 
imaginary parts of the complex amplitude. 
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The experimental detection of vortices is accomplished by interference with a reference 
beam that results in m new fringes appearing in the off-axis interference scheme, etc. In our 
experiment, the detection of the phase was performed by the Electronic Speckle Pattern 
Interferometry (ESPI) system (Khizhnyak & Markov, 2007; Malacara, 2005). 
In this paper the process of optical vortex arising from the interference of plane waves was 
studied both theoretically and experimentally as a continuation of the fundamental 
prediction of (Rozanov, 1993). On the base of this study the simple and convenient method 
of the vortex creation is proposed. An explanation of an appearance of phase singularities 
and hexagonal pattern in an initially smooth laser beam is given.  

2. Theoretical approach and numerical modelling 

The plane wave is the solution of the wave equation and could be described in Cartesian 
coordinates as (Born&Wolf, 1980):  

 0 exp( )U A i  (1)  

  0 0sin cos sin sin cos        

kr kx ky kz     , (1.1)  

where U is the complex field amplitude, A0 is the amplitude,   is the phase, 

k is the wave 

vector,  

r  is the radius- vector, 0  is the initial phase shift, ψ and  are polar and 

azimuthal angles in the spherical system of coordinates. Wavefronts of the plane wave are 
equally spaced parallel planes perpendicular to the wave vector and have zero topological 
indices.  
For our problem of search of singularities, the condition of zero intensity is equivalent to 
simultaneous zero of real and imaginary part of the complex field amplitude. 
All calculations were performed using Wolfram Mathematica 6. 

2.1 The interference of two plane waves  
Let two plane waves interfere. The well-known periodical pattern of white and black fringes 
appears in any cross-section of the intensity distribution, Fig.1,a:  

 
2 2 2 2

12 1 2 1 2 1 2 1 22 cos( )     U U U A A A A   , (2) 

The period of the pattern depends on the angle  between interfering waves and is equal to  

 /(2sin( /2))     (2.1) 

where λ is the wavelength. The phase undergoes shifts by  in crossing every black fringe, 
producing edge dislocation, Fig.1,b. If the amplitudes of waves are equal (A, for example), 
the range of intensity (Eq.2) goes from maximum value of 4A2 to exact zero. The contrast of 
this pattern equals to one.  
Further, according to the principle of independent propagation, two interfering waves move 
forward and interfere again and again, producing patterns with the same period  in 
subsequent cross-sections. Sets of planes of equal amplitude and/or phase are shifted on π 
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Fig. 1. (a) Intensity and (b) phase distribution of the interference of two plane waves of equal 
amplitudes in transversal cross-section. Set of alternating bright and black fringes is typical 
for the intensity. Jump of phase by  π radians occurs along each black fringe forming a line 
of edge dislocations. Result of numerical odelling. 

with respect to each other. For our case of equal amplitudes A, the condition of the black 
fringe (edge dislocation and zero intensity) is 

 2 2
1 22 cos( ) 0   A A A A    (2.2) 

Resulting in  1 2cos( ) 1     (2.3) 

and  1 2( ) (2 1)    n     (2.4) 

 
where n is an integer number. We apply Eq.1.1 to describe the the planes of zero intensity in  
3-D space as following: 

 1 1 2 2 1 1 2 2

1 2 12

(sin cos sin cos ) (sin sin sin sin )

(cos cos ) (2 1)

         
     
k x k y

k z n

    
 

 (2.5) 

 1 1 2 2 1 1 2 2

1 2 12

(sin cos sin cos ) (sin sin sin sin )

(cos cos ) /(2 ) ( 1 / 2)

       
     

x y

z n

   
   

 (2.6) 

 
This equation defines the plane of edge dislocation in 3-D space. 
The same way we defined the planes of the maximum intensity as 

 1 1 2 2 1 1 2 2

1 2 12

(sin cos sin cos ) (sin sin sin sin )

(cos cos ) /(2 )

       
    

x y

z n

   
   

 (2.7) 

Theoretically the planes of edge dislocations are unlimited in the cross-section, in practice 
they exist in the volume of the crossing of the plane waves. 

2.2 The interference of three plane waves  
Let have three plane waves interfere, as shown in Fig. 2.  For the sake of simplicity lets use 
the paraxial aproximation of small angles. 
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Fig. 2. The direction of wave vectors for three plane waves interfering at symmetric angles of 
ψ=2π/3  radians and azimuth θ=π/10 radians. 

The complex field of three-wave interference can be represented in the next form:  

 1 2 3 12 13 23( ) / 2      U U U U U U U  (3) 

which is the superposition of three systems of fringes of pairwize interference, where 
indices correspond to notation of Eq.2.  
This definition looks artificial until the description of the intensity of this field: 

 2 2 2 2
1 2 3 1 2 1 2 1 3 1 3 2 3 2 32 cos( ) 2 cos( ) 2 cos( )U A A A A A A A A A                 (3.1) 

when the addition of three fringe patterns (it is natural to call them partial) occurs, Fig.3.  

2.2.1 Interference of three plane waves of equal amplitude  
Let us simplify Eq. (3.1) by introducing the equal amplitudes of waves Ai=A.  
By definition of the intensity of optical field, it has to be always positive and we have to 
analyze inequality  

 2
1 2 1 3 2 3(3 2 cos( ) 2 cos( ) 2 cos( )) 0      A        (3.2) 

The maximum of intensity happens when all cosines are equal to 1. This corresponds to the 
intersection of three bright fringes (white lines, Fig.3, or schematically shown in Fig.4), 
producing the brightest spot of intensity of 9A2 in the point. According to the condition  of 
Eq.3.2, the minimum of the function will be always zero, that coincide with the definition of 
singularities. For illustration purposes we had chosen polar angles ψ between wavevectors 
equal to 2/3 radians. 
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Fig. 3. Intensity distribution of three plane waves (center), pairs of plane waves (top, bottom, 
left) and the phase distribution (right). The phase distribution proves the existence of 
vortices of opposite signs in the apexes of black hexagons. The amplitudes of interfering 
waves are equal. The angles between the waves are equal. The crossing of izophase lines 
corresponds to a saddle point. The scale is the same as in Fig.1. Grey scale, black/white 
colour correspond to minimum/maximum values. Numerical calculations. 

 

 
Fig. 4. Illustration of how three partial fringes of maximum intensity (in between of white 
lines) cross in one point, producing the bright spot of maximum intensity. 
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The important restrictions on the type of resulting pattern follows from the Eq.3.2, 
specifically, the partial black fringes never cross in a point (cosines can not be equal to -1 
simultaneously, because the intensity could not be equal to a negative number -3). 

2.2.2 Interference of three plane waves at different angles  
We keep investigating interference of three plane waves of equal amplitude. Let’s tilt one 
wave by 0.5 radians. The resulting pattern is shown in Fig.5. 
 

 
            (a)                             (b) 

Fig. 5. The interference pattern of three plane waves: (a) intensity and (b) the phase 
distribution. The amplitudes of interfering waves are equal. The polar angle of one wave 
was changed by 0.5 radians. The scale is the same as in Fig.1. 

2.2.3 Interference of three plane waves of different amplitudes  
The pattern becomes complicated when waves are of different amplitudes. 
The numerical results shown in Fig.3 and Fig.5 were produced under the assumption that 
the amplitude of each plane wave was equal and the contrast of the pattern was equal to 
one. During the lab procedure we can control relative contrast to certain accuracy. That is 
why it is important to know that optical vortices will persist under amplitude perturbation. 
To locate and confirm the existence of singularities at each of the six points around the 
bright spot, we search for points in the plane where the real and imaginary parts of the 
complex amplitude simultaneously go to zero.  
For this part we had chosen three plane waves with equal angles between them (as shown in 
Fig.2). The intensities of two plane waves are equal, and the intensity of the third wave 
changes. The results of numerical modeling are presented in Fig.6 and Fig.7. In Fig.7 we 
plotted position of vortices for different values of A3, inside of one cell of the pattern. 
Line of Re(UΣ)=0 coincides with line of Im(UΣ)=0 for the edge dislocation in Fig.6,a for A3=0. 
Fig.6,b shows the snake-like rolls with vortices in the wriggles, A3=0.2A. Here we observe 
irregular hexagon of the six vortices. Vortices along the line x=0 move away from the fringes 
of case Fig.6a, while vortices along lines ±xv move closer to each other. For A3=A in the Fig. 
6c the crossing of three lines Im(UΣ)=0 corresponds to a saddle point and regular hexagon of 
vortices is formed around. At A3=1.5A the vortices are still formed. Vortices along lines ±xv 
move closer to each other. At A3=2A the vortices from the close neighbor pair annihilate at 
±xv. We observe honey comb structure both for bright spots and vortices. At larger A3 
vortices are not created. 
The vortices persist under such perturbations, and as the amplitude of  A3 varies up to 2A. 
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        (a)   (b)    (c)    (d)    (e) 

Fig. 6. Numerical calculations of the interference pattern of three plane waves (top) and plot 
of lines Re=0 (solid line) and Im=0 (dashed line) (bottom), here Re is a real part and Im is 
imaginary part of the complex beam amplitude. Both polar and azimuthal angles between 
wave vectors are equal. The amplitudes A1=A2=A of two interfering waves are equal. 
Amplitude of the third wave was changed as a fraction of A: (a) A3=0; (b) A3=0.2A; (c) A3=A; 
(d) A3=1.5A; (e) A3=2A. The scale is the same as in Fig.1. 

 

 
Fig. 7. The location of optical vortices within one cell of the pattern for different values of A3. 
Note that every pair of vortices is displaced along verical line. 

2.2.4 Topological analysis 

Let us discuss the simplest case of interference of three plane waves of the same amplitude, 
with wavevectors oriented at the same angles relatively to each other (Fig.2, Fig.3). The sum 
of three partial fringes of the same period  results in a honey-comb pattern of bright spots 
(Fig.3 center) with the phase distribution as shown. The bright spots in , ψ2=2π/3 , ψ3=-2π/3 
and same Θ1=Θ2=Θ3 the condition of Eq.6 is satisfied for the matrix of Equations (4.1-4.3). 
The line of maximum intensity of the optical field exists in space with coordinates  
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0xa , 0ya , 23 3
sin

2
 za . 

Moreover, as each equation of fringe (4.1-4.3) is defined to within 2n, the set of parallel 
lines is observed. This means that pattern of bright spots of the stable transverse structure of 
the honey-comb cell, distribute in space along well determined lines. 
 

x
y

z

 
Fig. 8. Localization of one set of bright spots (one cell of the honey comb pattern)  in 3-D 
space along the straight lines. All parameters of three plane waves are the same as in Fig.3. 

2.2.5 Displacement of the whole pattern  
By shifting the relative phases between three plane waves, it is possible to effectively shift 
the pattern so that the vortex is located at the center of a pattern, Fig.9. In the experiment 
this was done by using different optical path lengths. For our case of three plane waves with 
equal amplitudes and angles of ψ1=0 , ψ2=2π/3 , ψ3=-2π/3 and same Θ1=Θ2=Θ3 
To move the whole pattern in the transverse cross-section, we added initial phase shifts to 
each wave as following:  φ01=0 , φ02=2π/3 , φ03=-2π/3. 
 

 
            (a)                    (b)            (c)                   (d)  

Fig. 9. The intensity distribution in transverse cross-section of (a) three plane waves 
interference pattern with the vortex in the center. This was achieved by shift of initial phases 
between interfering plane waves. The pattern repeats periodically; (b) Intensity distribution 
of interference pattern of three Gaussian beams. Here=2:1(c) Intensity distribution of 
interference pattern of three Gaussian beams. Hered) Doughnut laser mode.
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When compare the Fig 9a to the intensity distribution in Fig.3 center, one can see, that the 
vortex is located in point (0,0), as opposed to the bright spot with maximum intensity in the 
same point (0,0). The period of the pattern did not change. 

2.2.6 Interference of three Gaussian beams  
The real laser beam has a finite aperture, its amplitude depends on coordinates as  

 U=A0exp-(x^2+y^2)/ω^2  (4) 

with  being the waist of the laser Gaussian beam. That is why we should not predict the 
periodic  pattern to continue throughout all of space as a tessellation, both in transverse and 
longitudinal directions. Instead, the interference is confined locally. Mathematically, we 
achieve this finite spatial extent by modulating the amplitude of interfering plane waves 
with a Gaussian profile of Eq.4; this gives us a local area with interference pattern. This 
approach works well in the paraxial approximation. In the experiment, the small angles 
between interfering laser beams justify the use of this approximation. In Figs. 9.b,c we see 
that the pattern does not persist throughout the xy-plane, but is restricted to a small region 
of the transverse cross section. In this case the waist of the laser Gaussian beam  was equal 
to the 2*spatial period of the two-beam interference pattern). At this point, there exists a 
competitive interaction between two parameters: the period of the hexagonal pattern of 
vortices, which is controlled by the angle of interference, and the off axis attenuation, which 
is controlled by the waist of the laser beam. By increasing the attenuation, we can further 
decrease any off center intensity contributions and retain only the center black spot and its 
immediately surrounding bright ring, Fig.9,c. One would like to have this type of intensity 
profile to be as close as possible to the doughnut mode. Doughnut modes correspond to a 
first order Laguerre-Gaussian laser mode with a profile depicted in Fig.9d. This result is 
important for application like doughnut mode creation for the temporally focusing of 
electron pulses (Hilbert et al.,2009), (Helseth, 2004). 

2.3 Interference of many plane waves  
We performed modelling of interference of larger number of plane waves to explore the 
possibility of creation of different patterns and vortex tesselations. Various patterns can 
be created in the space, Fig.10. Between patterns of three-wave, five-wave and seven-wave 
interference the common features are as following: the bright central spot is formed, there 
is a radial symmetry, the number of vortices around the center is 2n, where n is the 
number of  interfering waves, in the phase distribution one can see the saddle point of the 
order (n-1).  The black circles of edge dislocations and bright circles surround the central 
bright spot. 

3. Experimental setup  

The four-arm Mach-Zhender interferometer was assembled for our experimental 
investigation, Fig.11. Three arms were used to form the field under study and the fourth was 
used as the reference one. A He-Ne laser with Rayleigh range zR=πw2/λ=1.5 m was used as 
the light source. The reflectivity of the cube beamsplitters (BS) was 50/50 to obtain a set of 
interference patterns with equal high contrast. Optical attenuators were used to reach this 
condition precisely. All optical surfaces were covered with antireflection coatings to reduce 
reflection losses. 
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Fig. 10. Numerical calculations of the interference pattern of five plane waves (top) and of 
seven plane waves (bottom). Intensity distribution is shown in the first column,  the phase 
distribution is shown in the second column and the plot of lines Re=0 (solid line) and Im=0 
(dashed line) (third column). Angles between wave vectors are equal. The amplitudes of 
interfering waves are equal. The scale is related to the period of the two-waves interference 
as shown on the side. 

The ESPI-system (Khizhnyak &Markov, 2007) was used for the phase reconstruction. To 
perform the phase reconstruction one of the totally reflective mirrors of the interferometer 
was placed to piezomotor, which allowed to move the mirror by fraction of the wavelength. 
We recorded pattern of interference of three beams under study and one reference beam 
(oriented at relatively large angle to obtain the frequent thin fringes to identify vortices as 
bifurcation of the fringe). Several snapshots were recorded by CD camera, stored in the 
memory of the computer and processed. As a result, we had a graph of the phase in the 
transversal cross-section. 
With three-beam interference, different fields are formed depending on parameters of 
interfering waves, for example, the field of honey-comb structure of bright spots (Fig.12,a), 
for which optical vortices exist at the vertices of hexagons (Fig.3,b).  
The frame of the reconstructed phase of the field proves the existence of vortices as its 
disruption on 2 radians inside one hexagonal cell. The neighbouring vortices are of 
opposite topological charge, i.e. the phase increases in opposite directions. 
It was found experimentally that the location of vortex is the straight line along the axis of 
light propagation that supports theoretical predictions of the Chapter 2. In the transverse 
cross-section the pattern of vortices is the regular hexagonal for equal angles of plane 
waves, otherwise hexagons are irregular: the greater these angles the smaller the sizes of 
the hexagons.  
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Fig. 11. A 633 nm linearly polarized HeNe laser at 5 mW sends a beam off one mirror. The 
beam entering a Mach-Zehnder configuration. The interferometer is a modified Mach-
Zehnder which combines a total of four beams. In the fourth Mach-Zehnder arm the laser 
beam is redirected by a mirror, the position of which can be changed by a piezomotor 
stage. After recombination of the required number of beams the interference pattern is 
projected on a screen. A camera was used to capture the image. To help make finer 
adjustments to the pattern, we put a 3mm glass window in one of the beam paths. This 
allowed us to make minute changes to the path length of that beam by adjusting the angle 
of the window.  

 

 
   (a)          (b) 

Fig. 12. (a) Experimental pattern of intensity distribution of the total field of three plane 
waves (center) and patterns of two plane waves (up, down, sides). The vortices reveal in 
vertices as black pots. To simplify the comparison with the numerical calculations of Fig.3, 
parts of each wave were closed. The diffraction effect is seen on the edges of screens. (b) the 
phase distribution in of one hexagonal cell of (a).  
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          (a)                                                                              (b) 

Fig. 13. The experimental observation of one vortex formation: (a) with the reference beam, 
one can see the bifurcation of the single black fringe into two fringes, (b) the phase 
distribution in radians, transverse coordinates are in pixels. ).  

A single vortex was obtained when plane waves interfered at very small angles. This was 
seen as a black spot in the center of the light beam during three-beam interference (compare 
with Fig.9c). The phase distribution, reconstructed by ESPI-system shows the disruption on 
2 radians during bypass around the vortex (Fig.13,b). The pattern is stable along the axis of 
light propagation in the volume of superposition of beams.  
To change the sign of topological charge of vortex to the opposite it is sufficient to invert the 
angle of one of interfering beams. 
Fig. 14 is a series of snapshots as an amplitude of one of interfering waves A3 is incremented. 
In experiment this progression was achieved by placing an adjustable gray scale filter in one 
of the arms of the interferometer. As shown in Fig.6, the fringes are observed when A3=0. 

For A3=0.2A the snake-like rolls reveal. The regular honey-comb cell of bright spots and the 
hexagon of black dots/vortices is formed for A3=A. 

 

     
(a)   (b)   (c)   (d)   (e) 

Fig. 14. Intensity patterns for interference of three laser beams with progressive change of 
amplitude of one of interfering waves. Here we go from (a) two beams (A3=0)  to (e) 
complete three beams (A3=A)  interference. 

4. Discussion  

The process of optical vortices and pattern formation resulting from the interference of 
many plane waves was studied theoretically and examined in experiment with the evident 
agreement. 
The vortex nature of the regions of zero intensity inside the hexagonal patterns was proved 
both by the numerical analysis and ESPI reconstruction of the phase. The resulting pattern 
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of vortices was transformed from regular hexagonal to irregular one by the change of 
parameters of interfering laser beams. 
Such way of creation of vortices has several advantages over others: 
- the vortices can be created at any desirable region in space.  
- the vortices line up in a single straight line; 
- the method is simple and precise in reproducing of desirable vortex configuration in 

experiment; 
- the method used produces energy losses only from the beam-splitting. 

5. Conclusions  

The hexagonal structure of an optical field as a result of the interference of many plane 
waves is described. By interference of plane waves we have obtained a lattice of vortices of 
any desirable transverse structure. The law of conservation of the topological indices is 
fulfilled during this process. These vortices are stable objects that persist in space without 
annihilating.  
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